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Abstract: With current advances in automated driving, optical sensors like cameras and LiDARs
are playing an increasingly important role in modern driver assistance systems. However, these
sensors face challenges from adverse weather effects like fog and precipitation, which significantly
degrade the sensor performance due to scattering effects in its optical path. Consequently, major
efforts are being made to understand, model, and mitigate these effects. In this work, the reverse
research question is investigated, demonstrating that these measurement effects can be exploited to
predict occurring weather conditions by using state-of-the-art deep learning mechanisms. In order
to do so, a variety of models have been developed and trained on a recorded multiseason dataset
and benchmarked with respect to performance, model size, and required computational resources,
showing that especially modern vision transformers achieve remarkable results in distinguishing up
to 15 precipitation classes with an accuracy of 84.41% and predicting the corresponding precipitation
rate with a mean absolute error of less than 0.47 mm/h, solely based on measurement noise. Therefore,
this research may contribute to a cost-effective solution for characterizing precipitation with a
commercial Flash LiDAR sensor, which can be implemented as a lightweight vehicle software feature
to issue advanced driver warnings, adapt driving dynamics, or serve as a data quality measure for
adaptive data preprocessing and fusion.

Keywords: ADAS; adverse weather; weather classification; artificial intelligence; deep learning;
Vision Transformer; LSTM; automotive; LiDAR; precipitation measurement

1. Introduction

In the rapidly growing field of automated mobility, optical sensors, particularly light
detection and ranging (LiDAR), play a crucial role in advanced driving assistance systems
(ADASs). Especially, solid-state LiDARs have emerged as a cost-effective and robust alter-
native to traditional mechanically scanning LiDARs, making them suitable for mass market
adoption, not only with respect to the ADAS market, but also for smart city applications in
the form of intelligent infrastructure units. However, LiDAR sensors are highly sensitive to
precipitation and fog due to scattering in the near-infrared wavelength. Opposed to sparsely
investigated longterm degradation over the sensor product lifecycle [1–4], previous works
have extensively studied and modeled the instantaneous impact of environmental effects
using lab simulations [5–12], field measurements [13,14], or both [15,16]. While lab simula-
tions still fail to replicate natural precipitation types like snow and hail, field measurements
provide more realistic data at the cost of longer measurement periods to accumulate a

Remote Sens. 2024, 16, 2407. https://doi.org/10.3390/rs16132407 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16132407
https://doi.org/10.3390/rs16132407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4129-8320
https://orcid.org/0000-0002-7643-7327
https://doi.org/10.3390/rs16132407
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16132407?type=check_update&version=2


Remote Sens. 2024, 16, 2407 2 of 31

balanced dataset with respect to weather condition coverage [9,16]. The primary focus
of previous works has been to understand and evaluate LiDAR sensor performance and
model data degradation caused by environmental effects for virtual validation of ADAS
functionalities. In this contribution, a different approach is taken by investigating whether
these degradation effects can be used to predict the current weather conditions.

Such an inverse model could serve as a cost-effective solution for precise precipitation
measurements and as a lightweight software feature in vehicles and infrastructure units,
enabling advanced driver warnings and adaptive driving dynamics. Additionally, it could
be utilized as a data quality indicator for weighted heterogeneous sensor data fusion or
adaptive filtering for improved object detection [17].

Hence, in a previous work by the authors [18], a physics-informed deep learning (PIDL)
method was developed to predict the comprehensive precipitation spectrum, specifically
the particle size and velocity distribution (PSVD) from precipitation-induced degrada-
tion effects. The authors achieved a mean absolute error (MAE) as low as 2.4 particles
per size and velocity bin, considering 440 bins. Based on that, the precipitation type
could be classified, and characteristic quantities like the precipitation rate, attenuation
coefficient, or meteorological visibility distance could be derived using known physical re-
lations. The model was trained using data from a one-year in-field measurement campaign
conducted with a low-cost automotive Flash LiDAR and correlated, extensive weather
measurements [13]. However, the model was still lacking generalizability, since the PSVD
prediction was relying on information from the background scenery, which makes the
deployment in the vehicle or infrastructure challenging.

Consequentially, within this work, a novel pipeline is introduced which extracts the
measurement noise from the first LiDAR return pulse in a preprocessing step in order to
predict the occurring weather condition solely based on measurement noise (see Figure 1).
The current weather state is, for the sake of generalizability, directly predicted from the
extracted noise in an end-to-end approach, consisting of

1. 15 standardized precipitation classes, corresponding to the World Meteorological
Organization (WMO) Surface Synoptic Observations (SYNOP) standard [19].

2. The respective precipitation rate (in mm/h) as quantitative, interpretable metric on
the respective precipitation intensity, also correlating with the meteorologic visibility
as demonstrated earlier [13].

For the corresponding classification and regression task, multiple deep neural network
models are developed based on varying state-of-the-art architectures as well as model
sizes, and benchmarked with respect to accuracy and computational efficiency. Due to the
fact that the prediction is conducted solely based on measurement noise in the form of
false-positive detections in direct proximity to the sensor aperture, the models can directly
be employed in an infrastructure and potentially also vehicle application without inducing
concept drift.

With this in mind, this work contributes to earlier research (see Section 2) as follows:

1. Fine-granular weather classification by 15 standardized precipitation classes, corre-
sponding to the WMO Surface SYNOP standard;

2. Intensity quantification by additional precipitation rate prediction;
3. Generalizability with respect to the background scene by noise extraction;
4. Implementation based on a series-deployed automotive solid-state LiDAR;
5. Benchmark of state-of-the-art deep learning models for image time series processing.

Since, the underlying dataset was recorded in a static infrastructure measurement
unit, however, the effect of varying driving speed and corresponding headwind on the
noise characteristics will need to be investigated in future works. Also, secondary effects in
dynamic driving scenarios, like spray water, might have a major impact on the prediction
performance.

The work is structured as follows. Following the introduction, the second section
elaborates on related works regarding LiDAR- and machine learning (ML)-based weather
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characterization for automotive or infrastructure applications. The third section describes
the weather-induced measurement effects in LiDAR sensors which are exploited to predict
the occurring weather conditions. In the next section, the in-field measurement setup for
automated data acquisition and the resulting dataset are introduced. The fifth section lists
and explains the architecture as well as the corresponding training and hyperparameter
optimization methodology of the evaluated deep learning (DL) models. In the subsequent
sixth section, the corresponding results are presented and the model performances are
compared quantitatively with respect to classification accuracy and regression error, as well
as model size and required computational resources. The last section concludes the work
by summarizing the methodology and results.
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Figure 1. Illustration of precipitation effects within the optical channel of the Flash LiDAR sensor.
Especially large and sensor-close particles are detected as false-positive detections on the focal plane
array (FPA) and can be clearly seen as artifacts in the corresponding backscattered intensity image
Ik, the depth image Lk (not shown), as well as in the corresponding point cloud Pk at time k. The
reference scene is shown by an RGB-image. This work proposes a pipeline which extracts the induced
noise from Ik and Lk in order to be processed as image time-series by a deep learning pipeline for
fine-granular precipitation classification (SYNOP) and rate regression (R). For both tasks several state
of the art approaches are implemented, trained and benchmarked.
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Figure 1. Illustration of precipitation effects within the optical channel of the Flash LiDAR sensor.
Especially, large and sensor-close particles are detected as false-positive detections on the focal plane
array (FPA) and can be clearly seen as artifacts in the corresponding backscattered intensity image Ik

and the depth image Lk, as well as in the corresponding point cloud Pk at time k. The reference scene
is shown as an RGB image. This work proposes a pipeline that extracts the induced noise from Ik

and Lk in order to be processed as image time series by a deep learning pipeline for fine-granular
precipitation classification (SYNOP) and rate regression (R). For both tasks, several state-of-the-art
approaches are implemented, trained, and benchmarked.

2. Related Works

Due to the high relevance for the automotive and smart infrastructure industry, var-
ious works deal with the ML-driven classification of weather conditions based on the
vehicle’s perception data. Especially in early works, research focused on camera-based
approaches [20–23], due to the high information density of image data and the intuitive
interpretability from a human perspective. As elaborated, however, especially active Li-
DAR sensors tend to be very sensitive regarding varying weather conditions, so more and
more recent works are focusing on ML and DL methods to characterize occurring weather
conditions based on LiDAR detection data (see Table 1). In general, those works can be
categorized by the classified weather types, the utilized methods, the number of considered
prediction classes, and the achieved performance.
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Table 1. Related works in LiDAR-based weather classification, categorized by utilized methods,
number of considered prediction classes (# Classes), and achieved performance.

