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Abstract: A horizontal towed linear coherent hydrophone array is often employed to estimate the
spatial intensity distribution of incident plane waves scattered from the geological and biological
features in an ocean acoustic waveguide using conventional beamforming. However, due to the
physical limitations of the array aperture, the spatial resolution after conventional beamforming is
often limited by the fat main lobe and the high sidelobes. Here, we propose a method originated from
computer vision deblurring based on deep learning to enhance the spatial resolution of beamformed
images. The effect of image blurring after conventional beamforming can be considered a convolution
of beam pattern, which acts as a point spread function (PSF), and the original spatial intensity
distributions of incident plane waves. A modified U-Net-like network is trained on a simulated
dataset. The instantaneous acoustic complex amplitude is assumed following circular complex
Gaussian random (CCGR) statistics. Both synthetic data and experimental data collected from the
South China Sea Experiment in 2021 are used to illustrate the effectiveness of this approach, showing
a maximum 700% reduction in a 3 dB width over conventional beamforming. A lower normalized
mean square error (NMSE) is provided compared with other deconvolution-based algorithms, such
as the Richardson–Lucy algorithm and the approximate likelihood model-based deconvolution
algorithm. The method is applicable in various acoustic imaging applications that employ linear
coherent hydrophone arrays with one-dimensional conventional beamforming, such as ocean acoustic
waveguide remote sensing (OAWRS).

Keywords: acoustic remote sensing; deconvolution; conventional beamforming; image processing;
ocean acoustic waveguide remote sensing

1. Introduction

Conventional beamforming (CBF) is widely employed to visualize or measure the
angular intensity distribution of incident plane waves originating from various acoustic
sources and scatters, including marine organisms [1–3], ships [4,5], and geological fea-
tures [6]. CBF delays and sums the received signals based on the sensor’s configuration
relative to the steer angle. When the steer angle matches the direction of arrival (DOA)
of targets, the target signals are coherently summed. Meanwhile, noise in each element
input is uncorrelated and thus is incoherently summed. As a result, CBF improves the
signal-to-noise ratio (SNR) and obtains array gain. However, CBF is subject to Rayleigh
limits and imposes constraints on the angular resolution of the resulting images depending
on the array aperture, the incident directions, and the operating frequency. Although the
angular resolution can be enhanced by directly increasing the physical dimensions of the
array aperture, it is not suitable for towed arrays used in shallow environments and is less
cost-effective.

Various high-resolution methods have been proposed based on the operation of the
signal covariance matrix to improve the angular resolution under certain constraints [7].
Well-known methods include adaptive beamforming (ABF), such as the minimum-variance
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distortionless response [8] (MVDR), the amplitude and phase estimation [9] (APES), the low
complexity adaptive (LCA) beamformer [10], the coherence factor (CF) beamformer [11],
spatial spectrum estimation techniques such as multiple signal classification [12] (MUSIC),
and the estimating signal parameters via rotational invariance techniques [13] (ESPRIT).
These algorithms provide narrow beamwidths that transcend the Rayleigh limit and effec-
tively produce low sidelobe levels at the same time, making them better for interference
rejection and intensity distribution estimation of targets with a small bearing separation.
However, they are known to be sensitive to signal mismatches between the assumed and the
actual signal wave front caused by the scattering or wrong receiver position [14]. These al-
gorithms also require precise estimation of the signal covariance matrix from measurement
samples and use diagonal loading in calculations, and hence, are computationally complex.

Sparse representation (SR) and compressed sensing techniques have emerged as novel
motivators for DOA estimation because of their adaptability in diverse scenarios [15–18].
Following the idea of compressed sensing, numerous outstanding algorithms have been
proposed, including orthogonal matching pursuit [19–22] (OMP) and atomic norm mini-
mizing [23–26] (ANP). Both the OMP and ANP algorithms can greatly reduce the number
of sensors to be used by utilizing the sparsity of the signal, and significantly decrease the
number of samples required for signal restoration and bearing estimation. Although com-
pressed sensing-based algorithms generally exhibit strong robustness compared to other
covariance matrix-based algorithms, their performance is significantly constrained by the
assumption of signal sparsity [27], which is commonly not applicable in ocean acoustical
imaging of large fish aggregation, geological features, and other potential extended targets
with unpredictable source quantity and intensity distribution.

Another approach to achieve high-resolution bearing estimation is deconvolution,
which can be seen as a series of post-processing methods. The algorithms generally con-
sider the conventional beamforming output as the convolution between the beam pattern,
which is also known as the point spread function (PSF), and the ground truth spatial
signal intensity distribution. The maximum likelihood (ML) deconvolution method, taking
into account the circular complex Gaussian random (CCGR) statistics of acoustic fields, is
firstly proposed to significantly enhance the angular resolution of images [28]. Modified
likelihood model-based deconvolution (M-DCV) and approximate likelihood model-based
deconvolution (AM-DCV) are then proposed to improve the deconvolution performance
and computational efficiency [29]. To further overcome the computational complexity
resulting from the global optimization algorithm required for maximum likelihood esti-
mation, a series of Richardson–Lucy (R-L) algorithm [30]-based methods are purposed to
iteratively deblur the spatial intensity distribution from the CBF output [14,31,32]. The R-L
algorithm delivers good deconvolution results with a narrow beamwidth and low sidelobes.
However, when dealing with features with steep edges, the R-L algorithm requires more
iterations to converge, resulting in strong spurious oscillations [33]. Wide features could be
fragmented into multiple narrow features, while the intensity of background noise near
these features fluctuates significantly. This would diminish the imaging performance and
pose challenges for further processing.

