AIRS and MODIS Satellite-Based Assessment of Air Pollution in Southwestern China: Impact of Stratospheric Intrusions and Cross-Border Transport of Biomass Burning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Satellite Datasets
2.2.1. MODIS
2.2.2. AIRS
2.3. WACCM Simulation
2.3.1. WACCM Datasets
2.3.2. Model Evaluation
2.4. HYSPLIT Model
3. Results
3.1. General Characteristics of AOD and O3
3.2. Occurrence of SIs and the Cross-Border BB Transport in Yunnan
3.3. Mechanisms of SIs and Cross-Border BB Transport
3.4. Relationships between Topography and Air Pollutants
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, T.; Wang, P.; Yu, W.; Gao, Y.; Zhu, S.; Zhang, Y.; Hu, D.; Zhang, B.; Zhang, H. Drivers of alleviated PM2.5 and O3 concentrations in China from 2013 to 2020. Resour. Conserv. Recycl. 2023, 197, 107110. [Google Scholar] [CrossRef]
- Wang, N.; Lyu, X.; Deng, X.; Huang, X.; Jiang, F.; Ding, A. Aggravating O(3) pollution due to NO(x) emission control in eastern China. Sci. Total Environ. 2019, 677, 732–744. [Google Scholar] [CrossRef] [PubMed]
- van Zelm, R.; Preiss, P.; van Goethem, T.; Van Dingenen, R.; Huijbregts, M. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmos. Environ. 2016, 134, 129–137. [Google Scholar] [CrossRef]
- Belis, C.A.; Van Dingenen, R.; Klimont, Z.; Dentener, F. Scenario analysis of PM(2.5) and ozone impacts on health, crops and climate with TM5-FASST: A case study in the Western Balkans. J. Environ. Manag. 2022, 319, 115738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Y.; Zhang, L.; Xu, H.; Sun, J.; Wang, T.; Li, F.; Chang, X.; Ho, S.S.H.; Li, B.; et al. Insight into the contributions of primary emissions of sulfate, nitrate, and ammonium from residential solid fuels to ambient PM2.5. Atmos. Res. 2023, 290, 106790. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Liu, N.; Yang, S. Characteristics of Secondary PM2.5 Under Different Photochemical Reactivity Backgrounds in the Pearl River Delta Region. Front. Environ. Sci. 2022, 10, 837158. [Google Scholar] [CrossRef]
- Hughes, D.D.; Christiansen, M.B.; Milani, A.; Vermeuel, M.P.; Novak, G.A.; Alwe, H.D.; Dickens, A.F.; Pierce, R.B.; Millet, D.B.; Bertram, T.H.; et al. PM2.5 chemistry, organosulfates, and secondary organic aerosol during the 2017 Lake Michigan Ozone Study. Atmos. Environ. 2021, 244, 117939. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Z.; Wen, T.; Huang, X.; Liu, J.; Tang, G.; Yang, Y.; Li, X.; Shen, R.; Hu, B.; et al. Characteristics of chemical composition and seasonal variations of PM(2.5) in Shijiazhuang, China: Impact of primary emissions and secondary formation. Sci. Total Environ. 2019, 677, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, H.; Wu, J.; Wang, W.; Zheng, J.; Chen, D.; Li, J.; Tang, X.; Wang, Z.; Zhu, L.; et al. Characteristics of the source apportionment of primary and secondary inorganic PM(2.5) in the Pearl River Delta region during 2015 by numerical modeling. Environ. Pollut. 2020, 267, 115418. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Jia, J.; Wu, F.; Niu, H.; Ma, Q.; Guo, B.; Shao, L.; Zhang, D. Local emissions and secondary pollutants cause severe PM(2.5) elevation in urban air at the south edge of the North China Plain: Results from winter haze of 2017-2018 at a mega city. Sci. Total Environ. 2022, 802, 149630. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Qiu, Y.; Xu, W.; He, Y.; Li, Z.; Sun, J.; Ma, N.; Xu, W.; Pan, X.; Fu, P.; et al. Primary Emissions and Secondary Aerosol Processing During Wintertime in Rural Area of North China Plain. J. Geophys. Res. Atmos. 2022, 127, e2021JD035430. [Google Scholar] [CrossRef]
