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Abstract: The demand for freshwater is increasing with population growth and rapid socio-economic
development. It is more and more important for refined irrigation water management to conduct
research on crop evapotranspiration (ET) data with a high spatiotemporal resolution in agricultural
regions. We propose the unmixing–weight ET image fusion model (UWET), which integrates the
advantages of the unmixing method in spatial downscaling and the weight-based method in temporal
prediction to produce daily ET maps with a high spatial resolution. The Landsat-ET and MODIS-ET
datasets for the UWET fusion data are retrieved from Landsat and MODIS images based on the surface
energy balance model. The UWET model considers the effects of crop phenology, precipitation, and
land cover in the process of the ET image fusion. The precision evaluation is conducted on the UWET
results, and the measured ET values are monitored by eddy covariance at the Luancheng station,
with average MAE values of 0.57 mm/day. The image results of UWET show fine spatial details
and capture the dynamic ET changes. The seasonal ET values of winter wheat from the ET map
mainly range from 350 to 660 mm in 2019–2020 and from 300 to 620 mm in 2020–2021. The average
seasonal ET in 2019–2020 is 499.89 mm, and in 2020–2021, it is 459.44 mm. The performance of UWET
is compared with two other fusion models: the Spatial and Temporal Adaptive Reflectance Fusion
Model (STARFM) and the Spatial and Temporal Reflectance Unmixing Model (STRUM). UWET
performs better in the spatial details than the STARFM and is better in the temporal characteristics
than the STRUM. The results indicate that UWET is suitable for generating ET products with a high
spatial–temporal resolution in agricultural regions.

Keywords: crop evapotranspiration; spatiotemporal image fusion; UWET; STARFM; STRUM

1. Introduction

Agriculture is the largest water consumer, and 70% of global freshwater intake is used
for agricultural irrigation [1]. In Asia and the Pacific, with population growth and rapid
socio-economic development, the increasing water use for domestic and industrial use
will further deplete available freshwater resources and threaten agricultural production
and food security [2–4]. The previous extensive and inefficient water resource utilization
methods are no longer suitable for the demand of agricultural production regarding intensi-
fication, standardization, and informatization. Irrigation water management is heading for
the refinement and precision direction [5]. In order to meet the need for fine management
of irrigation water, it is important to generate a high spatial–temporal ET estimation by the
remote sensing inversion [6].

There are two main types of remote sensing data applied to crop ET estimation at a
regional scale: high temporal resolution data and high spatial resolution data. Remote
sensing satellite images with high temporal resolution have been applied to the inversion
of regional crop evapotranspiration, such as the National Oceanic and Atmospheric Ad-
ministration (NOAA), the Moderate-resolution Imaging Spectroradiometer (MODIS), and
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FengYun (FY) series meteorological satellites of China [7,8], and daily ET products are
extracted from these satellite images. However, it is difficult to show more detailed spatial
information due to the low spatial resolution, generally at the kilometer level or hectometer
level [9]. Some remote sensing satellites, such as Landsat, meet the demand of the medium
or high spatial resolution but have a long re-entry period and monitor few daily ET images
during the crop growth period [10–13]. In order to solve the contradiction between the
temporal and spatial resolution, many scholars applied multi-source remote sensing spa-
tiotemporal fusion technology to obtain remote sensing data with a high spatiotemporal
resolution [14–22]. However, there are few studies on the image fusion methods of crop ET
with a high spatiotemporal resolution, so obtaining a high spatiotemporal resolution ET
data is worth studying further.

The spatiotemporal fusion method of remote sensing images has experienced a fast
development in the past decades [23]. There are four main types, including unmixing-
based models [14], weight-based models [15], learning-based models [24], and hybrid
models [18,25]. Therefore, learning-based models need a long training time and lack a
strong theoretical foundation, and these models are not widely applied in the spatiotem-
poral fusion of images [25]. The unmixing-based models by hyperspectral unmixing
technology are based on the linear mixing theory. The Multisensor Multiresolution Tech-
nique (MMT) proposed by Zhukov et al. [14] is the classical unmixing-based model, which
unmixes remote sensing images with a lower spatial resolution by introducing the classi-
fication map with a higher spatial resolution. The unmixing-based models improve the
spatial resolution of images and produce more spatial details by importing the land cover
information, but the unmixed pixel values with the same land cover type are the same in the
different positional points. This may be not consistent with the actual circumstances, and
for example, ET values of winter wheat are different under the different microclimate and
soil conditions [26]. The STARFM algorithm as a weight-based model is the widely-used
data fusion algorithm for Landsat and MODIS images, which predicts fine pixel values
by combining medium- and high-resolution images by weight functions within a moving
window [15,27]. The STARFM also improves the spatial resolution, but the accuracy of
central pixel values decreases if the coarse pixels have a mixture of different land cover
types. The STARFM as the representative of weighted models finely portrays the temporal
changes of long time series images in the fusion proceed, and the unmixing-based model
is less sensitive to the temporal change than the STARFM [18]. Hybrid methods combine
unmixing-based and weight-based methods, such as Flexible Spatiotemporal Data Fusion
(FSDAF) [21], the Spatial and Temporal Reflectance Unmixing Model (STRUM) [18], and
Virtual Image Pair-based Spatial–Temporal Fusion (VIPSTF) [28]. The fused image results
by the hybrid methods have high fusion accuracy, but the above hybrid methods are mostly
applied in the fusion of surface reflectance images.