Authors Methods # Classes Performance (Metric)

Precipitation and Fog

Heinzler et al. (2019) [15] KNN, SVM 3 95.86–100.0% (Prec)
Rivero et al. (2020) [24] KNN 4 98.86–99.09% (F1)
Sebastian et al. (2021) [25] DL(Conv) 3 46.51–100% (Acc)

5 2.44–92.15% (Acc)
Wu et al. (2022) [26] DL (sparse Conv) 4 94.83–99.09% (Prec)
Da Silva et al. (2023) [27] DL (Conv) 3 91.39–100% (F1)
Pereira et al. (2024) [28] DL (Transf) 6 91.88–99.38% (Acc)

PSVD

Kettelgerdes et al. (2023) [18] PIDL – 2.4 particles (MAE)

Following this, early research by Heinzler et al. [15] addressed this question by em-
ploying classic machine learning (ML) methods in the form of k-nearest neighbor (KNN)
and support vector machine (SVM) classifiers. In order to train the algorithms, the authors
utilized two separate datasets from varying driving scenarios and the CEREMA test cham-
ber in France [29], simulating fog and rain conditions. As input features, they exploited
characteristics of the LiDAR point cloud, such as the Cartesian point position and its return
pulse width and index, as well as its intensity. Similar to this work, the point cloud infor-
mation is spatially filtered in a preprocessing step with a maximum considered distance
of 20 m. By that, the authors achieved a precision between 95.86% and 100.0% for the tested
Velodyne LiDAR and the SVM classifier on the static climate chamber dataset. Even though
they distinguished overall four classes of fog with respect to the corresponding visibility in
their investigations, only one fog class could be considered in the classifier due to feature
invariance, resulting in three overall classes (clear/sun, fog, rain).

A subsequent work by Rivero et al. [24] implemented the KNN classifier to categorize
weather conditions based on the point cloud information of a static parking lot scene, using
similar features. They achieved high accuracy in detecting rain and snow under daylight
conditions, with a F1-scores of up to 99.09% and 98.86%, respectively.

Wu et al. [26] utilized and compared several state-of-the-art DL approaches to an own,
voxelization-, and sparse-convolution-based architecture, to classify the weather conditions
on data from a static infrastructure setup, reaching a precision between 99.09% for fog and
94.83% for sun.

However, the results of the latter works appear to be highly dependent on the scenery
and measurement setup. Additionally, they differentiate rather coarsely between three to
four general weather classes (clear/sun, fog, rain, snow), while quantitative metrics on the
intensity of the respective effects (e.g., visibility distance or precipitation rate) are neglected.

In a similar manner to [26], Da Silva et al. [27] projected the LiDAR point cloud
into the birds eye view perspective in a preprocessing step in order to train and evaluate
several convolution-based DL architectures based on a driving dataset, which distinguishes
three weather classes (clear, fog, and rain). The authors achieved a high F1-score between
91.39% and 100% on the test dataset and, opposing previous works, proved generalizability
between different driving scenarios.

Sebastian et al. [25] utilized the open accessible DENSE dataset of Bijelic et al. [5,30],
which consisted of a driving dataset as well as a static dataset, again, from the CEREMA fog
and rain chamber [29], in which several LiDAR sensors and a reference camera were tested
under varying fog densities and rain intensities. Based on those datasets, they developed a
DL architecture that projects the point cloud to an imaginary image plane in order to be
further processed by a convolutional encoder structure, finally classifying the occurring
weather conditions in a granularity of up to five classes (clear, snow, light fog, dense fog,
rain) on the driving dataset and three classes (clear, fog, rain) in case of the static dataset.
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By that, they achieved a prediction accuracy between 2.44% for dense fog and 92.15% for
clear conditions on the driving dataset and between 46.51% for rain conditions and up
to 100% for clear and fog conditions on the static dataset. Similar to Heinzler et al. [15],
they explained the poor results for fog and rain prediction by the invariance of the utilized
feature space.

In a recent work, Pereira et al. [28] incorporated fused LiDAR and camera data in
order to classify the weather conditions by two general weather classes (rain and fog), but
further included three classes of meteorological visibility to give a coarse indication on the
respective rain or fog intensity, effectively resulting in six distinct weather classes. For that
purpose, they trained and evaluated several modern transformer-based [31] architectures on
the DENSE dataset, already mentioned above. For that, they partly used earlier proposed,
convolution-based models [25,27] as backbone, finally achieving an accuracy of up to
99.38% for weather classification and 91.88% for visibility classification. However, since the
models are trained on a static dataset from an indoor test chamber, it is yet to be investigated
whether the models could be deployed in an infrastructure or driving application without
inducing concept drift.

As Heinzler et al. [15] pointed out as possible follow-up research, this work aims for
a finer class division by utilizing advanced DL-based classification approaches as well
as data accumulation over time to exploit inherent time series information. Furthermore,
predictions are conducted solely on extracted noise, since the models are intended to
generalize with respect to the background scenery and application. Lastly, regression
models are investigated in addition to the classifiers in order to enhance the predicted
precipitation class with a corresponding precipitation rate as intensity metric.

3. Mathematical Modeling of Precipitation Effects

Since the authors thoroughly discussed the physical and empirical modeling of pre-
cipitation influences on Flash LiDAR sensors in a previous work [13], following [18], the
key points are only briefly summarized to provide an understanding of the measurement
effects that allow for inverse precipitation state predictions.

3.1. Link-Budget Equation

Accordingly, the optical power Pr,u,v received on a pixel (u, v) in the Flash LiDAR’s
FPA can be calculated based on a number of elements: a system element, a geometric beam
propagation element, and an attenuation element that is influenced by both the target
and the atmospheric conditions in the optical channel. Given certain assumptions, these
elements can be considered as multiplicative functions [13,16]:

Pr,u,v = CAP0,u,vτh︸ ︷︷ ︸
system

1
L2

u,v︸︷︷︸
geom

HT,u,v(Lu,v, β)T2(Lu,v, α)︸ ︷︷ ︸
attenuation

(1)

The system component (see also Figure 1, sensor front end) represents the design
parameters of the optical front end, such as the optical output power P0,u,v in the instanta-
neous field of view of a pixel (u, v) (refer to Figure 2), the pulse width τh, and the so-called
system constant CA, which, among other things, includes the optical efficiency and aperture
of the receiver optic.
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Figure 2. Projective Flash LiDAR model, adapted with permission from Ref. [13], 2024, IEEE.
Assuming full transmitter beam and receiver frustum crossover, the illuminated section At,u,v(Lu,v)

per detector element (u, v) can be assumed as the respective observed area Au,v(Lu,v) and, hence,
calculated as a function of the inverse intrinsic camera model {Kcam

−1, δdis
−1} and the target distance

Lu,v. In general, the size ratio of an occurring particle and Au,v decreases significantly with Lu,v,
which makes Flash LiDAR sensors rather sensitive to aperture-close false-positive detections.

While the geometrical term describes the measurement distance Lu,v-dependent
quadratic power density decrease, the attenuation term divides into the target response
function HT,u,v(Lu,v, β) (see also Figure 1, object space) and the response function of the
optical channel T2(Lu,v, α) (see also Figure 1, measurement noise).

The latter describes the two-way signal attenuation T(Lu,v, α) by particle scattering
and absorption effects. Both are considered by the attenuation coefficient α, integrated over
Lu,v:

T(Lu,v, α) = e−
∫ Lu,v

l=0 α(l)dl (2)

α can again be calculated based on the extinction efficiency Qext, representing the
particle diameter D-dependent scattering mechanism [13,16,32]. Hence, Qext is integrated
over the particle size distribution in a unit volume N(D):

α =
π

4

∫ ∞

D=0
D2Qext(D)N(D)dD (3)

HT,u,v(Lu,v, β), on the other hand, depends on the target nature which is described by
the backscattering coefficient β. Depending on the reflection mechanism, this might simply
be expressed by a reflection coefficient in terms of an ideally diffuse target surface, or a
bidirectional reflectance distribution function (BRDF) in case a surface with a more complex
reflection behavior is considered [16]. The overall power, backscattered by a particle
distribution N(D), can be calculated by integrating over the respective backscattering
efficiency Qb(D) instead of Qext, analogous to α [13,16,32].