- Jin, X.; Cai, X.; Yu, M.; Song, Y.; Wang, X.; Kang, L.; Zhang, H. Diagnostic analysis of wintertime PM2.5 pollution in the North China Plain: The impacts of regional transport and atmospheric boundary layer variation. Atmos. Environ. 2020, 224, 117346. [Google Scholar] [CrossRef]
- Xiao, Z.; Miao, Y.; Du, X.; Tang, W.; Yu, Y.; Zhang, X.; Che, H. Impacts of regional transport and boundary layer structure on the PM2.5 pollution in Wuhan, Central China. Atmos. Environ. 2020, 230, 117508. [Google Scholar] [CrossRef]
- Shan, M.; Wang, Y.; Lu, Y.; Liang, C.; Wang, T.; Li, L.; Li, R.Y.-M. Uncovering PM2.5 transport trajectories and sources at district within city scale. J. Cleaner Prod. 2023, 423, 138608. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Qin, D.; Yin, D.; Dong, L.; He, J. Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China. Atmos. Pollut. Res. 2019, 10, 374–385. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, T.; Tian, Z.; Kumar, K.R.; Chang, J.; Hu, W.; Shu, Z.; Hu, J. The Cross-Border Transport of PM2.5 from the Southeast Asian Biomass Burning Emissions and Its Impact on Air Pollution in Yunnan Plateau, Southwest China. Remote Sens. 2022, 14, 1886. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Cheng, S.; Guan, P.; Zhang, H.; Shan, C.; Fu, Y. Investigation on the difference of PM2.5 transport flux between the North China Plain and the Sichuan Basin. Atmos. Environ. 2022, 271, 118922. [Google Scholar] [CrossRef]
- Luo, Y.; Wei, H.; Yang, K. The impact of biomass burning occurred in the Indo-China Peninsula on PM2.5 and its spatiotemporal characteristics over Yunnan Province. Sci. Total Environ. 2024, 908, 168185. [Google Scholar] [CrossRef] [PubMed]
- Lupaşcu, A.; Otero, N.; Minkos, A.; Butler, T. Attribution of surface ozone to NOx and volatile organic compound sources during two different high ozone events. Atmos. Chem. Phys. 2022, 22, 11675–11699. [Google Scholar] [CrossRef]
- Kang, M.; Zhang, H.; Ying, Q. Enhanced summertime background ozone by anthropogenic emissions—Implications on ozone control policy and health risk assessment. Atmos. Environ. 2023, 314, 120116. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, J.; Wu, Y.; Yuan, Z.; Wang, Y.; Li, Y.; Ma, X.; Liu, X.; Ma, W.; Wang, Y.; et al. Impact of Stratospheric Intrusions on Ozone Enhancement in the Lower Troposphere and Implication to Air Quality in Hong Kong and Other South China Regions. J. Geophys. Res. Atmos. 2021, 126, e2020JD033955. [Google Scholar] [CrossRef]
- Hu, F.; Xie, P.; Tian, X.; Xu, J.; Li, A.; Lupascu, A.; Butler, T.; Hu, Z.; Lv, Y.; Zhang, Z.; et al. Integrated analysis of the transport process and source attribution of an extreme ozone pollution event in Hefei at different vertical heights: A case of study. Sci. Total Environ. 2024, 906, 167237. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Hong, X.; Xiang, Y.; Wang, S.; Zhang, T.; Qin, Z.; Ou, J. Vertical profiles and regional transport of ozone in typical area of Yangtze-Huaihe River Basin during the autumn base on multiple lidars. Atmos. Pollut. Res. 2024, 15, 101983. [Google Scholar] [CrossRef]
- Li, D.; Bian, J.; Fan, Q. A deep stratospheric intrusion associated with an intense cut-off low event over East Asia. Sci. China Earth Sci. 2014, 58, 116–128. [Google Scholar] [CrossRef]
- Bartusek, S.; Wu, Y.; Ting, M.; Zheng, C.; Fiore, A.; Sprenger, M.; Flemming, J. Higher-Resolution Tropopause Folding Accounts for More Stratospheric Ozone Intrusions. Geophys. Res. Lett. 2023, 50, e2022GL101690. [Google Scholar] [CrossRef]