Recently, neural network (NN) has been shown to perform well in DOA estimation
tasks in air [34,35] and under water [36,37]. NN has also been applied to underwater
range estimation tasks [38,39]. Considering the similarity in blurring processes caused
by optical and acoustical PSF and conventional beamforming, deep learning-based image
deblurring methods show great potential in enhancing angular resolution and estimating
ocean acoustic intensity distribution. Nah proposed a multi-scale structure that effectively
preserves details at finer scales and handles long-range dependencies at coarser scales [40].
Notably, the blurred images in the datasets are generated by simulating the exposure
process on sharp images. Tao utilized an encoder–decoder architecture and a multi-scale
structure to extract features at various scales [41]. Meanwhile, Liu adopted deblurring
and optic flow methods to recover consecutive frames [42]. Compared to typical optical
image deblurring applications, deep learning-based ocean acoustic image enhancement
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poses significant challenges due to the difficulty in acquiring acoustic data and the limited
amount of data available.

Here, we propose a deep learning deconvolution approach to enhance the angular
resolution of CBF results. A modified U-Net structure, which originates from optical de-
blurring, is adopted to deconvolve the conventional beamforming outputs. The simulated
dataset is generated following statistics of the instantaneous complex amplitude of an
acoustic field in an ocean waveguide environment to address the issue of inadequate ocean
acoustic data. The performance of the deconvolution is validated using both synthetic and
experimental data.

2. Materials and Methods
2.1. Conventional Beamforming Using a Linear Receiver Array

The instantaneous pressure field after conventional beamforming can be represented as
the convolution of the complex pressure amplitude of incident plane waves from different
directions and the array beam pattern [28]. Considering M incident plane waves from
different directions, the total beamformed pressure PB at scan angle sin θ and time t using a
uniformly-spaced linear array can be expressed as follows:

PB(sin θ, t, ω) =
M

∑
i=1

P(ki, ω)B(sin θ − sin θi)e−jωt (1)

where P(ki, ω) is the complex amplitude of the plane wave in the direction of the acoustic
wavenumber vector ki, k = |ki| = ω/c is the wave number, ω is the radial frequency of the
plane wave, c is the sound speed, θi is the incident angle with respect to the array broadside,
and i is an index for i = 1, 2, ..., M directions. For a uniformly-spaced linear array with N
elements, the beam pattern B using a rectangle window can be expressed as:

B(sin θ) =
1
N

sin
(

k
2 Nd sin θ

)
sin

(
k
2 d sin θ

) (2)

where θ is the scan angle spanning [−π/2, π/2] corresponding to the array’s broadside, and
d is the element spacing. After neglecting the time-harmonic term e−jωt, the instantaneous
beamformed plane wave intensity I at scan angle sin θ is:

I(sin θ, ω) = |PB(sin θ, ω)|2 =

∣∣∣∣∣ M

∑
i=1

P(ki, ω)B(sin θ − sin θi)

∣∣∣∣∣
2

(3)

The complex amplitude of the incident plane waves P(ki, ω), subject to fluctuations
from various mechanisms including waveguide multi-path propagation and scattering,
follows circular complex Gaussian random (CCGR) statistics characterized by an expected
value of ⟨P(ki, ω)⟩ = 0 [43–46]. The incident plane wave fields originating from different
directions are assumed to be independent of each other for common ocean acoustical
sensing applications, implying that ⟨P(ki, ω)P∗(kj, ω)⟩ = ⟨P(ki, ω)⟩⟨P∗(kj, ω)⟩ where
i ̸= j. The expected beamformed intensity at scan angle sin θ is then expressed as follows:

σ(k, sin θ, ω) = ⟨I(sin θ, ω)⟩ =
M

∑
i=1

S(ki, ω)|B(sin θ − sin θi)|2 (4)

where S(ki, ω) = ⟨P(ki, ω)P∗(ki, ω)⟩.
We further use the wavenumber k and incident angle sin θi instead of the wavenumber

vector ki to rewrite the expected incident plane wave intensity. The expected intensity
derived from conventional beamforming (CBF) can now be considered as the discrete
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convolution of the expected ground truth intensity distribution and the square of the beam
pattern as follows:

σ(k, sin θ, ω) = S(k, sin θ, ω) ∗B(sin θ) (5)

where B(sin θ) = |B(sin θ)|2. Considering S as a vector comprising elements S(k, sin θi, ω)
and letting B represent the matrix, where each element Bij is defined by |B(sin θj − sin θi)|2,
the expected beamformed intensity vector σ can be expressed as follows:

σT = STB (6)

2.2. Deconvolution Using Neural Network

In this study, we employ a modified U-Net neural network structure, which was
originally designed for tissue segmentation tasks in medical applications [47], to deconvolve
the ground truth expected intensity distribution of incident plane waves from conventional
beamforming outputs. The network structure is shown in Figure 1. This network benefits
from its hierarchical structure, which utilizes pooling layers for downsampling (red arrows)
and up-convolution layers for upsampling (green arrows), resulting in a relatively large
receptive field. The skip connections (thin gray arrows) directly copy the output of the
encoder, which is closer to the original input of the network and thus contains more spatial
information, in each level to the input of the relevant decoder. This structure helps to
supplement spatial information perceived by the decoder. However, it does not help
to preserve spatial information when the encoder decreases the size and increases the
dimensions of feature maps level by level. Much of the spatial information is forgotten
while encoding across multiple levels of the network, and hence, the original U-Net lacks
the capability of pixel perception [41]. As a result, the original U-Net is unsuitable for
deconvolution tasks. At the same time, the network processes low-frequency features
of images (such as extended geo-clutter echos and ambient noise) in higher dimensions,
limiting its ability to recover the intensity of large size features. However, the original
U-Net has insufficient convolutional layers in the encode part (left part) and thus is not
able to precisely extract the sharp components of feature maps.