3.2. Stochastic Measurement Noise

However, with the underlying assumptions, this term does not cover the backscatter-
ing of large, sensor-close particles, which lead to stochastically distributed false-positive
detections in the sensor frustum (see Figure 1, measurement effects). Due to their operating
principle, Flash LiDAR systems are particularly sensitive to scattering particles that are
close to the sensor aperture. Since Flash LIDAR systems rely on a diffuse laser beam with
comparatively strong beam divergence (see Figure 2), the ratio between their cross-section
and the size of an occurring scattering particle becomes larger in direct proximity to the
laser aperture. Consequentially, the irradiance on that particle is significantly higher than
that of a more distant particle. Accordingly, the proportion of backscattered power is high
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enough to trigger a false-positive detection in one or more pixels of the FPA, whereas
more distant particles are not exposed to sufficient irradiance to induce a false-positive
detection over the backscattered optical power. This is a major difference to scanning
LiDAR systems, which work with a collimated laser beam with comparatively very small
divergence. Hence, scattering particles can potentially induce false-positive detections
over the whole measurement range. Accordingly, this effect may be considered with an
additional probabilistic modeling approach, as suggested by Kilic et al. [33], for example,
by incorporating it as probabilistic target response HX

T,u,v(LX) in a random distance LX [13].
Both of the described effects—The overall precipitation induced signal attenuation,

and more significantly, the stochastic false-positive detections, due to large, sensor-close
particles, can be observed as measurement effects in the dataset and were in magnitude
even found to be correlated with the precipitation rate and type [13]. This finally motivates
the exploitation of these undesired effects by employing data-driven models which are
capable of reconstructing the present precipitation condition from it.

4. Measurement Setup and Dataset

In order to understand the underlying training data for the implemented model,
the measurement setup and campaign, as well as the resulting dataset, are described in
further detail.

4.1. Data Acquisition

The basic configuration [13] comprises two major components—a perception sensor
unit (PSU) equipped with a reference RGB camera and the sensors under test (SUT), along
with a weather sensor unit (WSU) that captures detailed weather information every 60 s
(see Figure 3). Both units are remotely linked via a cloud-based platform which allows
them to function independently from each other. Moreover, this platform also enables the
data to be stored and displayed online.

Figure 3. Outdoor measurement setup consisting of a perception sensor unit with the devices under
test and a weather sensor unit for continuous acquisition of comprehensive weather data. Both
systems are connected to a cloud-computing platform in order to exchange, store, and visualize the
respective data online. Adapted with permission from Ref. [13], 2024, IEEE.

4.1.1. Weather Sensor Unit

Primarily, the WSU is equipped with measurement tools from the manufacturer, Thies
Clima. These devices are used to quantify wind, temperature, air humidity, sunshine expo-
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sure, and rain conditions. Out of these, the primary focus of this study is on precipitation,
which is gauged via a laser disdrometer [34]. The disdrometer can accurately capture
existing precipitation by registering particles based on their specific velocity v and diameter
D. The data on these particles are preserved in a discrete 2D histogram, denoted as n(I × J),
which comes with velocity bins j and diameter bins i, each with a width ∆vj, ∆Di and
a nominal value vj, Di. The particle counting is performed over an integration time tint,
which is typically around 60 s, as in our case, and within a certain detector cross-section
Adet (in our setup, 0.00456 m2).

An exemplary PSVD for a precipitation rate of R = 21 mm/h is shown in Figure 4. The
patterns of these distributions may vary greatly based on location and type of rainfall [35,36].
In addition to identifying the type of precipitation from the PSVD, it is also possible to
calculate characteristic parameters like the wavelength-dependent signal attenuation α, the
backscattering coefficient β, and the rainfall rate R [32,37]. For events of solely liquid rain,
R can be calculated as shown below:

R =
6π

104

∫ ∞

D=0
D3v(D)N(D)dD (4)

By incorporating the density of the corresponding particles, this relation can also be
applied to solid precipitation like snow, expressing the liquid water equivalent precipitation
rate [38]. Therefore, the measured n has to be normalized to the average number of particles
per unit volume N(Di) by conducting the following transformation [34,39]:

N(Di) =
nΣj

i

vj
i · tint · Adet · ∆Di

(5)

with nΣj
i being the sum of all particles in diameter bin i and vj

i being the average particle
velocity in diameter bin i.
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Figure 4. Exemplary PSVD for a measured precipitation rate of R = 21 mm
h as shown in [18],

describing the number of particles n with a diameter D and a velocity v as a 2D-histogram. In
addition to the precipitation rate, calculated with (6), the precipitation class can be identified by the
particle characteristics as indicated.

By that, the corresponding key parameters, including the attenuation and backscatter- 261
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Figure 4. Exemplary PSVD for a measured precipitation rate of R = 21 mm
h , as reprinted with

permission from Ref. [18], 2024, IEEE, describing the number of particles n with a diameter D and a
velocity v as a 2D histogram. In addition to the precipitation rate, calculated with (6), the precipitation
class can be identified by the particle characteristics, as indicated.
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By that, the corresponding key parameters, including the attenuation and backscatter-
ing coefficient, can be calculated by discrete integration over the particle size bins:

R ≈ R̂ =
6π

104 · 1
tint · Adet

·
I

∑
i=1

D3
i nΣj

i (6)

and

α ≈ α̂ =
π

4 · tint · Adet

I

∑
i=1

D2
i Qext(Di)

nΣj
i

vj
i

(7)

with β accordingly by replacing Qext(Di) with Qb(Di).
Opposed to the wavelength-dependent backscattering and extinction coefficient, the

disdrometer is able to derive precipitation rate and sum directly with an error of less
than 15% in case of rain. The WSU dataset relevant for this work, however, consists of
15 recorded weather classes with the corresponding precipitation rate, as further elaborated
in Section 4.2.

4.1.2. Perception Sensor Unit

On the other hand, the PSU regularly fetches the current weather state from the server
to examine for unseen severe weather situations, such as a particular precipitation rate.
When this happens, the MCU initializes all SUTs to collect a data sample of approximately
15 s, which is then stored locally before being transferred to the cloud. This process
aims to maintain a balanced dataset while ensuring that the total volume of data remains
manageable. To automate and standardize the handling of perception sensor data, the MCU,
along with all sensor and device drivers, utilizes the well-known open Robot Operating
System (ROS).

Delving into the SUT hardware, in general, two LiDARs were installed: a micro-
electromechanical system (MEMS)-based scanning LiDAR and an automotive Flash LiDAR
from Continental, whereby this study lays emphasis on the latter (refer to Figures 1 and 3,
center). The Flash LiDAR qualifies as a direct time-of-flight device, furnishing 16 bit
depth (L) and intensity (I) images in addition to a corresponding point cloud P by as-
certaining the pixel-wise pulse return time along with its intensity within a resolution
of W × H = 128 × 32 pixels and a frame rate of up to f = 25 Hz. For that, it operates
on a transmitter wavelength of λ = 1064 nm and features a receiver field of view of
FOV = 120◦ × 27.5◦, as well as a measurement range of Lmin = 0.5 m to Lmax = 25 m.

In general, the sensor is able to detect up to two return pulses per pixel, which enhances
the sensor performance, especially with respect to scattering particles in case of adverse
weather conditions or dust. However, since exactly those scattering effects are exploited,
only the first return pulse with its corresponding depth and intensity image is taken into
account for further processing, as discussed in the following.

4.2. Dataset and Preprocessing
4.2.1. Dataset

The recorded LiDAR data are stored in form of a serialized rosbag with an attached
weather message, containing, among others, comprehensive precipitation data. The data
were acquired in the field over a duration of one year, covering all seasons. This is illustrated
by the precipitation class distribution (see Figure 5a), which shows quite a balanced data
distribution for slight drizzle (1), rain (4–6), snow (9–10), or mixed precipitation, including
small hail (13). All class IDs, including the respective SYNOP-standard ID and descriptions,
are listed in Table 2.

Some classes, like slight drizzle and rain (3), moderate drizzle (2), and slight snow
pellets or small hail shower (12), were highly underrepresented due to their less-likely
occurrence, which again results from them being either a transition class between two
major categories (2), or containing some ambiguity like class 3 or 12. Consequently, the
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datasets from the corresponding classes are majorly augmented by oversampling, similarly
to Pereira et al. [28]. The class-specific oversampling magnitude is illustrated in Figure 5a,
in which the original data share of underrepresented classes is marked in black, whereas
the final test/train split is visualized by the corresponding colors.