- Zhao, K.; Hu, C.; Yuan, Z.; Xu, D.; Zhang, S.; Luo, H.; Wang, J.; Jiang, R. A modeling study of the impact of stratospheric intrusion on ozone enhancement in the lower troposphere over the Hong Kong regions, China. Atmos. Res. 2021, 247, 105158. [Google Scholar] [CrossRef]
- Phanikumar, D.V.; Niranjan Kumar, K.; Bhattacharjee, S.; Naja, M.; Girach, I.A.; Nair, P.R.; Kumari, S. Unusual enhancement in tropospheric and surface ozone due to orography induced gravity waves. Remote Sens. Environ. 2017, 199, 256–264. [Google Scholar] [CrossRef]
- Liu, C.; He, C.; Wang, Y.; He, G.; Liu, N.; Miao, S.; Wang, H.; Lu, X.; Fan, S. Characteristics and mechanism of a persistent ozone pollution event in Pearl River Delta induced by typhoon and subtropical high. Atmos. Environ. 2023, 310, 119964. [Google Scholar] [CrossRef]
- Ding, H.; Kong, L.; You, Y.; Mao, J.; Chen, W.; Chen, D.; Chang, M.; Wang, X. Effects of tropical cyclones with different tracks on ozone pollution over the Pearl River Delta region. Atmos. Res. 2023, 286, 106680. [Google Scholar] [CrossRef]
- Shu, Z.; Zhao, T.; Chen, Y.; Liu, Y.; Yang, F.; Jiang, Y.; He, G.; Yang, Q.; Zhang, Y. Terrain effect on atmospheric process in seasonal ozone variation over the Sichuan Basin, Southwest China. Environ. Pollut. 2023, 338, 122622. [Google Scholar] [CrossRef]
- Ali, M.A.; Huang, Z.; Bilal, M.; Assiri, M.E.; Mhawish, A.; Nichol, J.E.; de Leeuw, G.; Almazroui, M.; Wang, Y.; Alsubhi, Y. Long-term PM(2.5) pollution over China: Identification of PM(2.5) pollution hotspots and source contributions. Sci. Total Environ. 2023, 893, 164871. [Google Scholar] [CrossRef] [PubMed]
- Van Haver, P.; De Muer, D.; Beekmann, M.; Mancier, C. Climatology of tropopause folds at midlatitudes. Geophys. Res. Lett. 1996, 23, 1033–1036. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma. Atmos. Res. 2016, 169, 237–247. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Hsu, H.-m.; Lee, Y.H.; Kuo, C.H.; Sheng, Y.-F.; Chu, D.A. A new transport mechanism of biomass burning from Indochina as identified by modeling studies. Atmos. Chem. Phys. 2009, 9, 7901–7911. [Google Scholar] [CrossRef]
- Zeng, X.; Li, S.; Xing, J.; Yang, J.; Wang, Q.; Song, G.; Teng, M.; Zhou, D.; Lu, J. CALIPSO-observed Southeast Asia biomass-burning influences on aerosol vertical structure in Guangdong-Hong Kong-Macao Greater Bay Area. Atmos. Res. 2023, 289, 106755. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Jin, X.; Holloway, T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. J. Geophys. Res. Atmos. 2015, 120, 7229–7246. [Google Scholar] [CrossRef]
- Midhuna, T.M.; Gharai, B.; Jose, S.; Rao, P.V.N. Study on Regional Variations of Aerosol Loading Using Long Term Satellite Data Over Indian Region. J. Indian Soc. Remote Sens. 2016, 45, 685–697. [Google Scholar] [CrossRef]
- Lee, E.; Županski, M.; Županski, D.; Park, S.K. Impact of the OMI aerosol optical depth on analysis increments through coupled meteorology–aerosol data assimilation for an Asian dust storm. Remote Sens. Environ. 2017, 193, 38–53. [Google Scholar] [CrossRef]
- Zhang, M.; Su, B.; Bilal, M.; Atique, L.; Usman, M.; Qiu, Z.; Ali, M.A.; Han, G. An Investigation of Vertically Distributed Aerosol Optical Properties over Pakistan Using CALIPSO Satellite Data. Remote Sens. 2020, 12, 2183. [Google Scholar] [CrossRef]
