Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors
Abstract
:1. Introduction
- 1.
- 15 standardized precipitation classes, corresponding to the World Meteorological Organization (WMO) Surface Synoptic Observations (SYNOP) standard [19].
- 2.
- The respective precipitation rate (in mm/h) as quantitative, interpretable metric on the respective precipitation intensity, also correlating with the meteorologic visibility as demonstrated earlier [13].
- 1.
- Fine-granular weather classification by 15 standardized precipitation classes, corresponding to the WMO Surface SYNOP standard;
- 2.
- Intensity quantification by additional precipitation rate prediction;
- 3.
- Generalizability with respect to the background scene by noise extraction;
- 4.
- Implementation based on a series-deployed automotive solid-state LiDAR;
- 5.
- Benchmark of state-of-the-art deep learning models for image time series processing.
2. Related Works
3. Mathematical Modeling of Precipitation Effects
3.1. Link-Budget Equation
3.2. Stochastic Measurement Noise
4. Measurement Setup and Dataset
4.1. Data Acquisition
4.1.1. Weather Sensor Unit
4.1.2. Perception Sensor Unit
4.2. Dataset and Preprocessing
4.2.1. Dataset
4.2.2. Input Data Format
4.2.3. Measurement Noise Extraction
5. Model Architectures and Training
5.1. Model Architectures
5.1.1. Baseline Convolution-LSTM
5.1.2. 3D Convolutional Network
5.1.3. Vision Transformers
5.1.4. Convolutional Transformer
5.1.5. Video Vision Transformer
5.2. Model Training and Optimization
5.2.1. Model Training
5.2.2. Structural Optimization
6. Discussion of the Results
6.1. Classification
6.2. Regression
6.3. Implications for Future Use Cases
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
ADAM | Adaptive Moment Estimation |
ADAS | Advanced Driving Assistance Systems |
BMDV | German Federal Ministry of Digital and Transport |
BMWK | German Federal Ministry for Economic Affairs and Climate Action |
BRDF | Bidirectional Reflectance Distribution Function |
CPU | Central Processing Unit |
DL | Deep Learning |
GPU | Graphics Processing Unit |
KNN | k-Nearest Neighbor |
LiDAR | Light Detection and Ranging |
LSTM | Long Short-Term Memory |
MAC | Multiply-Accumulate |
MAE | Mean Absolute Error |
MEMS | Micro-Electromechanical System |
ML | Machine Learning |
MSA | Multihead Self-Attention |
PIDL | Physics-Informed Deep Learning |
PREC | Precipitation Rate Estimation and Classification |
PSU | Perception Sensor Unit |
ResNet | Residual Network |
RGB | Red Green Blue |
ROS | Robot Operating System |
SA | Self-Attention |
SGD | Stochastic Gradient Descent |
SUT | Sensors Under Test |
SVM | Support Vector Machine |
SYNOP | Surface Synoptic Observations |
ViT | Vision Transformer |
ViViT | Video Vision Transformer |
WMO | World Meteorological Organization |
WSU | Weather Sensor Unit |
Appendix A. Model Parameterization
(a) Baseline Visual Transformer (ViT-B). | ||
Parameter | Range | ViT-B-16 |
[49,64] | ||
Image size | (32, 128) | 224 |
Frames | 200 | - |
Image patch | (2–32, 4–128) | 4–4 |
Frame Patch | 2–20 | - |
Dim | 8–128 | 768 |
Depth | 1–5 | 12 |
Heads | 4–64 | 12 |
Head dim | 2–128 | 64 |
