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Abstract: Observational data on ocean subsurface temperature and salinity are patently insufficient be-
cause in situ observations are complex and costly, while satellite remote-sensed measurements are
abundant but mainly focus on sea surface data. To make up for the ocean interior data shortage and
entirely use the abundant satellite data, we developed a data-driven deep learning model named
Convformer to reconstruct ocean subsurface temperature and salinity fields from satellite-observed
sea surface data. Convformer is designed by deeply optimizing Vision Transformer and ConvL-
STM, consisting of alternating residual connections between multiple temporal and spatial attention
blocks. The input variables consist of sea surface temperature (SST), sea surface salinity (SSS), sea
surface height (SSH), and sea surface wind (SSW). Our results demonstrate that Convformer ex-
hibits superior performance in estimating the temperature-salinity structure of the tropical Pacific
Ocean. The all-depth average root mean square error (RMSE) of the reconstructed subsurface tem-
perature (ST)/subsurface salinity (SS) is 0.353 °C/0.0695 PSU, with correlation coefficients (R?) of
0.98663/0.99971. In the critical thermocline, although the root mean square errors of ST and SS reach
0.85 °C and 0.121 PSU, respectively, they remain smaller compared to other models. Furthermore,
we assessed Convformer’s performance from various perspectives. Notably, we also delved into
the potential of Convformer to extract physical and dynamic information from a model mechanism
perspective. Our study offers a practical approach to reconstructing the subsurface temperature and
salinity fields from satellite-observed sea surface data.

Keywords: deep learning; ocean remote sensing; subsurface temperature (ST); subsurface salinity
(SS); Transformer; physics

1. Introduction

Accurate monitoring of ocean conditions is crucial for a comprehensive understanding
of Earth’s system dynamics, climate change, and marine ecosystems [1,2]. Ocean temper-
ature and salinity are crucial parameters regulating heat transfer between the ocean and
the atmosphere [3,4]. They are also closely associated with critical ocean—atmosphere
thermal processes, including oceanic heatwaves [5,6], thermocline formation [7], El Nifio
evolution [8,9], and deep—water formation [10,11]. Moreover, research on ocean subsurface
temperature and salinity fields is of great significance for understanding oceanic dynamic
processes [12-14]. Therefore, accurately estimating the ocean subsurface temperature (ST)
and the subsurface salinity (SS) fields is essential for understanding marine ecosystems,
ocean dynamics, and climate change.
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Observational data regarding subsurface temperature and salinity remains extremely
limited because of the difficulty and high cost of the in situ observations [15]. Since
2004, the implementation of the Argo program has significantly enhanced global ocean
observations [16]. However, its observation density, distribution, and spatial and temporal
resolution need to be improved urgently [17]. In summary, we still need help accessing
high-quality ocean subsurface temperature and salinity information directly.

Various remote sensing platforms and sensors have been used for ocean monitoring
over the past 40 years [18], continuously providing products of many ocean parameters.
Relative to the observational data, satellite-derived ocean data are copious, continuous,
and have extensive spatial coverage. Although satellite observations have been limited
to the ocean’s surface, the parameters in the ocean’s interior are dynamically related to
those at the surface [19,20]. Many subsurface processes can be seen on the surface, such
as internal waves, mixed layer depth, and eddies [21]. These connections between the
surface and subsurface enable us to extract subsurface and deep ocean data from surface
information [22-24].

Previous studies have explored two primary methods for reconstructing subsurface
information using sea surface data: statistical and dynamic [25]. The typical dynamical
methods are highly complex and only compelling in specific regions and conditions [26-28].
Statistical methods are more practical and flexible than dynamical approaches, making them
applicable across a broader range of scenarios in the era of extensive marine data [29-31].
Simple statistical methods have limited accuracy in construction due to their inability to
incorporate dynamical equations and spatiotemporal characteristics of ocean data [32-35].
In contrast, machine learning models can automatically and directly extract features and
relations from data, achieving remarkable performance [36,37]. Recently, various machine
learning techniques have been employed to estimate ocean interior structures, including
support vector machines, random forests [38], self-organizing maps [39], artificial neural
networks [40], and XGBoost 1.5.2 [41].