- Shaik, D.S.; Kant, Y.; Mitra, D.; Singh, A.; Chandola, H.C.; Sateesh, M.; Babu, S.S.; Chauhan, P. Impact of biomass burning on regional aerosol optical properties: A case study over northern India. J. Environ. Manag. 2019, 244, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Stachlewska, I.; Samson, M.; Zawadzka, O.; Harenda, K.; Janicka, L.; Poczta, P.; Szczepanik, D.; Heese, B.; Wang, D.; Borek, K.; et al. Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol. Remote Sens. 2018, 10, 412. [Google Scholar] [CrossRef]
- Xiong, X.; Liu, X.; Wu, W.; Knowland, K.E.; Yang, Q.; Welsh, J.; Zhou, D.K. Satellite observation of stratospheric intrusions and ozone transport using CrIS on SNPP. Atmos. Environ. 2022, 273, 118956. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Yuan, Q.; Zhang, F.; Zhu, L. Vertical Profile of Ozone Derived from Combined MLS and TES Satellite Observations. Remote Sens. 2022, 14, 1588. [Google Scholar] [CrossRef]
- Ma, P.; Mao, H.; Zhang, J.; Yang, X.; Zhao, S.; Wang, Z.; Li, Q.; Wang, Y.; Chen, C. Satellite monitoring of stratospheric ozone intrusion exceptional events—A typical case of China in 2019. Atmos. Pollut. Res. 2022, 13, 101297. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J.; Meister, G. Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. J. Geophys. Res. Atmos. 2015, 120, 12157–12174. [Google Scholar] [CrossRef]
- Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Rosenkranz, P.W.; Smith, W.L.; Staelin, D.H.; et al. AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing Systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Harris, J.M. Source Regions for Atmospheric Aerosol Measured at Barrow, Alaska. Environ. Sci. Technol. 2001, 35, 4214–4226. [Google Scholar] [CrossRef] [PubMed]
- Ambient Air Quality Standards: GB 3095-2012; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. China Standards Press: Beijing, China, 2012.
- Chen, Y.; Li, D.; Karimian, H.; Wang, S.; Fang, S. The relationship between air quality and MODIS aerosol optical depth in major cities of the Yangtze River Delta. Chemosphere 2022, 308, 136301. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Sun, L.; Zhang, X.; Wang, Y. Verification of Mcd19a2 Data and Study of Aerosol Characteristics in Beijing-Tianjin-Hebei Region. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 675–679. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, B.; Wang, S.; Yang, F.; Xing, J.; Morawska, L.; Ding, A.; Kulmala, M.; Kerminen, V.M.; Kujansuu, J.; et al. Particulate matter pollution over China and the effects of control policies. Sci. Total Environ. 2017, 584–585, 426–447. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Xin, J.; Zhang, W.; Wang, Y. The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS. Environ. Pollut. 2016, 216, 350–360. [Google Scholar] [CrossRef]
- Xu, J.; Han, F.; Li, M.; Zhang, Z.; Du, X.; Wei, P. On the opposite seasonality of MODIS AOD and surface PM2.5 over the Northern China plain. Atmos. Environ. 2019, 215, 116909. [Google Scholar] [CrossRef]
- Chen, J.; Xin, J.; An, J.; Wang, Y.; Liu, Z.; Chao, N.; Meng, Z. Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region. Atmos. Res. 2014, 143, 216–227. [Google Scholar] [CrossRef]
- Weimer, M.; Kinnison, D.E.; Wilka, C.; Solomon, S. Effects of denitrification on the distributions of trace gas abundances in the polar regions: A comparison of WACCM with observations. Atmos. Chem. Phys. 2023, 23, 6849–6861. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, X.; Zhan, N. Satellite-based estimates of high-resolution CO concentrations at ground level in the Yangtze River Economic Belt of China. Atmos. Environ. 2023, 312, 120018. [Google Scholar] [CrossRef]