To address these issues, dilated residual blocks (yellow arrows) inspired by the residual
block in the SRN-Net [41] are introduced to replace simple convolutions in the encoder,
hence allowing more spatial information to be perceived. Each block contains two dilated
kernels with different dilation rates to enlarge the receptive field and address the gridding
effect issue [48]. We also add fusion blocks to fuse the features from adjacent levels,
which perceive more spatial information necessary for deconvolution. Additionally, we
modified the first level of the encoder by reducing the output channels from 64 to 32, as the
expected intensity vector contains less information than an RGB image. The input of the
neural network is the intensity distribution over propagation time and azimuthal angle. By
assuming intensity to be time-independent, one-dimensional angular intensity distributions
can be separately estimated and deconvolved in chronological order, and then recombined.
As a result, we adjusted all the kernel sizes from 3 × 3 to 1 × 3. This modification reduces
the number of parameters and eliminates the correlation in the time domain.

The one-dimensional angular intensity distribution input is initially processed by
the encoder using a convolution layer and a dilated residual block at each level. The
pooling output and the level output are concatenated and processed by fusion blocks, each
containing a convolution layer and a residual block. Each decoder, except the last one at
level 1, concatenates the fusion output from its corresponding level with outputs from the
higher level. These features will be processed further by a convolution layer and a residual
block. The output is then upsampled by the deconvolution layer of the U-Net. Finally, the
output of the decoder is processed by one more convolutional layer without any activation
function. The number of channels at each level in the feature maps is listed above the blue
boxes in the figure, showing changes in feature map dimensions during encoding and
decoding. Additionally, the size of the feature maps is halved after max pooling layers and
doubled after deconvolution (transposed convolution) layers.
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Figure 1. Modified U-Net structure. The network comprises an encoder, fusion blocks, and a decoder,
respectively responsible for extracting features, further extracting sharp features, and utilizing these
features to generate the final output. Green boxes are feature maps, with the number of dimensions
shown above each one. Gray arrows represent a convolutional layer (1 × 3) followed by a ReLU
activation layer. Gray arrow with ’*’ represents single convolutional layer. Yellow arrows represent
dilated residual blocks, while orange arrows represent residual blocks without dilated convolution.
Each dilated residual block consists of two dilated convolution layers with different dilation rates
of 2 and 3, shown by blue arrows with numbers. Red arrows represent max pooling layers (1 × 2),
while green arrows represent deconvolution layers. White boxes with arrows represent duplicates of
corresponding features.

Simulated one-dimensional datasets with 2 million samples were utilized to train the
model on a 1 NVIDIA 3060 GPU, with a batch size of 100. The learning rate was initially set
to 0.001, with an exponential decay rate of 0.9. We used the Charbonnier Loss together with
the Adam optimizer to handle outliers and improve performance. Each model is trained
for 10 epochs, which takes approximately 6 h. The normalized mean square error changes
in train data and validation data over epochs are shown in Figure 2. We use early stopping
to obtain the final model with the lowest NMSE in validation data. This prevents the model
from reaching any information from test data including synthetic and experimental data,
which ensures that the test data correctly evaluates the robustness of the model.

The network is trained on simulated data instead of experimental data for several
reasons. The ocean acoustic data are always collected using receiver arrays equipped on
ships or other vehicles with weak mobility. Limited by perception range and movement
speed, the receiver collects redundant data in a relatively fixed area. Meanwhile, the
receiver cannot access ground truth data due to its limitation on aperture. Therefore, it is
necessary to generate simulated data, which will be introduced in the next section.
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Figure 2. Normalized mean square error changes over epochs.

2.3. Data Simulation Method

The data simulation method plays a significant role because the data need to con-
tain all the information required for deconvolution. We take advantage of the relatively
pervasive circular complex Gaussian random (CCGR) statistics of acoustic fields in the
ocean that follow from the central limit theorem for many typical scenarios of propagation,
radiation, or scattering [43–46,49–52]. The one-dimensional expected plane wave intensity
vector S comprising of M elements Si = S(k, sin θi, ω) for i = 1, 2, ..., M is chosen as the
ground truth for deconvolution, where each element S(k, sin θi, ω) represents the expected
intensity of the incident plane wave from θi spanning from −π/2 to π/2. We specifi-
cally choose the sin θ domain because the point spread function (PSF) of beamforming
is shift-invariant, enabling the neural network to learn angle-independent deconvolu-
tion parameters. Each one-dimensional expected plane wave intensity vector is assumed
to contain an ambient expected plane wave intensity vector SA, where each element
SA,i = SA(k, sin θi, ω) represents the intensity of incident plane waves from each discrete
incident angle θi. This could be a good simulation of various extended features, such as
ship noise, reverberation, and ambient noise in the ocean environment. In addition, one to
four relatively narrow and strong designed features with intensity vector SF,q, where each
element SF,q,i = SF,q(k, sin θi, ω), are added to simulate obvious and regular features. The
subscript q is an index for q = 1, 2, ..., Q features. Then, the ground truth expected intensity
S is:

S = SA +
Q

∑
q=1

SF,q (7)

The ambient expected plane wave intensity vector S′
A in decibel units is first con-

structed using the Midpoint Displacement in OneDimension (MDOD) algorithm [53],
which is described in Algorithm 1.