Table 2. Precipitation class IDs and descriptions in accordance with the SYNOP standard [19], using
the same indexing with permission from Ref. [18], 2024, IEEE.

ID SYNOP Description

0 0 No Precipitation
1 51 Slight Drizzle
2 53 Moderate Drizzle
3 58 Slight Drizzle and Rain
4 61 Slight Rain
5 63 Moderate Rain
6 65 Heavy Rain
7 68 Slight Rain or Drizzle
8 69 Moderate or heavy Rain or Drizzle
9 71 Slight Snowfall
10 73 Moderate Snowfall
11 77 Snow Grains
12 87 Slight Snow Pellet or Small Hail Shower
13 88 Slight Snow Pellet or Small Hail Shower, mixed
14 90 Hail Shower, mixed

For model training, the data are split into 80% training-, 15% validation-, and 5%
test-data. Since the number of data samples after augmentation is still not fully uni-
formly distributed among SYNOP-classes, the training–validation–test split is applied
class-specific in order to ensure a fair representation of generally underrepresented classes
in the validation and test evaluations (see Figure 5a).

Further, the dataset was found to cover a wide range of precipitation intensities,
covering precipitation rates up to more than R = 50 mm/h [13]. In order to illustrate this,
Figure 5b shows the precipitation rate spread of the corresponding classes for all contained
samples.
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by oversampling. (b) Distribution of the measured precipitation rates Rmeas with respect to the
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4.2.2. Input Data Format

For model training, an image time series TS, consisting of C = 2 channel images x,
each with intensity I and depth L channel, is utilized as model input:

TS = {xk, ..., xk−M} (8)

= {(Ik, Lk), ..., (Ik−M, Lk−M)} (9)

Opposed to that, the corresponding SYNOP precipitation class and rate R are used
as target values, for which they were de-serialized and converted to tensors to allow
for fast data loading during training. All models are trained on a time series length of
M = 200 images, which is equivalent to a window length of:

tint,LiD =
M
f
= 8 s (10)

Time-series-based inferencing instead of single image processing is absolutely essential
for the noise-based precipitation state prediction, since single noise frames are highly
ambiguous with respect to weather influence. Consequentially, the input tensor for all
investigated architectures has the shape (B, M, C, H, W) with B describing the batch size
as relevant training hyperparameter and H × W as the dimensions of the corresponding
16 bit monochromatic images, as described earlier.

4.2.3. Measurement Noise Extraction

As mentioned before, this work claims for generalizability with respect to the back-
ground scene and application. In order to fulfill this requirement, only precipitation-
induced noise is processed. As elaborated in Section 3.2, it is generally occurring rather
close to the sensor aperture in the case of Flash LiDAR sensors. Following that, the major
part of the noise was found to occur at a distance of Ln,k ≤ Lcrop = 1 m. Accordingly,
only false-positive detections at a distance smaller than—and just above—the sensor’s
specified minimum working distance of Lmin = 0.5 m are considered; hence, data are
mostly discarded on the application side. In case of the SUT, Lmin is mainly dictated by the
collinear orientation of transmitter and receiver and the resulting distance in which a full
crossover between transmitter beam and receiver frustum is guaranteed [40,41].

Due to design-related close-distance backscattering sensitivity, it was found that the
information content of close-approximity noise is, opposed to full PSVD prediction [18],
sufficient to characterize the precipitation precisely by its respective SYNOP class and rate.

This does not only allow for an application-agnostic deployment, but also for perfor-
mant noise extraction through simple distance-based cropping of Ik and Lk. Consequen-
tially, for each pixel (u, v), the noise frames In,k and Ln,k can be found by (see also Figure 1):

In,k(u, v) =

{
In,k(u, v), for Ln,k ≤ Lcrop

0, otherwise
(11)

Ln,k(u, v) =

{
Ln,k(u, v), for Ln,k ≤ Lcrop

0, otherwise
(12)

5. Model Architectures and Training

In this section, the implemented DL architectures are introduced and the training
process, including the hyperparameter optimization, is described.

5.1. Model Architectures

Modern DL concepts, like convolutional- and transformer-based architectures, demon-
strate outstanding performance in classic computer vision tasks like object detection, action
recognition, and image segmentation [42,43]. However, these models typically require a
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vast amount of computational resources. Therefore, as mentioned earlier, the DL models
utilized in this work were not only selected with respect to the problem setting of an image
time-series-based classification and regression problem, but also with focus on the in-field
applicability and therefore fast inferencing on respective edge devices. Following this, all
models were optimized and evaluated with respect to their performance, but also to their
size and number of required multiply–accumulate (MAC) operations, which again dictate
memory requirements and inference time. In the following, the investigated models are in-
troduced, with clear emphasis on their main features and differences. For a comprehensive
in-depth description, the reader is referred to the corresponding works.

5.1.1. Baseline Convolution-LSTM

As a simple baseline architecture, a naive convolution–long short-term memory (Conv-
LSTM) model was implemented (see Figure 6). It consists of three subsequent convolutional
units, each with a 2D convolution, maxpooling, and an ReLu layer, followed by three
LSTM [44] cells with varying hidden state and input size, processing temporal context
over the image time series. Following this, the Conv-LSTM implemented here has to be
distinguished from a convolutional LSTM, in which the convolutions replace specific gate
functions in the LSTM cell itself [45].

Figure 6. General architecture of the simple, implemented convolutional LSTM.

In order to do so, the fundamental core of the LSTM cell consists of a memory cell ct,
accumulating temporal information and being subject to manipulation—including access,
addition, and deletion of data (see Figure 6, LSTM cell). This is implemented by several self-
parameterized controlling gates, such as an input gate it, which controls new information
flow xt to the memory, and the forgot gate ft, in order to delete past information from
ct−1. Finally, the output gate ot controls which way information propagates from the last
cell state ct to the cell’s final hidden state ht. Each gate function itself is realized by a
respective nonlinear activation function in the form of either a sigmoid function σ or the
hyperbolic tangent. The mathematical model can be described as follows, where ◦ denotes
the Hadamard product, the matrices W contain the respective, learnable edge weights and
b the according bias [44,45]:

it = σ(Wxixt + Whiht−1 + Wci ◦ ct−1 + bi)

ft = σ(Wxfxt + Whfht−1 + Wcf ◦ ct−1 + bf)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(13)

For the final classification (Class) or regression (Reg) task, a multilayer perceptron
(MLP) with two linear layers is utilized.
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5.1.2. 3D Convolutional Network

In order to consider temporal context within the convolution operations, 3D spa-
tiotemporal convolutions are evaluated. For that purpose, the ResNet3D [46] architecture is
utilized. It is an adaptation of the renowned Residual Network (ResNet) architecture [47],
designed to process three-dimensional data by replacing classic 2D convolutions with
3D convolutions to extract spatiotemporal features. By that, it extends the foundational
principles of ResNet into the 3D domain, leveraging volumetric data across various applica-
tions, particularly in video analysis [48]. Like its 2D counterpart, ResNet3D is structured in
subsequent layers, each with 1...N blocks of convolution, ReLu, and normalization layers.
Each layer is connected to its subsequent neighbor by additional residual connections,
either directly or by a residual unit with an additional convolution and normalization layer
(see Figure 7).

Figure 7. General architecture of the implemented ResNet3D, based on the work of Tran et al. [46].

The residual connections are critical in mitigating the vanishing gradient problem,
allowing for deeper networks by enabling a direct flow of gradients. Further, the inclusion
of residual connections ensures that information is preserved across the network during
inferencing, enhancing the model’s ability to capture and utilize deep, complex patterns in
3D data. Similar to the Conv-LSTM, the classification and regression task is accomplished
by a respective MLP, here with one linear layer.

5.1.3. Vision Transformers

In addition to the more classic approaches above, modern transformer-based models
for image processing, following the fundamental work of Vaswani et al. [31], were imple-
mented. Vision Transformers (ViTs), as introduced by Dosovitskiy et al. [49], basically build
up on the original transformer concept, applying the concept of multihead self-attention to
image data.