In recent years, some spatiotemporal fusion methods have been used in the remote
sensing reversion of crop ET [29]. Many scholars obtained daily ET maps at a 30 m spatial
resolution using the STARFM method [30–32]. Cammaller et al. [33] fused MODIS and
Landsat ET maps using the STARFM method and precipitation data and obtained daily
ET maps at a 30 m spatial resolution. Wang et al. [25] proposed a hybrid model, the
classification-based spatiotemporal adaptive fusion model (CSAFM), which unmixes the
coarse pixels of daily ET images using a land cover map and then inputs the unmixed
results into the weight-based process by the STARFM method. The CSAFM considers the
effects of soil moisture and land cover on ET rates but does not include the phenological
periods in the whole fusion process. Many studies do not consider precipitation, phenology,
and land cover during the fusion process. The precipitation, phenology, and land cover
are contributing factors of crop ET, in which the variation of phenology and land cover
influence the remote sensing inversion accuracy of crop ET [34,35], and the precipitation
element is the leading role of crop ET in hydropenic areas [36]. In this paper, we propose
an unmixing–weight ET image fusion model (UWET), which integrates the advantages of
the unmixing method in spatial downscaling and the weight-based method in temporal
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prediction. In UWET, the high-resolution land cover map is used for the unmixing of the
low- and medium-resolution ET images and the selection of the initial similar pixels during
the temporal prediction process. The phenological period and precipitation are used to
determine the base dates of the image pair when the Landsat-ET and MODIS-ET images
are available for the weight-based fusion method.

Winter wheat is an important grain crop in China. The scarcity of water resources is
one of the main constraints to achieving more production of winter wheat, and supplemen-
tary irrigation is needed to ensure the yield. Evapotranspiration (ET) is the main water
consumption method during the growth period of winter wheat. Integrating spatiotempo-
ral characteristics of different satellite data through a multi-source remote sensing fusion
model is an effective way to build a high spatiotemporal resolution ET dataset and has great
significance for guiding irrigation planning. The remainder of this paper is organized into
five sections. Section 2 introduces the data used in this study and information on the study
area. Section 3 introduces the basic algorithms of ET estimation and remote sensing image
fusion and the UWET model, which combines the main features of the unmixing-based and
weight-based fusion methods. Sections 4 and 5 present the results of UWET and compare
them with other fusion models. Section 6 is the conclusion of this paper.

2. Study Area and Data
2.1. Study Area and Ground Test Station

The study area is Luancheng County (37◦47′N–37◦59′N, 114◦28′E–114◦47′E) with an
area of 345 km2 in the southeast of Shijiazhuang City (Figure 1). Luancheng County has
good light conditions and fertile soil. It is flat and has an elevation from 45 m to 66 m. The
climate of Luancheng County is a semi-humid monsoon climate, with an average annual
temperature of 12.8 ◦C and precipitation of 474 mm. Winter wheat is the most widely grown
crop, and it is sown in autumn and harvested in summer. Luancheng County, located
in the piedmont plain of Taihang Mountain, is a representative area with high-intensity
agricultural production of winter wheat in the Northern Plain of China.
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Figure 1. Location of the study area and ground test station.

The meteorological data and measured ET data of the croplands are obtained from the
Luancheng Agroecosystem Experimental Station (37◦53′N, 114◦41′E) [37]. The meteorolog-
ical data include air temperature, wind speed, and precipitation. The measured ET data are
obtained using eddy covariance (EC). The meteorological data and measured ET data are
collected every half hour during the wheat growing season. The daily air temperature and
wind speed are the average values of the data every half hour. The daily precipitation and
measured ET are the accumulated values of the data every half hour.

The network observation, quality control, and storage process of this dataset strictly
abide by the ChinaFLUX data management technology system to ensure data reliability.
The regression slope of turbulent energy (sum of sensible heat flux and latent heat flux) and
available energy (difference of net radiation and soil heat flux) indicates that the closure of
energy balance is 85% and the data quality is high.
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2.2. Satellite Data

The description of the satellite data used in this study is shown in Table 1. Sentinel-2
data products are available online (https://dataspace.copernicus.eu/, accessed on
20 December 2023) and used for the extraction of land cover maps and crop phenology. A
total of fifty-four cloudless Sentinel-2 images during two growing periods of winter wheat
from 5 September 2019 to 21 June 2020 and from 4 September 2020 to 26 June 2021 are used
to generate NDIV time series data for the extraction of land cover maps and crop phenology.
Landsat 8 and Landsat 9 images are available online (https://glovis.usgs.gov/app/, ac-
cessed on 22 December 2023) and used for ET estimation with the medium spatial and low
temporal resolutions. From September 2019 to June 2021, twenty-one cloudless Landsat
images are available, and specific dates are shown in Table 1. The MODIS data are available
online (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 15 December 2023) and
used for ET estimation with the low spatial and high temporal resolutions. Three MODIS
products for the ET inversion include MCD43A3, MOD09GA, and MOD11A1, and are
used for albedo, surface reflectance, and surface temperature, respectively. All the remote
sensing images are reprojected to the UTM 50 N projection coordinate system with the
WGS84 reference ellipsoid and resampled to 500 m resolution by the nearest neighbor
algorithm. Then, the null value of the images is filled using the sliding window, and all the
images are cropped to a uniform size.