MLP dim | 8–128 | 3072 |
Dropout | 0.1–0.5 | 0.1 |
Embed dropout | 0.1–0.5 | 0.1 |
Pos Embed | {learn, no} | learn |
Pool | {cls, mean} | mean |
# Parameters: | 33.9 M max | 86.6 M |
(b) Simplified Visual Transformer (ViT-S). | ||
Parameter | Range | ViT-S-16 |
[50] | ||
Image size | (32, 128) | 224 |
Frames | 200 | - |
Image patch | (2–32, 4–128) | 4–4 |
Frame patch | 2–20 | - |
Dim | 8–128 | 768 |
Depth | 1–5 | 12 |
Heads | 4–64 | 12 |
Head dim | 64 | 64 |
MLP dim | 8–128 | 3072 |
Pos Embed | {sincos3d, no} | {sincos3d,no} |
# Parameters: | 33.9 M max | 22.1 M |
(c) Compact Convolutional Transformer (CCT). | ||
Parameter | Range | CCT 14/7× 2 |
[54] | ||
Image size | (32, 128) | 224 |
Frames | 200 | - |
Embed dim | 8–128 | 384 |
Num conv layers | 1–3 | 2 |
Frame kernel | {3,5,7} | 3 |
Kernel size | 3–7 | 7 |
Stride | 1–3 | 2 |
Padding | 0–2 | 3 |
Pool kernel | 3–7 | 3 |
Pool stride | 1–3 | 2 |
Pool padding | 1–3 | 1 |
Num layers | 1–4 | 14 |
Num heads | 8–128 | 6 |
MLP ratio | 1.0–4.0 | 3.0 |
Pos embed | {learn, sin, no} | L |
Num out channels | 2–15 | 64 |
# Parameters: | 108 M max | 22.36 M |
(d) Video Vision Transformer (ViViT). | ||
Parameter | Range | ViViT |
[52] | ||
Image size | (32, 128) | 224 |
Frames | 200 | 32 |
Image patch | (2–32, 4–128) | 16–16 |
Frame patch | 2–20 | 2 |
Dim | 8–128 | 768 |
Spat depth | 1–3 | 1 |
Temp depth | 1–3 | 4 |
Heads | 8–128 | 12 |
Head dim | 64 | 64 |
MLP dim | 8–128 | 3072 |
Pooling | {cls, mean} | {cls, mean} |
# Parameters: | 46.7 M max | 55.2 M |
(a) Convolution-LSTM. | ||
Parameter | Range | |
Image size | (32, 128) | |
Frames | 200 | - |
Kernel size | 3–7 | |
Num channels | 1–25 | |
Hidden state size | 32–128 | |
MLP dim | 32–128 | |
(b) 3D Residual Network (ResNet3D). | ||
Parameter | Range | ResNet3D-18 |
[46,65] | ||
Image size | (32, 128) | 224 |
Frames | 200 | - |
Blocks/Layer | 1–3 | 2 |
Kernels size | 3–7 | {1, 3, 7} |
Num channels | 1–64 | 64–512 |
Bias | True, False | False |
Batch size | 4–128 | - |
MLP dim | 16–128 | 512 |
# Parameters: | 2.67 M max | 33.7 M |
(a) ViT-B-PREC. | ||
Parameter | Class | Regression |
Image size | (32, 128) | (32, 128) |
Image patch | (32, 128) | (16, 64) |
Frames | 200 | 200 |
Frame Patch | 2 | 2 |
Dim | 33 | 34 |
Depth | 3 | 2 |
Heads | 77 | 38 |
Head dim | 20 | 64 |
MLP dim | 32 | 33 |
Dropout | 0.18 | 0.15 |
Embed dropout | 0.16 | 0.11 |
Pos Embed | learn | learn |
Pooling | mean | mean |
(b) ViT-S-PREC. | ||
Parameter | Class | Regression |
Image size | (32, 128) | (32, 128) |
Frames | 200 | 200 |
Image patch | (16, 64) | (16, 32) |
Frame Patch | 2 | 2 |
Dim | 36 | 66 |
Depth | 2 | 1 |
Heads | 37 | 29 |
Head dim | 64 | 64 |
MLP dim | 61 | 80 |
Pos Embed | sincos3d | sincos3d |
(c) CCT-PREC. | ||
Parameter | Class | Regression |
Image size | (32, 128) | (32, 128) |
Frames | 200 | 200 |
Embed dim | 64 | 128 |
Num conv layers | 3 | 3 |
Frame kernel | 5 | 3 |
Kernel size | 3 | 3 |
Stride | 1 | 3 |
Padding | 0 | 2 |
Pool kernel | 5 | 3 |
Pool stride | 3 | 2 |
Pool padding | 2 | 1 |
Num layers | 1 | 3 |
Num heads | 64 | 128 |
MLP ratio | 3.81 | 1.96 |
Pos embed | sin | sin |
Num out channels | 21 | 5 |