In accordance with the application of this work, single noise images with their corre-
sponding C = 2 intensity and depth channel xn,k = {In,k, Ln,k} of size H × W are therefore
divided into a sequence of S = HW/P2 flattened 2D patches with patch size P. In order
to map the patch sequence to a latent vector of length D, a trainable linear projection E is
used. Its output is, in the ViT context, referred to as patch embedding (see Figure 8). In
order to provide the model a capability of encoding spatial context, a learnable 1D position
embedding Epos is added to each projected and flattened image patch. Hence, the input of
the first transformer encoder can be described as follows [49]:

z0 =
[
xclass; xp

1E; xp
2E; · · · ; xp

NE
]
+ Epos, E ∈ R(P2·C)×D, Epos ∈ R(S+1)×D (14)

After passing through multiple transformer encoders (referred to as depth), informa-
tion flows through an MLP head for the classification or regression, incorporating features
such as layer normalization, linear transformation, GELU activation, and dropout.
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Figure 8. General architecture of the baseline Vision Transformer (ViT-B), as well as its simplified ver-
sion (ViT-S) with missing normalization layer in the MLP, based on the work of Dosovitskiy et al. [49]
and Beyer et al. [50].

The transformer encoder blocks are in accordance with the architecture proposed
by Vaswani et al. [31] (see Figure 9). Thus, the patch embeddings are normalized and
forwarded to a multihead attention block. The output is added to a residual connection
from the patch embedding. The result is normalized and fed through an MLP to be finally
added with the residual bypassing the MLP. The classic QKV self-attention (SA) [31]
generally computes a weighted sum over all values V in an input sequence z ∈ RN×D .
The respective attention weights Ai,j are based on the similarity between two elements of
the sequence and their corresponding query Qi and key Ki representation [31]:

[Q, K, V] = zUQKV UQKV ∈ RD×3Dh ,
A = softmax

(
QK⊤/

√
Dh

)
A ∈ RN×N,

SA(z) = AV.
(15)

The multihead self-attention (MSA) is, finally, an extension of SA in which several
self-attention operations (heads) are run in parallel, while projecting their concatenated
outputs [31].

Figure 9. General architecture of the transformer encoder of the baseline Vision Transformer (ViT-B),
as well as its simplified version (ViT-S) with missing dropout layers in the MLP, based on the works
of Dosovitskiy et al. [49] and Beyer et al. [50].

Now, as discussed in Section 4.2.2, the input consists of an image time series TS rather
than single images. Therefore, in order to consider temporal context, the original work of
Dosovitskiy et al. [49] is extended such that a stack of M = 200 images is processed by the
ViT instead of a single frame. In order to do so, uniform frame sampling in accordance
with Wang [51] and Arnab et al. [52] is utilized to simply extract the patches over the
whole TS instead of a single frame to forward N × M patch embeddings to the subsequent
linear projection E. In the following, the original baseline Vit [49] with the abovementioned
adaptation is referred to as ViT-B.

Following that, SimpleViT (ViT-S) is a simplification of the ViT-B model [50], which was
originally designed for the well-known ImageNet dataset [53]. Following the embedding
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process of ViT-B to adeptly process image sequences, ViT-S addresses the data efficiency
challenge of its predecessor through optimized training strategies and architectural tweaks
(see Figures 8 and 9), making it more suitable for scenarios where 3D data are scarce or
expensive to procure, which aligns well with the challenges faced in this work.

5.1.4. Convolutional Transformer

The Compact Convolutional Transformer (CCT), as proposed by Hassani et al. [54],
is designed to deviate from the traditional Vision Transformers above by substituting
patch embeddings with convolutional embeddings (see Figure 10). However, in order to
apply the CCT architecture to image time series, the convolution is again applied to the
whole uniformly sampled image stack [51,52]. The alteration from patch to convolutional
embedding enhances the inductive bias, making positional embeddings potentially ren-
dundant and, therefore, optional [54]. Additionally, CCT utilizes sequence pooling after the
transformer encoder, which applies a linear projection and a subsequent softmax function
to the transformer encoder output sequence before forwarding it to the MLP head for
classification or regression. As a result of these modifications, CCTs demonstrate superior
accuracy compared to smaller Vision Transformers, such as ViT-Lite, on benchmark datasets
like ImageNet [53,54]. Unlike conventional Vision Transformers, which typically require
extensive datasets for training, CCTs are capable of rapid training on smaller datasets while
achieving satisfying accuracy levels—again, a feature that aligns with the tight training
budget constraints in this work.

Figure 10. General architecture of Compact Convolutional Transformers (CCTs) as proposed by
Hassani et al. [54].

5.1.5. Video Vision Transformer

Opposed to the direct patch embedding of the entire TS, Video Vision Transformer
(ViViT) approaches, introduced by Arnab et al. [52], separate the processing of temporal
and spatial features. In order to do so, they proposed four different models, in which the
fusion of temporal and spatial features is realized on different architectural depths. These
reach from assigning a specific MSA in the transformation encoder to respective spatial
and temporal feature processing, to assigning a whole transformer encoder for spatial and
temporal feature processing. The latter is implemented in this work (see Figure 11), which
is referred to as late spatiotemporal fusion by the authors [52].

Figure 11. General architecture of the Video Vision Transformer (ViViT) as introduced by
Arnab et al. [52].



Remote Sens. 2024, 16, 2407 16 of 31

Instead of projecting all image patches in the TS to one transformer encoder, the
patches of each two-channel image per time step are separately projected to a respective
spatial transformer encoder, whose outputs are then processed by a mutual temporal
transformer encoder. Similar to the previous models, the output is finally fed to aN MLP
head, conducting the classification or regression task.

5.2. Model Training and Optimization

In this section, the model training, including hyperparameter and structural optimiza-
tions with respect to the problem setting, is described.

5.2.1. Model Training

As elaborated earlier, the investigated models typically require a major amount of
computational resources. Considering a future in-field application on a low-power edge
device, the authors place focus on the conflicting goals of achieving maximum predictive
performance, while reducing model size and the number of MAC operations to a minimum.

For training in general, the well-known ADAptive Moment estimation (ADAM) opti-
mizer [55] is used, since it is proven to be effective in training models that utilize convolu-
tional and attention-based mechanisms [49,55,56]. In terms of the learning rate, an initial
value of η = 3e− 4 is set. Further, cosine annealing learning rate scheduling, as proposed by
Loshchilov and Hutter [57], is implemented, since it showed satisfying performance within
previous studies in the field [54]. All models are trained for a maximum of 200 epochs;
however, in order to prevent overfitting, early stopping is applied as soon as the validation
error is converging, even though the training error is further decreasing.

Opposed to the generally improved convergence behavior of large batch sizes during
stochastic gradient descent (SGD) optimization [58], initial experiments indicated that
an increase in the batch size did not lead to significant improvements using the ADAM
optimizer, except in the case of the ResNet3D model. Consequentially, the batch size is only
fine-tuned for this model, whereas it is kept to a constant value of Nbatch = 1 for all other
architectures. This increases training time; however, considering limited computational
resources (see Appendix C), it allows for exploration of larger model architectures during
structural optimization, while complying with GPU memory restrictions.

Additionally, it was found that the performance of the models improves with longer
image time series M, which aligns with the intuition that longer observation periods of the
measurement noise lead to improved model performance. Since the model performance
showed no significant improvement for longer sequences, a constant input number of
M = 200 images is utilized, as described earlier.

As loss metric for the respective regression heads, the common mean squared error
(MSE) between predicted precipitation rate Rpred,i and the respective measured value
Rmeas,i is used:

LMSE =
1

Nbatch

Nbatch

∑
i=1

(
Rpred,i − Rmeas,i

)2
. (16)

whereas for the classification heads, the widely used cross-entropy loss function [59] is
implemented:

LCE = −
NSYNOP=15

∑
c=1

yo,c log(po,c) (17)

with y as binary indicator (0 or 1) if class label c is the correct classification for observation
o, and p is the predicted probability that observation o is of class c.

5.2.2. Structural Optimization

An extensive ablation study of the proposed architectures is performed with the inten-
tion to adapt the architectures to the problem setting and therefore optimizing performance
and model size with respect to the task. For this, the Bayesian-based Tree-structured Parzen
Estimator (TPE) [60] is utilized, in order to search for each model’s optimal configuration
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in a corresponding hyperparameter space (see Tables A1 and A2 in Appendix A). The
configuration of the original model is listed next to the partly discrete and continuous
search ranges and acts as upward estimation in terms of complexity, since the the input data
are of lower dimension and the prediction task is assumed to be less complex compared to
benchmark applications. The experimental setup aims to conduct approximately 100 trials
per model, irrespective of the corresponding size of its hyperparameter space. Opposed
to the final training, the models are trained for 30 epochs per trial and evaluated on the
validation data. This configuration strikes a balance between computational resources
and the number of trials, minimizing memory usage while providing a sufficient learning
window to assess model performance effectively.