Table 1. Description of the satellite datasets.

Dataset Spatial
Resolution

DOY of the Acquisition Time Application
2019 2020 2021

Sentinel-2 10 m 248–365 1–177
248–365 1–177 Land cover map

Crop phenology

Landsat
Landsat 8

30 m 300, 332, 364 31, 47, 63, 79, 95, 111,
143, 287, 351

1, 17, 33, 49, 81, 97,
129, 145, 177

ET estimation
Landsat 9

MODIS
MOD09GA 500 m

274–365 1–176
275–365

1–170MCD43A3 500 m
MOD11A1 1 km

2.3. Land Cover Map

The land cover map is the input data for the UWET model when calculating abun-
dance in an unmixing-based spatial downscaling process and filtrating similar pixels in a
weight-based temporal prediction process. Traditional classification methods use a single
image for land use extraction, which makes it difficult to distinguish vegetation types
accurately. Machine learning algorithms have a wider application in extracting land use
types from remote sensing images [38,39], and the decision tree method is widely used
for distinguishing crop types based on multi-temporal vegetation index images [40,41].
We combine the support vector machine method and the decision tree method for the
extraction of the land cover map from the NDVI time series curve. Figure 2 is the flowchart
for the extraction of land types.

Field survey data were collected during two growing periods of winter wheat using
a GPS in Luancheng County for the training and validation data of classification. GPS
sampling points include 200 for winter wheat, 50 for bare soil, 50 for buildings, 30 for other
vegetation, and 10 for water. Figure 3 shows the spatial distribution of GPS sampling points
in a field survey, in which eighty percent of GPS field data is training data and twenty
percent is validation data.

Support vector machines (SVMs) are non-parametric supervised machine learning
techniques originally designed to solve binary classification problems [39]. Before extract-
ing the winter wheat area, we used the SVM method to extract the initial classification
results from cloudless Sentinel-2 images on 22 May 2020 and 2 May 2021. The initial
classification map including bare soil, buildings, water, and vegetation area is used to

https://dataspace.copernicus.eu/
https://glovis.usgs.gov/app/
https://ladsweb.modaps.eosdis.nasa.gov/
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mask non-vegetation land cover, and then the non-vegetation mask prior to winter wheat
extraction reduces confusion between winter wheat and surrounding surface features.
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After that, the winter wheat is extracted from the vegetation area in the initial clas-
sification map. We use the Normalized Vegetation Index (NDVI) to distinguish winter
wheat from other vegetation. Winter wheat is only one crop from October to June next year
in Luancheng County, which is a northern area, and other vegetation is mostly grass or
trees. From January to May, winter wheat and other vegetation are in the growing stage,
and chlorophyll content ascents, causing higher NDVI values. After May, winter wheat
steps into the late growth stage, and the chlorophyll content of winter wheat descends,
causing NDVI values to decrease. However, from March to June, the chlorophyll content
of grass and trees always ascends, and NDVI values are also higher. Figure 4 shows the
NDVI variation curve during the growing stage of winter wheat. These change features
of NDVI curves are used to differentiate and extract winter wheat from other vegetation
by the decision tree method. All cloudless Sentinel-2 images from 2019 to 2021 are used to
create NDVI images during the wheat growing season. The NDVI images are interpolated
by cubic splines and S-G filtering to obtain smooth NDVI curves.
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Two land cover maps from 2019 to 2020 and from 2020 to 2021 are extracted from
Sentinel-2 images based on the classification method (Figure 5). The producer accuracy
and user accuracy of training data are shown in Table 2, and Table 3 shows the accuracy
of validation data. The values of producer and user accuracy are larger than 80% in
Tables 2 and 3. The overall training accuracy is 93.38%, and the training kappa coefficient
is 0.89. The overall validation accuracy is 94.12%, and the validation kappa coefficient
is 0.90. The values of overall accuracy are larger than 90%, and the kappa coefficient is
larger than 0.80, indicating that the classification results meet the UWET model input data
requirements [42].
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Table 2. The producer and user accuracy of training data.

Bare Soil Building Water Other
Vegetation

Winter
Wheat Total User

Accuracy

Bare soil 34 5 0 0 0 39 87.18%
Building 6 35 0 0 0 41 85.37%

Water 0 0 8 0 0 8 100%
Other vegetation 0 0 0 21 4 25 84.00%

Winter wheat 0 0 0 3 156 159 98.11%
Total 40 40 8 24 160 272

Producer accuracy 85.00% 87.50% 100% 87.50% 97.5% 93.38%
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Table 3. The producer and user accuracy of validation data.