Here, lb, ub are the lower and upper bounds of the features’ intensity in dB, respectively.
The indices [l, r], corresponding to the angle [θl , θr], show the angular area of the feature in
the current recursive iteration. The midpoint’s intensity inside the current area can vary
within the range of [−range/2, range/2] in the next recursive iteration. The parameter dr
is the decay rate of range, which reduces the fluctuations of values during the recursive
process. In practice, we set [lb, ub] to [−40,−10] dB, range to 20 dB, and dr to 0.45. The
ambient expected plane wave intensity vector S′

A is initialized by setting identical first
and last elements S′

A,1 = S′
A,M. The value of the two elements is a random variable that is

uniformly distributed in the range of [−40,−10] dB. We also apply a 10-by-1 mean filter
to the resulting intensity vector to simplify its details. Finally, the ambient expected plane
wave intensity SA = 10S′

A/10.
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Algorithm 1: Midpoint Displacement in OneDimension

Input: lb, ub, range, dr, l, r, S′
A

Output: S′
A

1 if r < l + 1 then
2 return S′

A
3 else
4 mid = l+r

2 ;
5 S′

A,mid = INF;
6 while S′

A,mid /∈ [lb, ub] do

7 S′
A,mid =

S′
A,l+S′

A,r
2 + (rand()− 0.5) · range;

8 end
9 range = range ∗ dr;

10 thisfunction(lb, ub, range, dr, l, mid, S′
A);

11 thisfunction(lb, ub, range, dr, mid, r, S′
A);

12 return S′
A

13 end

The designed features are expected with a steeper edge and more regular distribution
than SA. Here, we employ a Gaussian radial basis function (GRBF) with a flat peak to
simulate the discrete intensity SF,q,i of the features at θi:

SF,q,i = SA,i · 10
aq
10 ·


e
− (θi−(θq−rq))

2

2η2
q , θi < θq − rq

e
− (θi−(θq+rq))

2

2η2
q , θi > θq + rq

1, other

(8)

Here, we employ a uniformly distributed random variable ηq ∼ U(l, u) in dB to
control the q-th target size. l, u are separately set to −0.7, 0.8 in the simulation. The center
of the target θq is randomly assigned to ensure the targets across different directions. The
parameter rq denotes half the angular width of the flat peak for the q-th target, which will
be separately assigned in different cases. To diversify the sample, we randomly adjust the
peak intensity of the targets by a uniformly distributed random variable aq ∼ U(0, 30) dB.

In the simulation, four classes of designed features with different characteristics are
included to ensure that their combination represents natural features well. Forty percent
of the features are single narrow features with angular width rq ∼ U(0, 3) degree. Twenty
percent of the features are single wide features with angular width rq ∼ U(3, 10). We also
force 20% of features consisting of three wide features with angular width rq ∼ U(3, 10),
overlapping with each other. The rest of the features are a combination of two separated
narrow features with angular width rq ∼ U(0, 3) close to each other. The distribution of
features under our strategy is far more similar to natural distribution than that of completely
random features.

The total expected intensity vector S can then be calculated following Equation (7). In
the simulation, we consider the average plane wave intensity vector Ŝ, which is calculated
over ten snapshots generated from the expected intensity vector S with CCGR distribution,
as the target of deconvolution. The corresponding normalized expected beamformed
intensity σ̂ is used as input. This operation effectively prevents the network from filtering
out potential features with small fluctuations. The normalized expected beamformed plane
wave intensity vector σ̂ is:

σ̂ = ŜBn (9)
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The scanning matrix Bn is a normalized beam pattern defined as Bn,ij =
|B(sin θj−sin θi)|2

∑M
l=1 |B(sin θl)|2

.

This normalization effectively maintains the ambient intensity value after beamforming,
and hence, stabilizes the learning process. Finally, we normalized σ̂ and Ŝ using the
minimum σ̂, obtaining the σ̂′ and Ŝ′ in dB domain:

σ̂′ = 10 ∗ lg
σ̂

min(σ̂)

Ŝ′
= 10 ∗ lg

Ŝ
min(σ̂)

(10)

The expected intensity distributions before and after beamforming are both normalized
using minimum beamformed intensity σ̂ as the calculation is only feasible for beamformed
data. Additionally, we circularly pad σ̂′ as σ̂′

xtnd to enable the neural network to access
enough information for processing intensity near end-fire. The neural network fϕ with
parameters ϕ is then trained with the expected beamformed intensity vector σ̂′

xtnd to
minimize the Charbonnier Loss between the network output Ŝ′

dcv and the averaged incident
intensity vector Ŝ′:

ϕ̂ = arg min
ϕ

√
(Ŝ′

dcv − Ŝ′)2 + ϵ2 (11)

where ϵ is set as 0.001 to smooth the loss function.