(d) ViViT-PREC | ||
Parameter | Class | Regression |
Image size | (32, 128) | (32, 128) |
Frames | 200 | 200 |
Image patch | (32, 128) | (32, 128) |
Frame patch | 2 | 2 |
Dimension | 46 | 76 |
Spat depth | 1 | 3 |
Temp depth | 1 | 1 |
Heads | 77 | 8 |
Head dim | 64 | 64 |
MLP dim | 95 | 29 |
Pooling | cls token | cls token |
(a) Conv-LSTM-PREC. | ||
Parameter | Class | Regression |
Image size | (32, 128) | (32, 128) |
Frames | 200 | 200 |
Kernel Size | [7, 3, 5] | [3, 7, 7] |
Num channels | [21, 12, 10] | [4, 24, 22] |
Max Pooling | [1, 2, 2] | [2, 1, 2] |
Hidden state size | [106, 104, 117] | [56, 92, 102] |
MLP dim | 21 | 109 |
(b) ResNet3D-PREC. | ||
Parameter | Class | Regression |
Image size | (32, 128) | (32, 128) |
Frames | 200 | 200 |
Blocks/layer | [2, 2, 3, 2] | [2, 2, 3, 2] |
Kernel size | 3 | 3 |
Num channels | 19 | 19 |
Bias | True | True |
Batch | 8 | 8 |
MLP dim | 19 | 19 |
Appendix B. Model Test Results
Appendix C. Computational Resources
References
- Goelles, T.; Schlager, B.; Muckenhuber, S. Fault Detection, Isolation, Identification and Recovery (FDIIR) Methods for Automotive Perception Sensors Including a Detailed Literature Survey for Lidar. Sensors 2020, 20, 3662. [Google Scholar] [CrossRef] [PubMed]
- Kettelgerdes, M.; Hirmer, T.; Hillmann, T.; Erdogan, H.; Wunderle, E.; Elger, G. Accelerated Real-Life Testing of Automotive LiDAR Sensors as Enabler for In-Field Condition Monitoring. In Proceedings of the Symposium Elektronik und Systemintegration. Hochschule Landshut/Cluster Mikrosystemtechnik, Landshut, Germany, 17 April 2024; Volume 4, pp. 87–98. [Google Scholar]
- Kettelgerdes, M.; Hillmann, T.; Hirmer, T.; Erdogan, H.; Wunderle, B.; Elger, G. Accelerated Real-Life (ARL) Testing and Characterization of Automotive LiDAR Sensors to facilitate the Development and Validation of Enhanced Sensor Models. arXiv 2023, arXiv:2312.04229. [Google Scholar]
- Strasser, A.; Stelzer, P.; Steger, C.; Druml, N. Enabling Live State-of-Health Monitoring for a Safety-Critical Automotive LiDAR System. In Proceedings of the SAS—2020 IEEE Sensors Applications Symposium, Piscataway, NJ, USA, 9–11 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Bijelic, M.; Gruber, T.; Ritter, W. A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down? In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 760–767. [Google Scholar] [CrossRef]
- Hasirlioglu, S.; Riener, A.; Huber, W.; Wintersberger, P. Effects of exhaust gases on laser scanner data quality at low ambient temperatures. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1708–1713. [Google Scholar] [CrossRef]
- Jokela, M.; Kutila, M.; Pyykönen, P. Testing and Validation of Automotive Point-Cloud Sensors in Adverse Weather Conditions. Appl. Sci. 2019, 9, 2341. [Google Scholar] [CrossRef]
- Kutila, M.; Pyykonen, P.; Holzhuter, H.; Colomb, M.; Duthon, P. Automotive LiDAR performance verification in fog and rain. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1695–1701. [Google Scholar] [CrossRef]
- Montalban, K.; Reymann, C.; Atchuthan, D.; Dupouy, P.E.; Riviere, N.; Lacroix, S. A Quantitative Analysis of Point Clouds from Automotive Lidars Exposed to Artificial Rain and Fog. Atmosphere 2021, 12, 738. [Google Scholar] [CrossRef]