Bare Soil Building Water Other
Vegetation

Winter
Wheat Total User

Accuracy

Bare soil 8 1 0 0 0 9 88.89%
Building 2 9 0 0 0 11 81.82%

Water 0 0 2 0 0 2 100%
Other vegetation 0 0 0 6 1 7 85.71%

Winter wheat 0 0 0 0 39 39 100%
Total 10 10 2 6 40 68

Producer accuracy 80.00% 90.00% 100% 100% 97.50% 94.12%

2.4. Crop Phenology

NDVI time series data have been widely used for phenological characterization [43]. In
this paper, the crop phenology extraction method is based on the mathematical features
of the smooth NDVI curves [44]. Section 2.3 shows the extraction method of the smooth
NDVI curves. Figure 4 shows mathematical feature points and corresponding phenological
features on the smooth NDVI time series curve. In Figure 4, three mathematical feature
points, including D1, D2, and D3, are defined as the minimum point, the maximum point,
and the point with the minimum first derivative when the NDVI value decreases. The
corresponding phenological features of winter wheat are the sowing date (D1), heading
date (D2), and maturity date (D3), which are the important phenological feature points
when the growth state of winter wheat changes significantly. Finally, the growing season of
winter wheat is divided into four parts: the sowing period, elongation period, heading and
milky period, and the maturity and harvest period. The results of the phenological periods
are shown in Table 4.

Table 4. Main phenological periods of winter wheat.

Phenological Period Sowing Period Elongation Period Heading and Milky
Period Maturity and Harvest Period

DOY (2019–2020) 274–291 292–103 104–156 157–172
DOY (2020–2021) 275–298 299–109 110–121 122–171

3. Methods

In this study, Landsat-ET and MODIS-ET data are estimated from Landsat and MODIS
images based on the Surface Energy Balance Algorithm for Land (SEBAL) model. The
UWET (unmixing–weight ET image fusion) model is used to obtain high spatiotemporal
resolution daily ET datasets. Landsat-ET and MODIS-ET results by SEBAL are input data of
the UWET model, which combines the unmixing- and weight-based image fusion methods.

3.1. UWET Description

The UWET model integrates the advantages of the unmixing method in spatial down-
scaling and the weight-based method in temporal prediction (Figure 6). During the
unmixing-based spatial downscaling process, the daily 500 m MODIS-ET images and
the 30 m Landsat-ET on cloudless dates are unmixed into a 10 m resolution using a 10 m
land cover map. The unmixing results are MS ET and LS ET images with a 10 m spatial res-
olution. Before the temporal predicting process, the date selection is conducted beforehand
in the MS ET and LS ET images for MS-LS ET pairs using the phenology and precipitation
data. Then, the MS ET and LS ET images are fused to produce the daily ET maps with a
10 m resolution using the weight-based temporal prediction method. In the UWET model,
the land cover map determines the abundance of each category in the unmixing coarse
pixel process and filters the similar pixels in the weight-based fusion process. The UWET
framework is shown in Figure 6.
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Figure 6. The UWET framework.

UWET includes three parts: (1) the unmixing-based spatial downscaling method,
(2) the date selection of MS-LS ET pairs, and (3) the weight-based temporal prediction
method results.

3.1.1. The Unmixing-Based Spatial Downscaling Method

In the unmixing process of UWET, 30 m Landsat-ET images and 500 m MODIS-ET
images are unmixed using the high-resolution land cover map extracted from 10 m Sentinel-
2 images. Landsat-ET and MODIS-ET images are inversed from Landsat and MODIS
images based on SEBAL. The unmixing-based spatial downscaling method includes three
steps: (1) calculating the abundances of land type within each Landsat or MODIS ET pixel
(Equation (1)), (2) linearly unmixing coarse ET pixels in the Landsat or MODIS resolution
(Equation (2)), and (3) assigning the ET results to the pixels with the land cover map
resolution. The linear unmixing process is shown in Figure 7.
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The linear unmixing theory of coarse pixels assumes that the pixel value of a low
resolution is a linear combination of the pixel values of different land cover types, including
the wheat type. The abundance of different land cover types within the coarse pixel is
calculated as follows:

Ci =
si
S

, (1)

where Ci is the abundance for the i’th land cover type; si is the area of class i within the
coarse pixel; S is the area of the coarse pixel; and i is the land cover class.

The linear unmixing method is conducted in a sliding window of n coarse pixels:

Y =

ETcoarse1
...

ETcoarsen

 = Ax + σ =

C1
1 · · · Ck

1
...

C1
n · · · Ck

n


ET1

...
ETk

+

σ1
...

σn

, (2)

where Y is [n × 1] and contains the ET values of each coarse pixel in the sliding window;
x is a [k × 1] column vector that contains the fine pixel ET results of k land cover types;
A is a [n × k] abundance matrix; σ is the residual, which represents the system errors
encountered during the unmixing process, primarily sensor and classification errors for
planting structures; n is the number of the coarse pixels in the siding window; and k is the
number of land cover types.