The circa 100 resulting model configurations per architecture are evaluated with
respect to their classification and regression accuracy versus their model size (see Figure 12).
Since model size and accuracy are typically conflicting optimization goals, a Pareto analysis
is conducted. In order to do so, a scatter plot is generated, in which each point represents
one resulting model configuration, marking the accuracy and MSE over the according
number of model parameters. For the sake of clarity, instead of all trials, only the resulting
Pareto front in the form of the convex hull over the best model configurations is visualized
for each architecture. The closer the classification accuracy curves are to the upper left
corner, the better the model performance is with respect to size and accuracy. In case of
regression performance (in terms of the MSE metric), the same applies to the lower left
corner. To emphasize optimizations and adaptations with respect to the problem setting,
the original names of the model architectures are extended with the suffix “Precipitation
Rate Estimation and Classification” (PREC).
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Figure 12. Pareto study on the classification and regression accuracy with respect to the model size
for each investigated DL architecture during hyperparameter and network structure optimization,
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accuracy with a fairly small model size of less than 500k parameters.
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Looking at the classification performance, one can clearly see that the ViT models are
outperforming the convolution-based ResNet as well as the Conv-LSTM model. Especially,
the ViT-S architecture is showing excellent performance, with up to over 89 % classifica-
tion accuracy on the validation dataset with a fairly small model size of fewer than 1 M
parameters. Opposed to that, the Conv-LSTM was only able to increase performance with
an unacceptable size of greater than 5 M parameters.

A similar result can be observed for the regression performance. Here, the Conv-
LSTM-PREC and ResNet3D-PREC model, however, showed massive problems in learning
a meaningful correlation at all. Due to this, neither of the models are illustrated and were
not further considered for the regression task.
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Based on this study, two parameterizations per model are selected for a final training
with a maximum of 200 epochs and early stopping as described above: the best perform-
ing model within a size of fewer than 5 M parameters and a small model version with
significantly smaller number of parameters but only slight performance loss compared to
the best in class model. The small model version is marked with a “small” (s) suffix in
the following.

6. Discussion of the Results
6.1. Classification

The final classification results on the test dataset are listed in Table 3. As expected, the
ViT models show, again, superior performance compared to the ResNet3D-PREC and Conv-
LSTM-PREC, with the ViT-B-PREC and ViT-S-PREC models both achieving up to 84.41%
top 1 accuracy and up to 96.10% top 2 accuracy (meaning that the target class is within
the two most probable predicted classes). Interestingly enough, however, ViT-S-PREC is
significantly smaller, with circa 29% fewer parameters, but on the other hand conducting
more MAC operations due to the missing dropout (see Section 5.1), which leads to a design
trade-off between memory requirements and computing power.

Table 3. Comparison of model sizes and respective classification performance on the test dataset. The
best performance in terms of top 1 and top 2 accuracy is marked in bold, whereas the correspondingly
required computational resources are indicated by the number of model parameters (# Params) and
MAC operations.

Model Top 1 Top 2 F1 Score # Params MACs

3D Convolutional Networks

ResNet3D-PREC 74.02% 88.31% 0.69 1.41 M 368.50 G
ResNet3D-PREC-s 77.92% 96.10% 0.73 0.17 M 37.71 G

Convolution-LSTMs

Conv-LSTM-PREC 64.93% 92.21% 0.67 0.73 M 3.02 G
Conv-LSTM-PREC-s 74.04% 85.71% 0.74 0.21 M 1.32 G

Vision Transformers

ViT-B-PREC 84.41% 96.10% 0.85 1.19 M 0.22 G
ViT-B-PREC-s 79.22% 93.51% 0.78 0.19 M 1.50 G
ViT-S-PREC 84.41% 96.10% 0.85 0.85 M 1.86 G
ViT-S-PREC-s 79.22% 96.10% 0.83 0.32 M 0.63 G

Convolutional Transformers

CCT-PREC 83.12% 96.10% 0.84 0.42 M 16.63 G
CCT-PREC-s 75.32% 93.51% 0.76 0.27 M 1.97 G

Video Vision Transformers

ViViT-PREC 79.22% 93.51% 0.80 2.62 M 0.46 G
ViViT-PREC-s 75.32% 92.21% 0.75 0.81 M 0.25 G

It is worth mentioning that the corresponding small model versions show quite a
similar performance with a model size of just 190 k and 320 k parameters. Opposed to the
ViT models, however, the ResNet-PREC and Conv-LSTM-PREC show better performance
on the test data compared to the initial validation results, which is due to the fact that
the models improved quite remarkably over the 200 training epochs compared to the
30-epoch training during model validation. Also, the small model versions are performing
significantly better, with Conv-LSTM-PREC-s reaching up to 74.04% top 1 accuracy and
ResNet-PREC-s achieving 77.92% top 1 accuracy, which might indicate some remaining
degree of overfitting in the case of the larger model versions.

The general superiority of the transformer-based model is not surprising and was
also demonstrated and explained by earlier works [43]. Thus, by incorporating the self-
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attention mechanism (see Section 5.1), Vision Transformers have the ability to learn a global,
spatiotemporal context over the whole time series, whereas 3D convolutions and LSTMs
rely on a rather local, temporal context. As mentioned earlier, the intensity of the detected
LiDAR noise can, however, fluctuate quite strongly in between single frames, which makes
a broad temporal context crucial.

This observation is further backed by evaluating the discriminatory power of the
models with respect to specific precipitation classes. For this purpose, the normalized
top 1 and top 2 confusion matrices of each model were consulted and, in case of the best
performing ViT models, are illustrated in Figures 13 and 14. Similar to the discussed related
works, the predicted precipitation classes (Class ID pred) are evaluated with respect to
the actual, measured value (Class ID meas). The relative share of correct classifications
(true positives) is shown on the diagonal, whereas class-specific misclassifications are
represented by the upper and lower column values (false positives) as well as the the left
and right row values (false negatives).

Thus, the classification performance appears quite remarkable for most of the 15 classes,
especially considering the top 2 confusion matrices. Hence, all transformer-based models
achieved a test accuracy of mostly 100% when distinguishing different precipitation types
like hail, snow, drizzle, and rain, and, therefore, performed comparably to or better than
ML models in previous works, but solely based on noise.
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Figure 13. Test data classification results of the ViT-S-PREC model in the form of normalized confusion
matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the actual,
measured value (Class ID meas)
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Figure 13. Test data classification results of the ViT-S-PREC model in the form of normalized confusion
matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the actual,
measured value (Class ID meas).

However, the models still have difficulties in distinguishing closely related classes, like
4, 5, 6—meaning slight, medium, and heavy rain—or hail shower intensity (13,14). In these
classes, all models lack discriminatory power (see also the normalized confusion matrices
for the ViViT model Figure A2 and the CCT model Figure A1, as well as the baseline models
Figures A3 and A4 in Appendix B). This might occur due to a strong similarity of the
corresponding noise characteristics, especially in edge cases between two intensity classes.
Moreover, the precipitation intensity can fluctuate quite strongly in short time periods.
Since the measurement data are acquired over tint = 60 s intervals, while the targeted time
window for prediction is comparatively small with tint,LiD = 8 s, misclassification can likely
occur close to the decision boundaries. Furthermore, synchronization issues between PSU
and WSU, and therefore sporadic faulty labels, cannot always be avoided.

In addition to that, CCT-PREC and ViViT-PREC appear to show difficulties in distin-
guishing slight drizzle from clear weather (0,1). The same applies to the baseline models,
with additional difficulties in discriminating slight rain and drizzle (3,4) as well as slight
and moderate snowfall (9,10).
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In summary, the transformer-based architectures in particular proved to be highly
accurate in precipitation classification. The ViT-B-PREC and ViT-S-PREC models especially
stand out by solely showing a lack of discriminatory power for 3 out of 15 classes, while
being comparatively small in size.
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Figure 14. Test data classification results of the ViT-B-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).
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Figure 14. Test data classification results of the ViT-B-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).

6.2. Regression

Regarding the regression, the results are similar. The ViT models perform superior,
with the ViT-S-PREC reaching a coefficient of determination between measured and pre-
dicted precipitation rate of r2 = 85.63% with a size of just 640 k parameters (see Table 4),
which corresponds to an MSE of 0.22 mm2/h2. Again, the small model version ViT-S-PREC-
s with just 400 k parameters achieved a comparative performance. The other transformer-
based architectures, however, only achieved coefficients of determination of ≤80%, whereas
the baseline models were not able to conduct any meaningful prediction at all.