2.4. Experiment

We collected underwater acoustic data to validate our algorithm during an Ocean
Acoustic Waveguide Remote Sensing (OAWRS) experiment in the South China Sea in
June 2021. Reverberation from the continental shelf and continental rise of the South
China Sea are both collected (Figure 3a). Two research vessels were deployed as a bi-static
acoustic imaging system as shown in Figure 4. The source used in the experiment is a
10-element transducer vertical linear array with an array spacing of 0.417 m. The receiver
is a horizontal towed linear array with 2 sub-apertures consisting of 128 hydrophones. In
this research, the first sub-aperture consisting of 96 hydrophones with an array spacing of
0.417 m, corresponding to a half-wavelength of signal with a frequency of 1800 Hz, was
utilized for conventional beamforming and deconvolution. During the experiment, the
moored source was deployed with a center depth of approximately 50 m, while the receiver
was towed along a predetermined path shown in Figure 3b,c at a depth of roughly 65 m.
The source transmitted a series of Tukey-windowed linear frequency modulated (LFM)
pulses centered at 1800 Hz with a 200 Hz bandwidth and 1 s duration every 40 s. The steer
angles of the transducer array are separately set to 0 degrees on the continental shelf area
and 14 degrees downward on the continental rise area. The image area for each steer angle
along the west of the source is shown in Figure 5. The collected data also include the GPS
location of two vessels and corresponding timestamps. Water-column sound speed profiles
were measured using expendable conductivity–temperature–depth (XCTD) sensors at each
experiment area. The average sound speed profile is shown in Figure 6.

OAWRS imaging comprises two main phases. Initially, the conventional beamforming
(CBF) method with a Hanning spatial window is employed to approximate the arrival
azimuth angle of incident signals. The beamforming output is then processed by a matched
filter and charted into a Cartesian coordinate.
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Figure 3. (a) The location of the OAWRS experiment in the South China Sea during June 2021. The
white box bounds the experimental areas on (b) the southern flank of the continental shelf in the south
of Hainan Island, and (c) the continental rise region on the west of Xisha Islands, China. Gray and
black lines illustrate the trajectories of the moored source and the towed receiver array, respectively.

Figure 4. Experimental setup diagram. The moored vertical source array, comprising 10 elements, is
deployed by a research vessel at a center depth of 50 m and transmits signals with a source level of
210 dB. Each element of the source emits signal with power of 190 dB. The horizontal receiver array
consists of 128 elements, with 96 of them spaced 0.417 m apart, and is towed by another research
vessel at a depth of 65 m.
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Figure 5. Ray tracing in the west of the source located on (a) the southern flank of the continental
shelf in the south of Hainan Island on 19 June 2021 at 20:34 UTC, and on (b) the continental rise
region on the west of Xisha Islands, China, on 18 June 2021 at 08:28 UTC. The white line in both
figures shows the real seabed.

Figure 6. Sound speed profile measured in the southern flank region of the continental shelf and
continental rise region during the experiment. The gray lines are the experimental sound speed
profiles and the black line is the average value of them.

3. Results
3.1. Synthetic Data

In this section, we validate the performance of the deep learning (DL) deconvolution
with synthetic data using various types of targets near the array broadside and end-fire
direction, respectively (Figures 7–9). We also provide results of CBF, AM-DCV, and the
iterative R-L algorithm, which is another deconvolution method based on the PSF, for
comparison to illustrate the performance improvement and robustness of the algorithm.
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This comparison is conducted with a 32-element array under a signal-to-noise ratio (SNR) of
20 dB. We also compare the imaging error and 3 dB beamwidth of deconvolved results near
the broadside at different SNR levels and array sizes. The error in this case is quantified
using the normalized mean square error (NMSE) between the deconvolved results Ŝ′

dcv and
the ground truth distribution of incident intensity in decibel units S′, which is defined as:

NMSE(Ŝ′
dcv, S′) =

∑ (Ŝ′
dcv,i − S′

i)
2

∑ S′2
i

(12)

where i indicates the element index of vector Ŝ′
dcv and S′. NMSE is employed to quantify

the deconvolution performance because it can measure the similarity of the entire intensity
distribution. Meanwhile, we utilize it to reduce the impact of different SNRs on the
comparison of results. Notably, we define the SNR as the ratio of the highest intensity of
features to the ambient intensity in each direction in the CBF results. We use this definition
because our algorithm focuses on features that are challenging to discriminate or recognize
but not unreadable.
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Figure 7. A comparison between the intensity of a narrow feature (1°) near (a) the array broadside
and (c) the end-fire direction by the DL deconvolution, the R-L algorithm, and CBF, respectively.
(b,d) are zoom-in versions of (a,c) near the feature.

In the case of narrow features (1°) as shown in Figure 7, all the deconvolution methods
significantly reduce the 3 dB width of the main lobe and accurately estimate the angle of ar-
rival near the broadside and end-fire compared with CBF. The results obtained through the
DL deconvolution exhibit a narrow beamwidth and a steep edge, indicating its advantages
in recovering the intensity distribution of the feature. Although the three deconvolution
methods demonstrate similar performance in recovering the peak intensity, the results
obtained by the R-L algorithm exhibit significant spurious oscillations in the estimation
of the ambient noise level. In contrast, the results obtained by the DL deconvolution and
AM-DCV appear stable and show good agreement with the ground truth ambient level. For
features located near the array broadside (Figure 7a,b), the NMSE of the intensity obtained
by the DL deconvolution is approximately 0.004, which is significantly lower than the
NMSE of 0.516 obtained by CBF. Meanwhile, the NMSE of the deconvolved result using
the R-L algorithm is approximately 1.117, which is twice as large as the NMSE obtained by
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CBF due to the spurious oscillations. The NMSE of AM-DCV is approximately 0.04. For
the same narrow feature near the end-fire direction (Figure 7c,d), our method achieves an
NMSE of about 0.060, while the R-L algorithm yields an NMSE of 0.753, higher than the
0.417 obtained by CBF. The NMSE of AM-DCV is approximately 0.05, indicating a better
performance near array end-fire than DL deconvolution.
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Figure 8. A comparison between intensity of a wide feature consisting of two box-like features with
10° width and 10 dB difference in intensity near (a) the array broadside and (c) the end-fire direction
by the DL deconvolution, the R-L algorithm, and CBF, respectively. (b,d) are zoom-in versions of
(a,c) near the feature.