Equation (2) is solved by minimizing the residual σ, and the following is the
objective function:

Dmin =
1
n

[
σ2

1 + σ2
2 + σ2

3 + · · ·+ σ2
n

]
, (3)

The setting of constraint boundaries is vital to the solution accuracy of Equation (2).
In order to ensure the rationality of the results, the minimum and maximum values of the
land cover class are used as the constraint boundary.

Mini ≦ Hi ≦ min(Max i, 10), (4)

where Mini is the minimum of class i; Maxi is the maximum of class i; and Hi is the solution
result of class i in the central pixel of the sliding window.

According to Equations (1)–(4), the fine pixel ET values of winter wheat are acquired.
Then, the ET results are assigned to every fine pixel in the winter wheat region with a 10 m
spatial resolution. Finally, the MS and LS ET images are obtained by unmixing, respectively,
the MODIS-ET and Landsat-ET images.

3.1.2. The Date Selection of the MS-LS Image Pairs

The unmixed MS ET results are daily, and the LS ET results are not daily and happen
on cloudless dates. Before conducting the weight-based temporal prediction, we match
MS ET with LS ET on cloudless dates and select the prediction dates for every MS-LS ET
pair. The base date selection of MS-LS ET image pairs is based on the phenological period,
the temporal distribution of rainfall, and the LS ET image dates without cloud cover. The
MS-LS ET image pairs on the base dates are the inputs for the weight-based temporal
prediction process of the UWET model.

It is the basic matching principle that the base dates of MS-LS ET pairs and corre-
sponding prediction dates exist in the same phenology period and the same rainfall cycle.
Figure 8 is taken as an example of the matching principle. The whole winter wheat growth
season is from DOY 274 to 176 in 2019–2020 (Figure 8). In the upper section of Figure 8,
the base dates are red lines, and the corresponding prediction dates are on the gray boxes
surrounding the red lines. During the sowing period, there is no available cloudless LS
ET image, and the base date DOY 300 is selected for the corresponding prediction dates
from 274 to 310. During the elongation period from DOY 292 to 103 next year, the available
cloudless LS ET images are continuous and uniform, and the second to eighth base dates
are selected for the corresponding prediction dates based on the temporal distribution of
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rainfall and cloudless LS ET image dates. There are two cloudless LS ET images on DOY
111 and 143 during the heading and milky period. DOY 123 is just at the beginning date
of the next rainfall, and the ninth base date, DOY 111, is selected for the corresponding
prediction dates from DOY 105 to 123. During the maturity and harvest period, heavy
rainfall occurs at the same time, and the tenth base date, DOY 143, is selected for the
corresponding prediction dates from DOY 124 to 176.
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3.1.3. The Weight-Based Temporal Prediction Method

By the weight-based image fusion method, we predict ET images on the dates without
LS ET images in order to improve the unmixed MS-ET results and acquire daily high
spatiotemporal ET results. In Section 3.1.1, before the temporal prediction, Landsat-ET
and MODIS-ET images are spatially downscaled to the 10 m spatial resolution by the
unmixing-based method to obtain the LS and MS ET results. In Section 3.1.2, the phenology
and precipitation data are applied to determine the base dates tk of LS-MS ET image pairs
and are used for high spatial resolution ET images at the prediction dates t0. Figure 9 is
the weight-based temporal prediction process for daily ET images including 3 steps. In
Figure 9, the symbols “+” are central pixels, circles similar pixels, and numbers 1–4 the
different land types.
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1⃝ The first step is filtering the similar pixel from the LS ET image on the base date tk.
The filtering method of similar pixels includes the initial filtering using the land cover map
and the ultimate filtering from the thresholds of the difference between the central and
neighboring pixels. The 10 m land cover map from Sentinel-2 images is used to search initial
similar pixels by selecting the same land cover class pixels within the moving window.
These ultimate filtering similar pixels are filtered using the threshold information from the
initial similar pixels.

2⃝ The weight of the similar pixel to the central pixel is calculated from the LS ET
image on the base date tk and two MS ET images on the base date tk and prediction date t0.
The weight information is determined by the spatiotemporal information and ET values of
neighbor pixels.

3⃝ The ET images on the prediction dates t0 are predicted using the weight-based
image fusion method (Equation (5)), and 10 m daily ET maps are finally acquired.

The L-S images on the date t0 are predicted as follows:

LS(xcentral , ycentral , t0)= ∑n
i=1 ∑n

j=1 Wij ×
(

LS
(

xi, yj, tk
)
− MS

(
xi, yj, tk

)
+ MS

(
xi, yj, t0

))
(5)

where the (xcentral, ycentral) coordinate is the central pixel location of the sliding window, the
(xi, yj) coordinate is the pixel location of the coregistered LS and MS ET images within the
window, n is the size of the sliding window, tk is the base date for both MS and LS data, t0
is the prediction date, and the Wij is the weight function, which is assigned to each similar
neighbor based on the spectral difference, the temporal difference, and the spatial distance.