- Mayra, A.; Hietala, E.; Kutila, M.; Pyykonen, P. Spectral attenuation in low visibility artificial fog: Experimental study and comparison to literature models. In Proceedings of the 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 7–9 September 2017; pp. 303–308. [Google Scholar] [CrossRef]
- Daniel, L.; Phippen, D.; Hoare, E.; Stove, A.; Cherniakov, M.; Gashinova, M. Low-THz Radar, Lidar and Optical Imaging through Artificially Generated Fog. In Proceedings of the International Conference on Radar Systems (Radar 2017), Murrayfield Stadium, Edinburgh, 24–27 October 2022; Institution of Engineering and Technology: Stevenage, UK, 2017. [Google Scholar] [CrossRef]
- Hasirlioglu, S.; Kamann, A.; Doric, I.; Brandmeier, T. Test methodology for rain influence on automotive surround sensors. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2242–2247. [Google Scholar] [CrossRef]
- Kettelgerdes, M.; Elger, G. In-Field Measurement and Methodology for Modeling and Validation of Precipitation Effects on Solid-State LiDAR Sensors. IEEE J. Radio Freq. Identif. 2023, 7, 192–202. [Google Scholar] [CrossRef]
- Linnhoff, C.; Hofrichter, K.; Elster, L.; Rosenberger, P.; Winner, H. Measuring the Influence of Environmental Conditions on Automotive Lidar Sensors. Sensors 2022, 22, 5266. [Google Scholar] [CrossRef] [PubMed]
- Heinzler, R.; Schindler, P.; Seekircher, J.; Ritter, W.; Stork, W. Weather Influence and Classification with Automotive Lidar Sensors; IEEE: Piscataway, NJ, USA, 2019; pp. 1527–1534. [Google Scholar] [CrossRef]
- Rasshofer, R.H.; Spies, M.; Spies, H. Influences of weather phenomena on automotive laser radar systems. Adv. Radio Sci. 2011, 9, 49–60. [Google Scholar] [CrossRef]
- Kashinath, S.A.; Mostafa, S.A.; Mustapha, A.; Mahdin, H.; Lim, D.; Mahmoud, M.A.; Mohammed, M.A.; Al-Rimy, B.A.S.; Fudzee, M.F.M.; Yang, T.J. Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis. IEEE Access 2021, 9, 51258–51276. [Google Scholar] [CrossRef]
- Kettelgerdes, M.; Pandey, A.; Unruh, D.; Erdogan, H.; Wunderle, B.; Elger, G. Automotive LiDAR Based Precipitation State Estimation Using Physics Informed Spatio-Temporal 3D Convolutional Neural Networks (PIST-CNN). In Proceedings of the 2023 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Queenstown, New Zealand, 21–24 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Carnahan, R.L. Federal Meteorological Handbook No. 2: Surface Synoptic Codes: FCM-H2_1988; US Department of Commerce, Office of the Federal Coordinator for Meteorological Services and Supporting Research: Washington, DC, USA, 1988. [Google Scholar]
- Chaabani, H.; Werghi, N.; Kamoun, F.; Taha, B.; Outay, F.; Yasar, A.U.H. Estimating meteorological visibility range under foggy weather conditions: A deep learning approach. Procedia Comput. Sci. 2018, 141, 478–483. [Google Scholar] [CrossRef]