Table 4. Comparison of model sizes and respective regression performance on the test dataset. The
best performance in terms of MSE and r2 is marked in bold, whereas the correspondingly required
computational resources are indicated by the number of model parameters (# Params) and MAC
operations.

Model MSE [mm2/h2] r2 # Params MACs

Vision Transformers

ViT -B-PREC 0.32 78.80% 0.83 M 1.90 G
ViT-B-PREC-s 0.43 69.43% 0.31 M 0.70 G
ViT-S-PREC 0.22 85.63% 0.64 M 2.91 G
ViT-S-PREC-s 0.24 84.00% 0.40 M 1.48 G

Convolutional Transformers

CCT-PREC 0.33 77.69% 0.75 M 1.15 G

Video Vision Transformers

ViViT-PREC 0.53 64.48% 1.23 M 0.25 G

In a final experiment, the authors evaluated whether an embedded SYNOP class could
potentially enhance the prediction of the respective precipitation rate by following the
assumption that a correctly predicted class prior could support the network in deriving the
precipitation rate, especially in the described edge cases. In order to do so, the ground truth
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SYNOP classes were embedded into the input of the first transformer encoder as a class
token. For that, two methods are tested: Firstly, a trainable linear layer (linear embedding)
is implemented in order to transform the classification output as one-hot encoded vector
to a latent vector which matches the transformer input tensor shape, such that both can
be concatenated. Secondly, the one-hot encoded classifier input is simply concatenated
with zeros (zero padding) in order to match the input tensor shape of the transformer. As
illustrated in Figure 15 and Table 5, performance is enhanced notably in both cases, with a
coefficient of determination of up to r2 = 92.73%. Comparing the regression curves, one
can see a significant variance decrease in the critical region between R = 5 mm/h and
R = 25 mm/h, which indicates a clearly improved regression in this region. However,
since the classification performance was weakest in exactly the two covered transition
regions between classes 4, 5, and 6, the application of an SYNOP class embedding from a
prior class prediction did, opposed to the ground truth embedding, not further improve
regression performance.

Table 5. Comparison of precipitation rate regression performance for different classification prior
embedding methods. The best performance in terms of MSE and r2 is marked in bold, whereas the
correspondingly required computational resources are indicated by the number of model parameters
(# Params) and MAC operations.

Model MSE [mm2/h2] r2 # Params MACs

Vision Transformers

ViT-S-PREC Synop Linear Embedded 0.11 92.61% 1.48 M 0.322 G
ViT-S-PREC Synop Zero Padded 0.11 92.73% 1.47 M 0.322 GVersion June 28, 2024 submitted to Remote Sens. 21 of 27
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(b) ViT-S-PREC-SynopEmbed (r2 = 92.73 %).

Figure 15. Predicted precipitation rate Rpred versus measurement value Rmeas for ViT-S based on
the test data via direct prediction (a) and with an embedded SYNOP class (b). A prior precipitation
classification increases regression accuracy if used as class embedding, as shown by the respective
coefficient of determination r2. Especially, close to the classification boundaries of slight, medium
and heavy rain (gray box), the regression clearly improved.
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Figure 15. Predicted precipitation rate Rpred versus measurement value Rmeas for ViT-S based on
the test data via direct prediction (a) and with an embedded SYNOP class (b). A prior precipitation
classification increases regression accuracy if used as class embedding, as shown by the respective
coefficient of determination r2. Especially, close to the classification boundaries of slight, medium,
and heavy rain (gray box), the regression clearly improved.

6.3. Implications for Future Use Cases

The results show that the transformer-based models especially have great potential to
be deployed in static applications like roadside units (RSUs) within smart infrastructure
traffic environments, in which LiDAR sensors are more and more used for 3D tracking
and counting of traffic participants [61–63]. Since those sensors are typically mounted
at a height of several meters to ensure that sufficient perceptual area coverage and only
detections within a distance of maximum Lcrop = 1 m are processed by the models, they
would not be impacted by close traffic objects. In this case, only the influence of the
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mounting angle, more precisely the sensor pitch, would have to be evaluated with respect
to the precipitation angle and respective wind conditions.

In case of an in-vehicle deployment, however, the impact of driving speed and, hence,
strong headwind and spray, have to be investigated, since these might have a major impact
on the prediction performance of the models. In this case, weather characterization could
possibly be conducted in predefined speed ranges. In addition to strong headwind, objects
are also more likely to occur within a detection range of less than 1 m. However, objects
between the minimum detection range and filter distance Lmin ≤ Lu,v ≤ Lcrop can easily
be filtered out, either based on object detection, or by additional temporal filtering, since
precipitation particles are only visible for one frame, whereas objects typically occur for
several frames. The same generally applies for objects located at a distance smaller than
the minimum detection range Lu,v ≤ Lmin, which occurs rather rarely and is typically
considered as sensor blockage.

In general, blockage in the form of dirt could also have a significant influence in both
use cases. However, it can already be detected in many LiDARs, like the SUT, such that
cleaning can either be advised or automatically conducted.

In the case of a widespread deployment in vehicles and infrastructure, the comprehen-
sive local weather data could not only be directly used to issue driver warnings or adapt
driving dynamics and ADAS functions of the ego vehicle—it could additionally be shared
via Car2X communication in order to generate dense traffic weather maps. These would
not only offer information on local driving conditions, but might also generate enormous
potential in meteorological data assimilation to improve numerical models for weather
prediction.

7. Conclusions

In this study, the authors implemented and evaluated cutting edge deep learning
architectures for image time series processing to characterize occurring adverse weather
conditions based on precipitation-induced noise in LiDAR measurements. It was shown
that the weather condition could be precisely classified by 15 WMO-standardized SYNOP
precipitation classes and an additional precipitation rate regression. Hence, the imple-
mented Vision Transformers, derived from the ViT-S and ViT-B architectures, could classify
the precipitation type with a top 1 test accuracy of 84.41% and a top 2 accuracy of up
to 96.10%. In addition, the ViT-S model was able to predict the precipitation rate with a
coefficient of determination of up to r2 = 85.63% with a fairly small size of 640 k parameters.
Since, predictions are solely conducted based on filtered noise in direct proximity to the
sensor aperture, the lightweight models can potentially be deployed in varying automotive
and smart infrastructure applications without inducing concept drift. Considering the
strongly increasing deployment of LiDAR sensors in these domains, such comprehensive
local weather state data might be transmitted over Car2X communication to create dense
traffic weather maps, which offer enormous potential for driver warnings and dynamic
adaptation of ADAS functions, but also for meteorological data assimilation in order to
improve numerical weather prediction models. Classification errors mostly appeared in
edge cases between varying precipitation intensities (“slight”, “medium”, “heavy”), where
the models lacked discriminatory power. This might result from a rather sparse amount of
data in edge cases, but also from limitations of the test setup for data acquisition, which
need to be further investigated. However, all transformer-based models generally achieved
a remarkable classification performance on distinguishing different precipitation types like
hail, snow, drizzle, and rain by achieving a test accuracy of over 90% for almost all classes.
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Appendix A. Model Parameterization

Table A1. Hyperparameter optimization ranges and maximum number of parameters of the trans-
former architectures in comparison to the original models proposed by earlier works. Models
were implemented as close as possible to the original architecture; however, number of parameters
(# Parameters) can slightly vary.

(a) Baseline Visual Transformer (ViT-B).
Parameter Range ViT-B-16

[49,64]
Image size (32, 128) 224
Frames 200 -
Image patch (2–32, 4–128) 4–4
Frame Patch 2–20 -
Dim 8–128 768
Depth 1–5 12
Heads 4–64 12
Head dim 2–128 64
MLP dim 8–128 3072
Dropout 0.1–0.5 0.1
Embed dropout 0.1–0.5 0.1
Pos Embed {learn, no} learn
Pool {cls, mean} mean
# Parameters: 33.9 M max 86.6 M
(b) Simplified Visual Transformer (ViT-S).
Parameter Range ViT-S-16

[50]
Image size (32, 128) 224
Frames 200 -
Image patch (2–32, 4–128) 4–4
Frame patch 2–20 -
Dim 8–128 768
Depth 1–5 12
Heads 4–64 12
Head dim 64 64
MLP dim 8–128 3072
Pos Embed {sincos3d, no} {sincos3d,no}
# Parameters: 33.9 M max 22.1 M
(c) Compact Convolutional Transformer (CCT).
Parameter Range CCT 14/7× 2

[54]
Image size (32, 128) 224
Frames 200 -
Embed dim 8–128 384
Num conv layers 1–3 2
Frame kernel {3,5,7} 3
Kernel size 3–7 7
Stride 1–3 2
Padding 0–2 3
Pool kernel 3–7 3
Pool stride 1–3 2
Pool padding 1–3 1
Num layers 1–4 14
Num heads 8–128 6
MLP ratio 1.0–4.0 3.0
Pos embed {learn, sin, no} L
Num out channels 2–15 64
# Parameters: 108 M max 22.36 M
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Table A1. Cont.