Furthermore, deep learning networks are characterized by deeper hidden layers and
larger architectures, enabling them to capture more intricate features and have greater
capacities. Deep learning techniques have recently been utilized to estimate subsurface
variables over large oceanic areas. For example, Song et al. [42] utilized the convolutional
long short-term memory network (ConvLSTM) to construct the subsurface temperature
and salinity fields. Xie et al. [43] combined the U-net deep learning model and attention
mechanism to reconstruct a high-resolution subsurface temperature field in the South
China Sea. Mao et al. [44] formulated a model based on Dual Path Convolutional Neural
Networks (DP-CNNSs) to reconstruct ST and SS. Chen et al. [45] used long short-term
memory network (LSTM) and Gaussian process regression (GPR) methods to estimate the
temperature and salinity profiles in the northwest Pacific Ocean.

These approaches effectively capture nonlinear relations between surface and sub-
surface variables, indicating deep learning’s satisfactory performance in reconstructing
subsurface temperature and salinity fields from remote sensing observations. However,
several issues remain:

1. Most studies’ basic models are limited to CNN, ConvLSTM, and U-net. These models
share the common feature of using CNN as the primary spatial feature extraction
method. However, the limitations of convolutional layers, such as local receptive and
fixed receptive fields, lead to each neuron’s limited ability to consider information
from a confined input area. This incapacity to capture longer distance dependen-
cies between elements constrains the network’s performance in processing global
contextual information.

2. Most studies employ LSTM as the primary method for learning temporal information.
However, LSTM still has not entirely resolved the vanishing gradient problem inherent
in RNN, making it difficult to effectively capture long-range sequence dependencies,
especially when dealing with global temporal information. Additionally, LSTM
architectures pose challenges for parallelization.
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3. Few studies have delved deeply into the physical processes underlying ocean dynam-
ics. Some research endeavors to tackle this issue by incorporating multi-factor inputs,
yet a thorough elaboration of the modeling mechanism often needs to be improved.

In recent years, the field of Natural Language Processing (NLP) has experienced a
revolutionary transformation with the emergence of a self-attention-based method, Trans-
former [46]. In contrast to traditional CNN and LSTM, the self-attention mechanism
effectively captures local and global long-range dependencies by directly comparing fea-
ture activations across all temporal and spatial positions. This exceeds the receptive field
range of conventional convolutional filters, enabling a more comprehensive capture of
correlated information within input sequences. Moreover, the self-attention mechanism
effectively addresses the gradient vanishing and explosion issue in LSTM while exhibiting
robust parallelization capabilities. Subsequently, Dosovitskiy et al. [47] proposed the Vision
Transformer (ViT), which segments images into small patches, converts these patches into
sequences, and then utilizes self-attention mechanisms to capture global information within
the image. Building upon the abovementioned research, we propose a reconstruction archi-
tecture for subsurface temperature and salinity fields primarily consisting of alternating
residual connections between multiple temporal and spatial attention blocks. The model is
named Convformer, based on a deep optimization of ConvLSTM and Vision Transformer
integration. The specific optimizations and modifications are detailed as follows:

1. Compared to CNN and LSTM, we utilized the Transformer’s attention mechanism
to extract spatiotemporal information by residually connecting spatial and temporal
attention blocks. This facilitates a more comprehensive and accurate capture of
spatiotemporal information on a global scale, compensating for the omission of global
information from previous work.

2. The Transformer architecture inherently lacks a concept of position or sequence, neces-
sitating the introduction of positional encoding to address this challenge. Traditional
positional encoding inadequately addresses this challenge. Consequently, we employ
ConvLSTM as the positional encoding layer for Convformer. ConvLSTM consid-
ers positional information in a sequential input manner, thereby employing it as a
positional encoding layer facilitates effective learning of sequential spatiotemporal
information. Additionally, given that the Transformer requires a large amount of data,
CNN exhibits strong learning capabilities even with relatively small training sets due
to its robust inductive bias. Hence, in scenarios where data is limited, employing
ConvLSTM as the positional encoding layer in the model can also effectively extract
spatiotemporal features at an initial stage.