A wider feature with an intensity distribution as shown in Figure 8 is also set to
evaluate the deconvolution ability of our method for extended targets. The target consists
of two box-like features with 10° width and 10 dB difference in intensity. Though the three
algorithms all obtain clearer intensity distribution than the CBF results in array broadside
and end-fire, the results from DL deconvolution and AM-DCV show a steeper edge and
a flatter peak than that from the R-L algorithm, especially in the case of array end-fire.
Meanwhile, DL deconvolution and AM-DCV exhibit better performance in the recovery
of intensity for the feature with a lower SNR, indicating their better ability to perceive
intensity changes. For the ambient intensity, DL deconvolution and AM-DCV also show a
better agreement with the ground truth value. For features located near the array broadside
(Figure 8a,b), the NMSE obtained from the DL deconvolution is 0.006, which is lower than
the NMSE of 0.076 obtained from the R-L algorithm and 0.02 obtained from AM-DCV, and
significantly lower than the NMSE of 0.117 obtained from CBF. In the case of the same
features near array end-fire (Figure 8c,d), the NMSE of our proposed method is 0.025, while
the R-L algorithm yields an NMSE of 0.344, higher than the 0.232 from CBF. The NMSE of
AM-DCV is 0.03.

To evaluate the ability to discriminate close features, two narrow features (1°) with an
angular separation of 1° in array broadside and 2.5° near array end-fire are evaluated as
shown in Figure 9. The intensity of two adjacent features in both cases is well recovered
using DL deconvolution and AM-DCV with clear edges and an accurate peak intensity,
which is not achievable using either the R-L algorithm or CBF. Notably, the R-L algorithm
shows significant spurious oscillations in deconvolved ambient noise level and our method
recovers it stably. For the two features near the array broadside (Figure 9a,b), our method
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achieves an NMSE of 0.0129, outperforming the R-L algorithm with an NMSE of 0.424,
AM-DCV with an NMSE of 0.04, and the CBF results with an NMSE of 0.429. For features
near array end-fire (Figure 9c,d), our method obtains an NMSE of 0.073, lower than the
NMSE of 0.587 obtained by the R-L algorithm, and 0.433 obtained by CBF. AM-DCV has
the lowest NMSE of 0.068.
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Figure 9. A comparison between intensity of two narrow features (1°) with an angular separation of
(a) 1° in array broadside and (c) 2.5° near array end-fire by the DL deconvolution, the R-L algorithm,
and CBF, respectively. (b,d) are zoom-in versions of (a,c) near the feature.

To evaluate the performance of DL deconvolution, we assessed the deconvolved
results of an ideal feature with negligible width near the array broadside and end-fire
direction under different SNRs and array sizes as shown in Figure 10. Our method does not
require training on different datasets to deconvolve samples with different SNRs. When
the number of array elements varies, the model should be trained on appropriate datasets
to account for variations in PSF. We first compare the root mean square error (RMSE) of
estimated DOA, NMSE of intensity, and 3 dB beamwidth as a function of SNRs from
DL deconvolution, the R-L algorithm, and CBF in array broadside and end-fire using
a 32-element array (Figure 10a–c). For DOA estimation (Figure 10a), the R-L algorithm
shows a good performance near array broadside, but it has a relatively big error near
array end-fire when the SNR is low. In contrast, the DL deconvolution method exhibits
a stable and better estimation accuracy for SNR ranging from 5 dB to 35 dB. AM-DCV
shows the best DOA estimation accuracy near both array broadside and end-fire. Here,
the RMSE of estimated DOA from CBF near end-fire is higher than 0.1 and not plotted
inside the chart. The comparison of NMSE (Figure 10b) illustrates that our method has
the best capacity for recovering the whole intensity distribution in all SNRs and positions.
For comparison, the NMSEs of the R-L algorithm and CBF show a rapid increase as the
SNR becomes higher. The comparison of 3 dB beamwidth (Figure 10c) illustrates that our
method has the relatively narrow main lobe widths and outperforms the R-L algorithm
when the SNR is low. Here, the results from CBF near end-fire are higher than 12 degrees
and are not plotted. DL deconvolution shows a great stability and capability of recovering
intensity distribution among the four methods, especially for low SNR cases.
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Figure 10. Performance of DL deconvolution, the R-L algorithm, AM-DCV, and CBF as a function
of (a–c) different SNRs and (d–f) element numbers near array broadside and end-fire direction.
(a,d) show the RMSE of DOA in different SNRs and element number. The CBF results near the
end-fire are much higher than 0.1, which are not plotted in both figures. (b,e) show the NMSE in log
scale. (c,f) show the 3 dB beamwidth.