(d) Video Vision Transformer (ViViT).
Parameter Range ViViT

[52]
Image size (32, 128) 224
Frames 200 32
Image patch (2–32, 4–128) 16–16
Frame patch 2–20 2
Dim 8–128 768
Spat depth 1–3 1
Temp depth 1–3 4
Heads 8–128 12
Head dim 64 64
MLP dim 8–128 3072
Pooling {cls, mean} {cls, mean}
# Parameters: 46.7 M max 55.2 M

Table A2. Hyperparameter optimization ranges and maximum number of parameters of the baseline
architectures, in the case of ResNet, and also in comparison to the original model.

(a) Convolution-LSTM.

Parameter Range

Image size (32, 128)
Frames 200 -
Kernel size 3–7
Num channels 1–25
Hidden state size 32–128
MLP dim 32–128

(b) 3D Residual Network (ResNet3D).

Parameter Range ResNet3D-18
[46,65]

Image size (32, 128) 224
Frames 200 -
Blocks/Layer 1–3 2
Kernels size 3–7 {1, 3, 7}
Num channels 1–64 64–512
Bias True, False False
Batch size 4–128 -
MLP dim 16–128 512

# Parameters: 2.67 M max 33.7 M

Table A3. Best performing model parameterization for the investigated transformer architectures.

(a) ViT-B-PREC.
Parameter Class Regression
Image size (32, 128) (32, 128)
Image patch (32, 128) (16, 64)
Frames 200 200
Frame Patch 2 2
Dim 33 34
Depth 3 2
Heads 77 38
Head dim 20 64
MLP dim 32 33
Dropout 0.18 0.15
Embed dropout 0.16 0.11
Pos Embed learn learn
Pooling mean mean
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Table A3. Cont.

(b) ViT-S-PREC.
Parameter Class Regression
Image size (32, 128) (32, 128)
Frames 200 200
Image patch (16, 64) (16, 32)
Frame Patch 2 2
Dim 36 66
Depth 2 1
Heads 37 29
Head dim 64 64
MLP dim 61 80
Pos Embed sincos3d sincos3d

(c) CCT-PREC.
Parameter Class Regression
Image size (32, 128) (32, 128)
Frames 200 200
Embed dim 64 128
Num conv layers 3 3
Frame kernel 5 3
Kernel size 3 3
Stride 1 3
Padding 0 2
Pool kernel 5 3
Pool stride 3 2
Pool padding 2 1
Num layers 1 3
Num heads 64 128
MLP ratio 3.81 1.96
Pos embed sin sin
Num out channels 21 5
(d) ViViT-PREC
Parameter Class Regression
Image size (32, 128) (32, 128)
Frames 200 200
Image patch (32, 128) (32, 128)
Frame patch 2 2
Dimension 46 76
Spat depth 1 3
Temp depth 1 1
Heads 77 8
Head dim 64 64
MLP dim 95 29
Pooling cls token cls token

Table A4. Best performing model parameterization for the investigated baseline architectures.

(a) Conv-LSTM-PREC.

Parameter Class Regression

Image size (32, 128) (32, 128)
Frames 200 200
Kernel Size [7, 3, 5] [3, 7, 7]
Num channels [21, 12, 10] [4, 24, 22]
Max Pooling [1, 2, 2] [2, 1, 2]
Hidden state size [106, 104, 117] [56, 92, 102]
MLP dim 21 109
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Table A4. Cont.

(b) ResNet3D-PREC.

Parameter Class Regression

Image size (32, 128) (32, 128)
Frames 200 200
Blocks/layer [2, 2, 3, 2] [2, 2, 3, 2]
Kernel size 3 3
Num channels 19 19
Bias True True
Batch 8 8
MLP dim 19 19

Appendix B. Model Test Results
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Parameter Class Regression

Image size (32, 128) (32, 128)
Frames 200 200
Kernel Size [7, 3, 5] [3, 7, 7]
Num channels [21, 12, 10] [4, 24, 22]
Max Pooling [1, 2, 2] [2, 1, 2]
Hidden state size [106, 104, 117] [56, 92, 102]
MLP dim 21 109

a Conv-LSTM-PREC

Parameter Class Regression

Image size (32, 128) (32, 128)
Frames 200 200
Blocks/layer [2, 2, 3,2] [2, 2, 3, 2]
Kernel size 3 x 3
Num channels 19 x 19
Bias True x True
Batch 8 8
MLP dim 19 19

b ResNet3D-PREC.

Table A4. Best performing model parameterization for the investigated baseline architectures.
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(a) CCT top 1 accuracy (overall 83.12 %).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.91 0.09 0 0 0 0 0 0 0 0

0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Class ID pred

C
la

ss
ID

m
ea

s

(b) CCT top 2 accuracy (overall 96.10 %).

Figure A1. Test data classification results of the CCT-PREC model in the form of normalized confusion
matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the actual,
measured value (Class ID meas).
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(a) ViViT top 1 accuracy (overall 79.22 %).
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(b) ViViT top 2 accuracy (overall 93.51 %).

Figure A2. Test data classification results of the ViViT-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).

Figure A1. Test data classification results of the CCT-PREC model in the form of normalized confusion
matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the actual,
measured value (Class ID meas).
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Parameter Class Regression

Image size (32, 128) (32, 128)
Frames 200 200
Kernel Size [7, 3, 5] [3, 7, 7]
Num channels [21, 12, 10] [4, 24, 22]
Max Pooling [1, 2, 2] [2, 1, 2]
Hidden state size [106, 104, 117] [56, 92, 102]
MLP dim 21 109

a Conv-LSTM-PREC

Parameter Class Regression

Image size (32, 128) (32, 128)
Frames 200 200
Blocks/layer [2, 2, 3,2] [2, 2, 3, 2]
Kernel size 3 x 3
Num channels 19 x 19
Bias True x True
Batch 8 8
MLP dim 19 19

b ResNet3D-PREC.

Table A4. Best performing model parameterization for the investigated baseline architectures.
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(a) CCT top 1 accuracy (overall 83.12 %).
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(b) CCT top 2 accuracy (overall 96.10 %).

Figure A1. Test data classification results of the CCT-PREC model in the form of normalized confusion
matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the actual,
measured value (Class ID meas).
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(a) ViViT top 1 accuracy (overall 79.22 %).
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(b) ViViT top 2 accuracy (overall 93.51 %).

Figure A2. Test data classification results of the ViViT-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).

Figure A2. Test data classification results of the ViViT-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).
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(a) ResNet3D top1 accuracy (overall 74.02 %).
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(b) ResNet3D top 2 accuracy (overall 88.31 %).

Figure A3. Test data classification results of the ResNet3D-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).
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(a) Conv-LSTM top1 accuracy (overall 64.93 %).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.83 0 0 0 0 0.17 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0.25 0 0.75 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.91 0.09 0 0 0 0 0 0 0 0

0 0 0 0 0 0.5 0.25 0 0 0 0 0 0 0.25 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.83 0.17 0 0 0 0

0 0 0 0 0 0 0 0 0 0.25 0.75 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0.75

Class ID pred

C
la

ss
ID

m
ea

s

(b) Conv-LSTM top 2 accuracy (overall 92.21 %).

Figure A4. Test data classification results of the Conv-LSTM-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).
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Figure A3. Test data classification results of the ResNet3D-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).
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(b) Conv-LSTM top 2 accuracy (overall 92.21 %).

Figure A4. Test data classification results of the Conv-LSTM-PREC model in the form of normalized
confusion matrices, evaluating the predicted precipitation classes (Class ID pred) with respect to the
actual, measured value (Class ID meas).
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