3. The Vision Transformer primarily focuses on extracting spatial attention by comput-
ing attention among patches, which overlooks the internal correlations within each
patch. To address this limitation, we introduce a local spatial attention mechanism
that computes attention among the elements within each patch, thereby enabling a
comprehensive extraction of spatial features.

4. By discussing the potential connection between residual connections and differential
equations, we elucidate the Convformer’s ability to capture the physical processes of
ocean dynamics from a modeling mechanism.

2. Study Area and Data
2.1. Study Area

The oceans cover 97% of the total water volume on Earth and constitute 71% of the
Earth’s surface area. The Pacific Ocean, the world’s largest and deepest ocean, boasts the
largest number of marginal seas and islands and spans across Asia, Oceania, Antarctica,
and North and South America. The vast expanse of the Pacific Ocean comprises a complex
and expansive aquatic system. To validate the proposed reconstruction method, we se-
lected the central Pacific region (30°5-30°N, 160°E-120°W) as the study area, as depicted in
Figure 1. This region features vast oceanic expanses and significant temperature differences,
encompassing multiple oceanic current zones such as the equatorial warm current and
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equatorial countercurrent. It exhibits typical ocean-atmosphere interaction phenomena,
including the El Nifio-Southern Oscillation (ENSO). By studying this area, we can effec-
tively verify the feasibility and effectiveness of the proposed method for reconstructing
oceanic elements.
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Figure 1. Schematic diagram and partitioning of the study area. The study area is located in the
central Pacific region (160°E-120°W, 30°S-30°N); the Argo buoys No. 5905969, 6902701, and 6902909
are used for vertical profiles verification.

2.2. Data

In this study, we utilized two sources of ocean observational data: sea surface data
obtained from satellite observations (SSS, SST, SSH, and SSW), along with gridded Argo
data. Sea Surface Temperature (SST) data were obtained from the National Oceanic and
Atmospheric Administration (NOAA) [48]. The dataset has provided information at a spatial
resolution of 1° x 1° and a temporal resolution of 1 day. Sea Surface Salinity (SSS) data were
sourced from the European Space Agency’s Soil Moisture and Ocean Salinity project (SMOS),
with a spatial resolution of 0.25° x 0.25° and a temporal resolution of 1 month [49]. Sea Surface
Height (SSH) data were obtained from the Archiving, Validation, and Interpretation of
Satellite Oceanographic datasets (AVISO), which utilizes altimeters with a spatial resolution
of 0.25° x 0.25° and a temporal resolution of 7 days [50]. Sea surface wind (SSW) data were
derived from the Cross-Calibration Multi-Platform Project (CCMP) with a spatial resolution
of 0.25° x 0.25° and a temporal resolution of 1 month [51]. Subsurface Temperature (ST)
and Subsurface Salinity (SS) were derived from the BOA_Argo data obtained from the
China Argo Real-Time Data Center (CARDC), which provides a monthly globally gridded
dataset of temperature and salinity profiles at 58 standard depths with a spatial resolution
of 1° x 1° [52]. Specifically, we utilized training data from January 2004 through December
2017, randomly selecting 90% of the data for training and reserving the remaining 10%
for validation. Finally, we evaluated the performance of the models using data from 2018,
assessing performance based on the root mean square error (RMSE) and the correlation
coefficient (R?). To ensure that the input data are at the same spatiotemporal scale for
learning and discovering data patterns, we processed all the above data into monthly
averages and downsampled the spatial resolution of different datasets to a uniform 1° x 1°
resolution. This operation helps to ensure that the input data have consistent and accurate
spatiotemporal resolution. Given that the training data belong to different scales, it is
necessary to normalize all data to the range [0, 1] for consistency before feeding them into
the neural network.
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3. Methods
3.1. ConvLSTM