3.2. SEBAL Model

The Surface Energy Balance Algorithm for Land (SEBAL) model algorithm is the basic
model for crop ET estimation. The SEBAL model predicts ET and other energy exchanges
based on energy balance using remote sensing images with visible, near-infrared, and
thermal infrared bands [45,46]. ET is calculated for each pixel of the image according to the
surface energy balance formula as follows:

λET = Rn − G − H, (6)

where Rn is the net radiation flux, G is the soil heat flux, H is the sensible heat flux, and
λET is the latent heat flux (W·m−2).

The net radiation flux (Rn) is estimated using albedo, transmittance, and long wave
emission. Albedo is calculated by integrating surface reflectivity from all bands, and
weighting coefficients are applied to each band for albedo estimation [45,47]. The soil heat
flux (G) is calculated from the parameters of the NDVI and the net radiation flux. The
sensible heat flux (H) is calculated from several factors: surface temperature, wind speed,
surface roughness, and surface-to-air temperature differences [45]. In order to account
for the effects generated by surface heating, the Monin–Obukhov theory is applied in the
iterative process for computing H. In this paper, the surface temperature is estimated using
the mono-window algorithm [48].

The 24 h ET images on the cloudless dates are calculated by assuming that the value
for the evaporation rate Λ is constant over the full 24 h period [45] as follows:

ETimage−cloudless =
86400Λ × (Rn24 − G24)

λ
, (7)

where Λ is the instantaneous evaporation rate, λ is the latent heat of vaporization (MJ·kg−1),
Rn24 is the daily net radiation flux, and G24 is the daily soil heat flux. Rn24 and G24 are
computed by integrating Rn and G for 24 h.

Crop reference ET is calculated using the FAO Penman–Monteith method [49], and
the ratio of ET images from MODIS to crop reference ET on a cloudless day is obtained. ET
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images on the cloud cover dates are estimated by applying the ratio to the crop reference
ET on cloudy dates. ETimage-cloud is calculated as follows:

ETimage−cloud = ET0−cloud ×
ETimage−cloudless

ET0−cloudless
(8)

where ET0 is the crop reference ET and ET24 is the 24 h ET calculated using the MODIS data.

4. Results
4.1. Evaluation of Daily ET Time Series by the UWET Model

The daily ET time series during the growth stage of winter wheat are acquired from
Landsat and MODIS images by the UWET model. Figure 10 shows the wheat ET variation
trend in the different phenological periods and rainfall during one growth stage. Figure 11
presents the comparison of measured ET, Landsat-ET, and UWET at the Luancheng station.
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In Figure 10, the change in daily UWIF-ET during the growing season is consistent
with the phenological characteristics of winter wheat and daily precipitation. The fitted
line of the daily ET time series shows the shape of “M” with two peaks. The first ET
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peak appears in the early stage of the elongation period. In the following period, with the
declining temperature and rainfall, daily ET also declines. The second ET peak appears in
the early stage of the heading and milky period when the winter wheat becomes vigorous
with the rising temperature and rainfall. During the sowing and harvest periods, daily ET
does not rise with the rising rainfall because winter wheat may not emerge in the sowing
period and stops growing in the harvest period. In Figure 10, it is also found that the
precipitation has a delayed effect on ET in the elongation period, and a rapid increase in
daily ET occurs after the peak of precipitation.

Figure 11 shows that the daily UWET results near the base dates of the input Landsat-
ET are closer to the measured ET results than the base dates. The base date of Landsat-ET
in the orange oval is 31 January 2020 (DOY 31) and 16 February 2020 (DOY 47), and the
base date of Landsat-ET in the red oval is 19 May 2020 (DOY 143). The predicted dates in
the orange oval are closer to the base dates for the prediction than the ones in the red oval.
The daily ET values predicted by the UWET model in the orange oval are also closer to
the measured ET than those in the red oval. This phenomenon indicates that the accuracy
of prediction results of the UWET model is affected by the sparsity of available Landsat
images. The prediction dates are closer to the base date, and the prediction results are
more accurate.

4.2. Evaluation of ET Spatial Patterns by the UWET Model
4.2.1. The Spatial Pattern Comparison between UWET and Landsat-ET

In Table 5 and Figure 12, two fields (Field 1 and Field 2) are selected for the spatial
pattern comparison between the UWET and Landsat-ET results on 28 November 2019,
20 April 2020, and 22 March 2020. The coordinate range of Field 1 is from 37◦52′2.43′′N,
114◦42′48.48′′E to 37◦51′24.72′′N, 114◦43′23.23′′E, and Field 2 is from 37◦54′32.72′′N,
114◦43′20.83′′E to 37◦53′59.63′′N,114◦44′2.25′′E. Table 5 presents three quality indicators for
the spatial pattern comparison, including correlation coefficients (R), the Root Mean Square
Error (RMSE), and the Mean Absolute Error (MAE) indicators. In Figure 12, the UWET
results on three dates show more details than Landsat-ET and are also consistent with the
corresponding land cover and Landsat-ET images in the spatial patterns. It is found in
Figure 12 and Table 5 that the UWET results on 20 April 2020 and 22 March 2020 agree
better with Landsat-ET than on 28 November 2018. The reason leading to this phenomenon
may be the phenological difference between the prediction and base date, in which the
prediction date of 28 November 2019 is in the middle elongation period with most wheat
already emerging, but the base date of 27 October 2019 for this prediction date is in the
early elongation period with more bare soil. It is also found in Table 5 that on two dates of
20 April 2020 and 22 May 2020, the MAE values in Field 2 are lower than in Field 1, which
means that the UWET results agree better with Landsat-ET than in Field 1. The reason
may be that in spring and summer, Field 1 has more bare soil and other vegetation than
Field 2, and the bare soil and other vegetation may be a disturbance in the fusion process.
However, due to low temperatures in winter, ET values on 28 November 2019 are low, so
the MAE values have little difference between Field 1 and Field 2.