- Liang, T.; Luo, J.; Zhang, C.; Tian, H.; Bai, Z.; Bian, J.; Wang, Z.; Luo, F.; Zhu, F.; Mao, L.; et al. The impact of tropopause fold event on surface ozone concentration over Tibetan Plateau in July. Atmos. Res. 2024, 298, 107156. [Google Scholar] [CrossRef]
- Jian, Y.; Fu, T.M. Injection heights of springtime biomass-burning plumes over peninsular Southeast Asia and their impacts on long-range pollutant transport. Atmos. Chem. Phys. 2014, 14, 3977–3989. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, Y.; Lian, P.; Li, W.; Yang, F.; Zhang, X.; Yang, R. Impact of stratospheric intrusions on surface ozone enhancement in Hong Kong in the lower troposphere: Implications for ozone control strategy. Atmos. Environ. 2024, 329, 120539. [Google Scholar] [CrossRef]
- Lamarque, J.-F.; Kinnison, D.E.; Mills, M.J.; Marsh, D.R.; Calvo, N.; Polvani, L.M. Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). J. Clim. 2013, 26, 7372–7391. [Google Scholar] [CrossRef]
- Rawat, P.; Naja, M.; Fishbein, E.; Thapliyal, P.K.; Kumar, R.; Bhardwaj, P.; Jaiswal, A.; Tiwari, S.N.; Venkataramani, S.; Lal, S. Performance of AIRS ozone retrieval over the central Himalayas: Use of ozonesonde and other satellite datasets. Atmos. Meas. Tech. 2023, 16, 889–909. [Google Scholar] [CrossRef]
- Varotsos, C.; Ondov, J.; Tzanis, C.; Öztürk, F.; Nelson, M.; Ke, H.; Christodoulakis, J. An observational study of the atmospheric ultra-fine particle dynamics. Atmos. Environ. 2012, 59, 312–319. [Google Scholar] [CrossRef]
- Varotsos, C.; Efstathiou, M.; Tzanis, C. Scaling behaviour of the global tropopause. Atmos. Chem. Phys. 2009, 9, 677–683. [Google Scholar] [CrossRef]
- Varotsos, C.; Efstathiou, M.; Tzanis, C.; Deligiorgi, D. On the limits of the air pollution predictability: The case of the surface ozone at Athens, Greece. Environ. Sci. Pollut. Res. Int. 2012, 19, 295–300. [Google Scholar] [CrossRef] [PubMed]
Instrument/ Satellite | Wavelength Bands | Number of Bands | Spectral Resolutions | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|---|
MODIS/Aqua | 0.4–14.4 µm | Bands 1–19 and 26 | 0.4 µm to 2.2 µm | Multiple times daily | 250 m, 500 m and 1000 m |
Bands 20–25 and 27–36 | 3.66 µm to 14.4 µm | ||||
AIRS/Aqua | 0.4–15.4 µm | 2378 infrared channels | 649 to 1136 cm−1 (longwave) 1213 to 1613 cm−1 (midwave) 2181 to 2665 cm−1 (shortwave) | Twice daily | 1° × 1° |
4 visible/near-infrared channels | 0.4 µm to 0.94 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, P.; Zhao, K.; Yuan, Z. AIRS and MODIS Satellite-Based Assessment of Air Pollution in Southwestern China: Impact of Stratospheric Intrusions and Cross-Border Transport of Biomass Burning. Remote Sens. 2024, 16, 2409. https://doi.org/10.3390/rs16132409
Lian P, Zhao K, Yuan Z. AIRS and MODIS Satellite-Based Assessment of Air Pollution in Southwestern China: Impact of Stratospheric Intrusions and Cross-Border Transport of Biomass Burning. Remote Sensing. 2024; 16(13):2409. https://doi.org/10.3390/rs16132409
Chicago/Turabian StyleLian, Puyu, Kaihui Zhao, and Zibing Yuan. 2024. "AIRS and MODIS Satellite-Based Assessment of Air Pollution in Southwestern China: Impact of Stratospheric Intrusions and Cross-Border Transport of Biomass Burning" Remote Sensing 16, no. 13: 2409. https://doi.org/10.3390/rs16132409
APA StyleLian, P., Zhao, K., & Yuan, Z. (2024). AIRS and MODIS Satellite-Based Assessment of Air Pollution in Southwestern China: Impact of Stratospheric Intrusions and Cross-Border Transport of Biomass Burning. Remote Sensing, 16(13), 2409. https://doi.org/10.3390/rs16132409