We then compare the performances of the four methods as a function of element
numbers using the same quantification value mentioned above (Figure 10d–f). The SNR
is set fixed to 20 dB in this case. For DOA estimation (Figure 10d), our method shows
advantages over the R-L algorithm and CBF in both array broadside and end-fire, especially
for the array with a small aperture. Here, the results from CBF are higher than 0.1 and are
not plotted. Figure 10e illustrates DL deconvolution’s consistent advantage in recovering
the whole intensity distribution for all aperture sizes. For 3 dB beamwidth (Figure 10f), our
method outperforms the R-L algorithm both near array broadside and end-fire when the
array aperture is small. When the array aperture becomes larger, the deconvolved 3 dB
beamwidth from the R-L algorithm narrows the gap with the result from DL deconvolution.
All the comparisons illustrate that DL deconvolution has good performance in different
array apertures, especially in small aperture arrays.

We also compare the performances of these methods as a function of incident angles
from 0 to 80 degrees as shown in Figure 11. The SNR is set to 20 dB and the element
number is set to 32 in this case. For DOA estimation (Figure 11a), three deconvolution
methods show similar performances near the array broadside. When the incident direction
gets closer to the array end-fire, AM-DCV shows the best performance in DOA estimation
accuracy and DL deconvolution performs the second best. Figure 11b illustrates that DL
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deconvolution obtains the best performance in recovering the whole intensity distribution
for incident angles ranging from 5 degrees to 80 degrees. For 3 dB beamwidth (Figure 11c),
DL deconvolution shows a better performance than the R-L algorithm in all mentioned
incident angles. The comparisons illustrate that DL deconvolution works well in most
incident directions.

Figure 11. Performance of DL deconvolution, the R-L algorithm, AM-DCV, and CBF as a function
of different incident angles. (a) shows the RMSE of DOA in different SNRs and element numbers.
(b) shows the NMSE in log scale. (c) shows the 3 dB beamwidth.

The one-dimensional synthetic data show that DL deconvolution has the best perfor-
mance in recovering the whole intensity distribution measured by NMSE, and AM-DCV
has the best performance in DOA estimation accuracy and 3 dB beamwidth. However,
though AM-DCV significantly improves the computational efficiency of the maximum
likelihood deconvolution method, it still takes at least 20 s to process one angular acoustic
intensity vector. Furthermore, the processing time of AM-DCV increases when it deals
with extended features. In comparison, DL deconvolution processes one-dimensional data
within 0.1 s. For an acoustic image with an imaging range of 5 km and a range resolution
of 6 m, our method takes seconds to obtain the whole deconvolved images. In contrast,
AM-DCV takes several hours on the task.

We further show the performance of DL deconvolution in recovering the intensity of
a 2-D acoustical image using a rectangular synthetic feature (Figure 12). The rectangular
feature spans about 7 × 7 km2, with its center located roughly 31 km west and 28 km
north from the center of the receiver array. Figure 12a shows the two-dimensional intensity
distribution of the feature. Figure 12b,c are CBF and DL deconvolution results using a
uniform linear array with 32 elements. The DL deconvolution results exhibit sharp edges
over CBF while maintaining a stable ambient noise level. It also accurately recovers the
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detailed intensity distribution inside the feature. The CBF result using a 96-element array
is plotted in Figure 12d for comparison. Here, the NMSE of the 32-element CBF results is
0.090, that of the 96-element CBF results is 0.027, and that of the DL deconvolution results
is 0.004.

Figure 12. A comparison between (a) expected intensity, (b) conventional beamformed intensity
using an array with 32 elements, (c) the DL deconvolution results using an array with 32 elements,
and (d) conventional beamformed intensity using 96 array elements of a rectangular synthetic feature
located roughly 31 km west and 28 km north from the center of the receiver array.

3.2. Experimental Data

Here, we use the OAWRS images of underwater reverberation data collected during
the experiment in the South China Sea during June 2021 to evaluate the performance
of the DL deconvolution. The OAWRS image to be deconvolved is generated and then
averaged over five different sub-apertures with an overlap of 50%, each of which consist
of 32 hydrophone elements with an array spacing of 0.4167 m. We utilize the average of
five sub-apertures to reduce imaging bias introduced by the selection of hydrophone ele-
ments. We also provide the conventional beamformed results obtained using sub-apertures
consisting of 32 and 96 elements for comparison. The conventional beamformed results
from 32 hydrophone elements are transformed into decibel units in bi-static polar coor-
dinates. One-dimensional intensity distribution at different ranges is first normalized by
subtracting its minimum value and then independently delivered to DL deconvolution. The
deconvolved resulting one-dimensional intensity distribution is finally re-charted using the
corresponding normalization factor and then transformed back into a Cartesian coordinate.

Figure 13 illustrates the CBF and DL deconvolved OAWRS images of reverberation
from the southern flank of the continental shelf to the south of Hainan Island as shown in
Figure 3b. As shown in Figure 13a, the CBF result using a 32-element array confuses many
adjacent geological features and blurs their intensity distribution due to its wide main lobe.
For comparison, the DL deconvolved result (Figure 13b) effectively enhances the angular
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resolution and properly recovers the detailed intensity distribution, making multiple
adjacent features resolvable. Notice that the DL deconvolution results using 32 elements
can roughly provide a similar performance as the CBF results using 96 hydrophones in
Figure 13c.

Figure 13. A comparison between (a) 32-element conventional beamformed results, (b) its DL
deconvolved results, and (c) 96-element conventional beamformed results measured on 19 June 2021
at 20:34 UTC. The gray dashed lines are the contour lines with depth shown by the black numbers.