Table 5. Quality indicators of UWET and Landsat-ET at a regional scale.

Indicator 28 November 2019 20 April 2020 22 May 2020

Filed1
R 0.31 0.78 0.87

RMSE (mm/d) 0.50 mm/day 1.52 mm/day 1.69 mm/day
MAE (mm/d) 0.33 mm/day 1.33 mm/day 1.58 mm/day

Filed2
R 0.37 0.74 0.80

RMSE (mm/d) 1.06 mm/day 0.97 mm/day 1.36 mm/day
MAE (mm/d) 0.89 mm/day 0.74 mm/day 1.07 mm/day
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At the winter wheat points 1⃝ in Figure 12a,d,e, the winter wheat ET value of
UWET (Figure 12e) is different from the surrounding winter wheat pixels, but Landsat-ET
(Figure 12d) is the same. This phenomenon indicates that UWET can capture the different
growth and development of winter wheat. At the building points 2⃝, the ET values of
UWET (Figure 12g) are near zero, but the values of Landsat-ET (Figure 12f) are near six.
The ET map of UWET truly reflects the spatial distribution of ET on the ground. At the bare
soil points 3⃝, the bare soil ET value of UWET (Figure 12l,n) is lower than the surrounding
vegetation pixels, but Landsat-ET (Figure 12k,m) is as same as the surrounding vegetation
pixels. Therefore, the UWET method exhibits the characteristics of bare soil, while the
Landsat-ET map does not due to the mixed pixels. On the whole, UWET shows more
spatial details than Landsat-ET.

4.2.2. The ET Spatial Distribution by UWET

Figure 13 shows the spatial distribution of the accumulated ET. The accumulated ET of
winter wheat between 2019 and 2020 (Figure 13a) mainly ranges from 350 to 660 mm, with
an average of 499.89 mm, and the accumulated ET values in the northern and southern
regions are higher than in other regions. The accumulated ET of winter wheat between 2020
and 2021 (Figure 13b) mainly ranges from 300 to 620 mm, with an average of 459.44 mm,
and the accumulated ET values in the southern and western regions are higher than in
other regions. The accumulated ET during 2019–2020 is higher than during 2020–2021,
and the reason may be the accumulated precipitation during 2019–2020 with an average of
301 mm, which is higher than in 2020–2021 with an average of 206 mm.
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4.3. UWET Accuracy Evaluation by the Situ Station Data

Figure 14 shows that the MODIS-ET and UWET results are compared with the daily
measured ET at the Luahncheng station (Figure 1). In Figure 14, the dotted lines are 1:1
lines, and the red lines are fitted lines. The correlation coefficients (R), the Root Mean Square
Error (RMSE), and the Mean Absolute Error (MAE) are used to evaluate the accuracy of
the UWET model. The UWET results are compared with the measured ET, with average R,
RMSE, and MAE values of 0.93, 0.76 mm/day, and 0.57 mm/day. The MODIS-ET results
are compared with the measured ET, with average R, RMSE, and MAE values of 0.82,
1.18 mm/day, and 0.84 mm/day. The performance of UWET is better than MODIS-ET in
accuracy evaluation.
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5. Discussion

There are many image fusion models, but a few models are used for ET mapping.
Landsat and MODIS are mostly selected for the input data in the image fusion models.
The unmixing-based STRUM model directly unmixes the residual image as the difference
between the two MODIS images and adds the unmixed residual image to the Landsat
image on the base date, which offers more spatial features [9]. The weight-based STARFM
model blends Landsat and MODIS surface reflectance and applies a weight function to
each similar neighbor based on the spectral difference, the temporal difference, and the
spatial distance, which incorporates better the temporal signatures of MODIS [49]. The
UWET model combines the spatial feature extraction method of the unmixing-based model
and the temporal signature acquisition means of the weight-based model. In order to
predict crop ET more properly, the land cover map, phenology, and precipitation are also
taken into consideration in UWET. The following is a discussion about ET spatiotemporal
characteristics by the STARFM, STRUM and UWET models.