- Vaibhav, V.; Konda, K.R.; Kondapalli, C.; Praveen, K.; Kondoju, B. Real-time fog visibility range estimation for autonomous driving applications. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Dhananjaya, M.M.; Kumar, V.R.; Yogamani, S. Weather and Light Level Classification for Autonomous Driving: Dataset, Baseline and Active Learning. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2816–2821. [Google Scholar] [CrossRef]
- Abu-Alrub, N.; Abu-Shaqra, A.; Rawashdeh, N.A. Compact CNN-based road weather condition detection by grayscale image band for ADAS. In Proceedings of the Autonomous Systems: Sensors, Processing and Security for Ground, Air, Sea and Space Vehicles and Infrastructure 2022, Bellingham, DC, USA, 6 June 2022; Dudzik, M.C., Jameson, S.M., Axenson, T.J., Eds.; Proceedings of SPIE. p. 20. [Google Scholar] [CrossRef]
- Vargas Rivero, J.R.; Gerbich, T.; Teiluf, V.; Buschardt, B.; Chen, J. Weather Classification Using an Automotive LIDAR Sensor Based on Detections on Asphalt and Atmosphere. Sensors 2020, 20, 4306. [Google Scholar] [CrossRef]
- Sebastian, G.; Vattem, T.; Lukic, L.; Burgy, C.; Schumann, T. RangeWeatherNet for LiDAR-only weather and road condition classification. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 777–784. [Google Scholar] [CrossRef]
- Wu, J.; Ma, B.; Wang, D.; Zhang, Q.; Liu, J.; Wang, Y.; Ma, G. Weather Classification for Lidar based on Deep Learning. In Proceedings of the SAE International400 Commonwealth Drive, Shanghai, China, 22 December 2022. SAE Technical Paper Series. [Google Scholar] [CrossRef]
- Da Silva, M.P.; Carneiro, D.; Fernandes, J.; Texeira, L.F. MobileWeatherNet for LiDAR-Only Weather Estimation. In Proceedings of the IJCNN 2023 Conference Proceedings, Gold Coast, Australia, 18–23 June 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Pereira, C.; Cruz, R.P.M.; Fernandes, J.N.D.; Pinto, J.R.; Cardoso, J.S. Weather and Meteorological Optical Range Classification for Autonomous Driving. IEEE Trans. Intell. Veh. 2024; early access. [Google Scholar] [CrossRef]
- Colomb, M.; Hirech, K.; André, P.; Boreux, J.J.; Lacôte, P.; Dufour, J. An innovative artificial fog production device improved in the European project “FOG”. Atmos. Res. 2008, 87, 242–251. [Google Scholar] [CrossRef]
- Bijelic, M.; Gruber, T.; Mannan, F.; Kraus, F.; Ritter, W.; Dietmayer, K.; Heide, F. Seeing through Fog without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arxiv 2017, arXiv:1706.03762. [Google Scholar]
- Hasirlioglu, S.; Riener, A. Introduction to rain and fog attenuation on automotive surround sensors. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Kilic, V.; Hegde, D.; Sindagi, V.; Cooper, A.B.; Foster, M.A.; Patel, V.M. Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of Adverse Weather Conditions for 3D Object Detection. arXiv 2021, arXiv:2107.07004. [Google Scholar]
- THIES LNM 5.4110.xx.x00 Manual; THies Clima: Göttingen, Germany, 2021.
- Ryu, J.; Song, H.J.; Sohn, B.J.; Liu, C. Global Distribution of Three Types of Drop Size Distribution Representing Heavy Rainfall From GPM/DPR Measurements. Geophys. Res. Lett. 2021, 48, e2020GL090871. [Google Scholar] [CrossRef]
- Handbook Radiowave Propagation Information for Desining Terrestrial Point-to-Point Links, 2008th ed.; ITU: Geneva, Switzerland, 2009.