Figure 14 shows three OAWRS images of reverberation from the continental rise region
to the west of Xisha Islands as shown in Figure 3c. As shown in Figure 14a, the CBF result
using a 32-element array blurs three intensity distributions of continental rises bounded
in the red box. The angular distance among these features ranges from approximately
2◦ to 4◦. Figure 14b illustrates that DL deconvolution clearly separates three continental
rises and recovers their detailed intensity distribution. The DL deconvolution results using
32 elements provide a similar performance as the CBF results using 96 hydrophones in
Figure 14c.
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Figure 14. A comparison between (a) 32-element conventional beamformed results, (b) its DL
deconvolved results, and (c) 96-element conventional beamformed results measured on 18 June 2021
at 08:28 UTC. Three adjacent features are bounded by red boxes. The gray dashed lines are the
contour lines with depth shown by the black numbers.

More experimental data are shown in Figures A1–A3 in Appendix A to illustrate the
performance of DL deconvolution in experimental data.

4. Discussion

This study proposes a deep learning deconvolution method based on a modified
U-Net structure which is trained using synthetic data following ocean acoustic statistics.
We take advantage of the relatively pervasive circular complex Gaussian random (CCGR)
statistics of acoustic fields in the ocean waveguide caused by random wave propagation
and scattering according to the central limit theorem [43–46]. Acoustic fields that come
from different directions are assumed to be independent with each other. This assumption
is widely being used in various angular resolution enhancement approaches such as the
maximum likelihood (ML) deconvolution method [28] since it effectively represents the
physical characteristics of the acoustic wave in ocean waveguide environments. We used
the synthetic data generated following such assumptions to train the network because
experimental data are insufficient and lack ground truth.
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Similar to those previously proposed deconvolution algorithms such as the R-L al-
gorithm [14] and ML deconvolution [28], the proposed method in this paper acts as a
deconvolution process that extracts the angular distribution of incident plane wave fields
from conventional beamformed intensity images blurred by signal-dependent noise and
the beam pattern. However, DL deconvolution avoids global optimization of likelihood
or other similar discriminant functions which are extremely computationally expensive
but take advantage of a data-driven approach. DL deconvolution provides better perfor-
mance in intensity distribution estimation compared with CBF and the R-L algorithm. It
shows a similar capacity with AM-DCV near array broadside, but slightly worse near array
end-fire. Moreover, DL deconvolution gets rid of the cost-expensive global optimization
process and costs less than 0.1 s on average for a one-dimensional angular intensity vec-
tor consisting of 640 elements, compared with that of more than 20 s for AM-DCV. As a
result, DL deconvolution is more applicable in various imaging applications that require
real-time processing.

There are also many neural network structures [40–42] designed for optical image
deblurring tasks that can be adjusted to acoustic image deconvolution problems. However,
the point spread functions (PSFs) in optical images always act on two dimensions and are
inconsistent at different times. The corresponding networks thus utilize many parameters
to adjust to different and relatively complex PSFs, which increase the parameter number
and reduce the performance of deblurring. The blur effects on optical images also mostly
occur in small areas so that the optical deblurring networks have relatively small receptive
fields [54]. The DL deconvolution network uses a one-dimensional convolution kernel to
deal with the angular effect of conventional beamforming, and adds fusion blocks to better
deal with the intensity. We also enlarge the receptive fields of the neural network by adding
dilated residual blocks.

Notably, DL deconvolution is significantly influenced by the data normalization
method because it recovers the intensity of both features and ambient noise by perceiving
relative changes over the angular domain. Scale normalization methods that change the
relative intensity such as Z-scores and 0–1 normalization thus have worse performance
compared with the method that directly minuses the minimum values. Moreover, the
neural network is only required to be retrained as the beam pattern varies, and hence, can
be applied for a static array aperture structure at a fixed operation frequency for various
SNRs and snapshots.

5. Conclusions

This study introduces a novel deep learning-based computational efficient deconvolu-
tion method using a modified U-Net structure to estimate the angular intensity distribution
of acoustic images from conventional beamforming results. The network is trained on
simulated data generated following the CCGR statistics in ocean acoustic waveguide en-
vironments. Similar to optical image deblurring, the proposed method utilizes the PSF,
which is the beam pattern of conventional beamforming, to deconvolve the blurred angular
intensity distribution. DL deconvolution is shown to provide a significant improvement
in angular resolution over conventional beamforming and the R-L algorithm using both
synthetic and experimental data. It also has a much higher processing speed than methods
requiring global optimization such as AM-DCV. Our method shows a maximum 1200% im-
provement in the NMSE of angular intensity distribution and a maximum 700% reduction
in 3 dB width over CBF using a uniform linear array with 32 hydrophones. The maximum
root mean square error of the estimated DOA is 0.09 degrees. Furthermore, the DL decon-
volved results using a 32-element array show a similar performance as the CBF results
using a 96-element array. The proposed method is applicable for OAWRS or other acoustic
imaging applications that use small aperture arrays and conventional beamforming, and
hence, can potentially reduce the array maintenance costs and deployment difficulties.
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Appendix A

Figure A1. A comparison between (a) 32-element conventional beamformed results, (b) its DL
deconvolved results, and (c) 96-element conventional beamformed results measured on 14 June 2021
at 13:21 UTC.
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Figure A2. A comparison between (a) 32-element conventional beamformed results, (b) its DL
deconvolved results, and (c) 96-element conventional beamformed results measured on 15 June 2021
at 09:37 UTC.
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Figure A3. A comparison between (a) 32-element conventional beamformed results, (b) its DL
deconvolved results, and (c) 96-element conventional beamformed results measured on 17 June 2021
at 18:00 UTC.
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