Remote Sens. 2024, 16, 2414 16 of 20

5.1. Comparison of ET Spatial Characteristics by Three Fusion Models

One piece of wheat field (Field 2 in Section 4.2.1) is selected for the evaluation of
spatial characteristics by the STARFM, STRUM, and UWET models on 20 May 2020. The
wheat field includes 100 × 106 10 m pixels, where the land cover types are mostly the
croplands of winter wheat or other vegetation. Figure 15 offers land cover maps and ET
maps, including Landsat-ET, MODIS-ET, STARFM, STRUM, and UWET. Landsat-ET and
MODIS-ET maps are extracted from Landsat or MODIS images by the crop ET estimation
model, and the last three ET maps are inversed, respectively, by the STARFM, STRUM, and
UWET. It is found that the MODIS-ET map is coarser than the other four ET maps due to
the low spatial resolution of MODIS images. The STRUM-ET and UWET maps with more
spatial details are finer than the STARFM-ET maps by comparing the details in the blue
oval of Figure 15a,c–f. The reason for this phenomenon may be that the coarse ET maps are
unmixed using the fine land cover map in the fusing process of the unmixing-based STRUM
and UWET models. By comparing the details in the blue oval of Figure 15e,f, the STRUM-
ET maps have the same fine spatial features as the UWET maps, but the STRUM-ET values
in the southern tip of the bare soil are higher than that of UWET. The reason leading to this
phenomenon may be that STRUM-ET maps are unmixed improperly from the surrounding
vegetation by the STRUM model, but the UWET model incorporates the temporal weight
after the unmixing step, which makes the UWET values closer to the actual ET values of the
land cover type. On the whole, the unmixing-based models, including UWET and STRUM,
perform better in the spatial resolution than the weight-based STARFM.
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The R, RMSE, and MAE indicators of daily ET images by the three ET fusion models
are calculated according to the comparison with the Landsat-ET map in the field of Figure 15
on 22 May 2020. Table 6 shows the indicators of the three methods in the whole region
and wheat planting region. In the whole region, the R indicator performance by the three
methods is similar and good, and the RMSE and MAE indicators are larger than a millimeter
due to the low spatial resolution of MODIS images. In the wheat region, the R indicator of
the UWET and STRUM performs better than the STARFM. The RMSE and MAE indicators
by the three models in the wheat region are lower than those in the whole region.

Table 6. Quality indicators of the three methods at a regional scale and the wheat region.

Region Indicators STARFM STRUM UWET

The whole region
R 0.83 0.80 0.80

RMSE (mm/d) 1.18 1.41 1.36
MAE (mm/d) 0.94 1.13 1.07

The Wheat region
R 0.31 0.62 0.60

RMSE (mm/d) 0.83 0.87 0.85
MAE (mm/d) 0.68 0.77 0.75
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5.2. Comparison of ET Temporal Characteristics by the Three Fusion Models

Figure 16 shows the temporal variation lines of the average daily ET value in the
wheat region from the three models (STARFM, STRUM, and UWET). It is found that
the daily ET results of the three fusion models capture the dynamic changes in the wheat
phenological characteristics of winter wheat. The time variation characteristics of the UWET
and STARFM are similar. However, the STRUM-ET values have little fluctuation compared
with the other two methods in the red dotted ova (Figure 16). Although the STRUM
acquires a high spatial resolution by unmixing the difference values between the base and
prediction MODIS-ET, it is difficult to set effective constraints for these difference values on
the phenology and time, which leads to little fluctuation in the temporal characteristics.
The STARFM and UWET incorporate the temporal weight in the fusion process and make
the ET results match better with the temporal characteristics of winter wheat than that of
the STRUM. On the whole, the weight-based models, including the UWET and STARFM,
perform better in the temporal characteristics than the unmixing-based STRUM.
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6. Conclusions

This paper proposes the UWET method to fuse the ET images of different spatiotem-
poral resolutions, which integrates the advantages of the unmixing method in spatial
downscaling and the weight-based method in temporal prediction. During the fusion
process of UWET, the land cover map is introduced to the unmixing of coarse pixels and
filtration of similar pixels, and the crop phenology and precipitation are applied to deter-
mine the base and prediction dates of LS-MS ET image pairs, which are different from other
unmixing or weight-based models. The UWET model is capable of capturing temporal
changes in crop ET and phenological characteristics throughout the whole growing season
and improves the spatial resolution to 10 m.
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UWET is applied to the Landsat-ET and MODIS-ET fusion process, resulting in a daily
ET fusion dataset with a spatial resolution of 10 m for Luancheng County. The performance
of UWET for winter wheat is validated with the measured ET with R, RMSE, and MAE
values of 0.78, 1.46 mm/day, and 0.97 mm/day, respectively. The accumulated ET of winter
wheat in 2019–2020 mainly ranges from 350 to 660 mm, with an average of 499.89 mm, and
the accumulated ET of winter wheat in 2020–2021 mainly ranges from 300 to 620 mm, with
an average of 459.44 mm Compared with the Landsat-ET results, the UWET results are
consistent in spatial details at a regional scale and the wheat region. The unmixing-based
models, including UWET and the STRUM, perform better in the spatial characteristics
than only the weight-based STARFM. The weight-based models, including UWET and
the STARFM, perform better in the temporal characteristics than only the unmixing-based
STRUM. During the growing season, the change in daily UWET is consistent with the
phenological characteristics of winter wheat. UWET performance in various situations will
be discussed in further research in order to facilitate applications in other study areas with
more complex surface conditions.
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