- Smith, J.A.; Hui, E.; Steiner, M.; Baeck, M.L.; Krajewski, W.F.; Ntelekos, A.A. Variability of rainfall rate and raindrop size distributions in heavy rain. Water Resour. Res. 2009, 45, W04430. [Google Scholar] [CrossRef]
- Yu, T.; Joshil, S.S.; Chandrasekar, V.; Xiau, H. Snowfall Rate Estimation Based On Disdrometer During ICE-POP. In Proceedings of the 33rd International Union of Radio Science General Assembly and Scientific Symposium (URSI GASS), Rome, Italy, 29 August–5 September 2020. [Google Scholar]
- Acharya, R. Tropospheric impairments: Measurements and mitigation. In Satellite Signal Propagation, Impairments and Mitigation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 195–245. [Google Scholar] [CrossRef]
- Halldórsson, T.; Langerholc, J. Geometrical form factors for the lidar function. Appl. Opt. 1978, 17, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Sassen, K.; Dodd, G.C. Lidar crossover function and misalignment effects. Appl. Opt. 1982, 21, 3162–3165. [Google Scholar] [CrossRef]
- Chai, J.; Zeng, H.; Li, A.; Ngai, E.W.T. Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 2021, 6, 100134. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. arXiv 2015, arXiv:1506.04214v2. [Google Scholar]
- Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; Paluri, M. A Closer Look at Spatiotemporal Convolutions for Action Recognition. arXiv 2018, arXiv:1711.11248. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Imagerivero Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Hara, K.; Kataoka, H.; Satoh, Y. Towards Good Practice for Action Recognition with Spatiotemporal 3D Convolutions. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2516–2521. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Beyer, L.; Zhai, X.; Kolesnikov, A. Better plain ViT baselines for ImageNet-1k. arXiv 2022, arXiv:2205.01580. [Google Scholar]
- Wang, P. Visual Transformer Pytorch Model. Available online: https://github.com/lucidrains/vit-pytorch (accessed on 2 May 2024).
- Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; Schmid, C. ViViT: A Video Vision Transformer. arxiv 2021, arXiv:2103.15691. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Hassani, A.; Walton, S.; Shah, N.; Abuduweili, A.; Li, J.; Shi, H. Escaping the Big Data Paradigm with Compact Transformers. arXiv 2022, arXiv:2104.05704. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Zhang, J.; Karimireddy, S.P.; Veit, A.; Kim, S.; Reddi, S.J.; Kumar, S.; Sra, S. Why are Adaptive Methods Good for Attention Models? Adv. Neural Inf. Process. Syst. 2020, 33, 15383–15393. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Zhuang, B.; Liu, J.; Pan, Z.; He, H.; Weng, Y.; Shen, C. A Survey on Efficient Training of Transformers. arXiv 2023, arXiv:2302.01107. [Google Scholar]
- Cox, D.R. The Regression Analysis of Binary Sequences. J. R. Stat. Soc. Ser. Stat. Methodol. 1958, 20, 215–232. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Proceedings of the 25th Annual Conference on Neural Information Processing Systems 2011, Granada, Spain, 12–15 December 2011; Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; Volume 24. [Google Scholar]
- Cui, Y.; Xu, H.; Wu, J.; Sun, Y.; Zhao, J. Automatic Vehicle Tracking With Roadside LiDAR Data for the Connected-Vehicles System. IEEE Intell. Syst. 2019, 34, 44–51. [Google Scholar] [CrossRef]
- D’Arco, M.; Fratelli, L.; Graber, G.; Guerritore, M. Detection and Tracking of Moving Objects Using a Roadside LiDAR System. IEEE Instrum. Meas. Mag. 2024, 27, 49–56. [Google Scholar] [CrossRef]
- Lin, C.; Wang, Y.; Gong, B.; Liu, H. Vehicle detection and tracking using low-channel roadside LiDAR. Measurement 2023, 218, 113159. [Google Scholar] [CrossRef]
- Research, G. ViTs Models Configuration. 2024. Available online: https://github.com/SHI-Labs/Compact-Transformers (accessed on 1 May 2024).
- 3D ResNet PyTorch Model. Available online: https://github.com/kenshohara/3D-ResNets-PyTorch/blob/master/models/resnet.py (accessed on 2 May 2024).
Authors | Methods | # Classes | Performance (Metric) |
---|---|---|---|
Precipitation and Fog | |||
Heinzler et al. (2019) [15] | KNN, SVM | 3 | 95.86–100.0% (Prec) |
Rivero et al. (2020) [24] | KNN | 4 | 98.86–99.09% (F1) |
Sebastian et al. (2021) [25] | DL(Conv) | 3 | 46.51–100% (Acc) |
5 | 2.44–92.15% (Acc) | ||
Wu et al. (2022) [26] | DL (sparse Conv) | 4 | 94.83–99.09% (Prec) |
Da Silva et al. (2023) [27] | DL (Conv) | 3 | 91.39–100% (F1) |
Pereira et al. (2024) [28] | DL (Transf) | 6 | 91.88–99.38% (Acc) |
PSVD | |||
Kettelgerdes et al. (2023) [18] | PIDL | – | 2.4 particles (MAE) |
ID | SYNOP | Description |
---|---|---|
0 | 0 | No Precipitation |
1 | 51 | Slight Drizzle |
2 | 53 | Moderate Drizzle |
3 | 58 | Slight Drizzle and Rain |
4 | 61 | Slight Rain |
5 | 63 | Moderate Rain |
6 | 65 | Heavy Rain |
7 | 68 | Slight Rain or Drizzle |
8 | 69 | Moderate or heavy Rain or Drizzle |
9 | 71 | Slight Snowfall |
10 | 73 | Moderate Snowfall |
11 | 77 | Snow Grains |
12 | 87 | Slight Snow Pellet or Small Hail Shower |
13 | 88 | Slight Snow Pellet or Small Hail Shower, mixed |
14 | 90 | Hail Shower, mixed |
Model | Top 1 | Top 2 | F1 Score | # Params | MACs |
---|---|---|---|---|---|
3D Convolutional Networks | |||||
ResNet3D-PREC | 0.69 | M | G | ||
ResNet3D-PREC-s | 0.73 | M | G | ||
Convolution-LSTMs | |||||
Conv-LSTM-PREC | 0.67 | M | G | ||
Conv-LSTM-PREC-s | 0.74 | M | G | ||
Vision Transformers | |||||
ViT-B-PREC | 0.85 | M | G | ||
ViT-B-PREC-s | 0.78 | M | G | ||
ViT-S-PREC | 0.85 | M | G | ||
ViT-S-PREC-s | 0.83 | M | G | ||
Convolutional Transformers | |||||
CCT-PREC | 0.84 | M | G | ||
CCT-PREC-s | 0.76 | M | G | ||
Video Vision Transformers | |||||
ViViT-PREC | 0.80 | M | G | ||
ViViT-PREC-s | 0.75 | M | G |
Model | MSE [mm2/h2] | # Params | MACs | |
---|---|---|---|---|
Vision Transformers | ||||
ViT -B-PREC | 0.32 | M | G | |
ViT-B-PREC-s | 0.43 | M | G | |
ViT-S-PREC | M | G | ||
ViT-S-PREC-s | 0.24 | M | G | |
Convolutional Transformers | ||||
CCT-PREC | 0.33 | M | G | |
Video Vision Transformers | ||||
ViViT-PREC | 0.53 | M | G |
Model | MSE [mm2/h2] | # Params | MACs | |
---|---|---|---|---|
Vision Transformers | ||||
ViT-S-PREC Synop Linear Embedded | 0.11 | M | G | |
ViT-S-PREC Synop Zero Padded | 0.11 | M | G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kettelgerdes, M.; Sarmiento, N.; Erdogan, H.; Wunderle, B.; Elger, G. Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors. Remote Sens. 2024, 16, 2407. https://doi.org/10.3390/rs16132407
Kettelgerdes M, Sarmiento N, Erdogan H, Wunderle B, Elger G. Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors. Remote Sensing. 2024; 16(13):2407. https://doi.org/10.3390/rs16132407
Chicago/Turabian StyleKettelgerdes, Marcel, Nicolas Sarmiento, Hüseyin Erdogan, Bernhard Wunderle, and Gordon Elger. 2024. "Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors" Remote Sensing 16, no. 13: 2407. https://doi.org/10.3390/rs16132407
APA StyleKettelgerdes, M., Sarmiento, N., Erdogan, H., Wunderle, B., & Elger, G. (2024). Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors. Remote Sensing, 16(13), 2407. https://doi.org/10.3390/rs16132407