ConvLSTM (Convolutional Long Short-Term Memory) [53] is a type of recurrent neural
network (RNN) designed specifically for spatiotemporal prediction tasks. Compared to
traditional Long Short-Term Memory (LSTM) models, ConvLSTM introduces convolutional
structures in both the input-to-state and state-to-state transitions, which allows the input
information to be treated as a two-dimensional matrix, thus enabling a more flexible
extraction of spatial information from the matrix. The critical equations of ConvLSTM are
as follows. In these equations, X; represents the input at the current time step, H; is hidden
state, H;_1 is the hidden state from the previous time step, i;, f;, C; and o; are the activation
values of the input gate, forget gate, cell state update gate, and output gate, respectively.
W and b denote the weights and biases, with subscripts indicating their relationships
with inputs and hidden states. ¢ represents the sigmoid activation function, ® denotes
the Hadamard product, tanh represents the hyperbolic tangent activation function, and
* denotes the convolution operator.

ir = 0(Wyi x Xp + Wy x Hp 1 + Wi © Crq + by) 1)

ft =0 (Wyp* X¢ + Wyp* Hp1 + Wep © Croq + by) ()
C = ft OC_ 1+t ® tanh(ch * Xt + Whex Hi_1 + bc) (3)
0y = U(on * Xt + Wi x Hp 1+ Weo © Gy + bo) (4)
Hi =00 tanh(Ct) (5)

3.2. Self-Attention

The self-attention mechanism allows models to flexibly attend to information from
different positions when processing sequential data. Its computational process can be
represented by the following formula, where Q is the query matrix, K is the key matrix, V
is the value matrix, and dj is the dimensionality of the keys. The self-attention mechanism
calculates the dot product of the query matrix with all key matrices, divides by /dy,
and applies the softmax function to obtain the weights of the values. Finally, the attention
weights obtained from the softmax operation are used to compute a weighted sum of the
value vectors, generating an output matrix.

QK™
Vi

Attention(Q, K, V) = softmax(

4 (6)

3.3. Multi-Head Attention

The Multi-Head Attention mechanism extends the attention mechanism by capturing
information from different relations using multiple independent attention heads. This
approach enables the model to encompass a broader range of relationships. Each attention
head learns specific linear transformations of queries, keys, and values. Subsequently,
the outputs of these heads are concatenated and undergo a linear transformation. This
process helps the model to capture different relationships and features in the sequence more
comprehensively. The computation process of Multi-Head Attention is as follows: Firstly,
independent linear transformations are applied to the given query matrix Q, key matrix K,
and value matrix V, resulting in multi-head query matrices Q;, multi-head key matrices K;
and multi-head value matrices V;, as shown in Equations (7), (8), and (9) respectively. Then,
independently compute attention weights and outputs for each attention head as shown
in Equation (10). Finally, concatenate the outputs of all attention heads into a large matrix
and undergo a linear transformation as shown in Equation (11), where head; represents the
output of the i-th attention head, Concat denotes the concatenation operation, and W, is
the linear transformation matrix for the output.



Remote Sens. 2024, 16, 2422 6 of 27

Qi=Q Wpi ()

Ki = K- Wg; 8)

Vi=V- Wy )

Attention(Q;, K;, V;) = softmax( QiKiT)Vi (10)
Vg

MultiHead(Q, K, V) = Concat(heady,..., head,)W, (11)

3.4. Convformer
3.4.1. Model Architeure

Our model overview and flowchart are depicted in Figure 2. The model consists
of positional encoding, patch embedding, and an encoder, connected recursively block
by block, with layer-to-layer connections within each block. The inputs are processed
layer by layer to produce the final forecast. The input is fed into the ConvLSTM block to
encode the positional information, enabling the model to acquire sequential information
naturally and initially extract spatiotemporal features. Next, the the processed output
from the ConvLSTM is split into fixed-size patches. Each of these patches undergoes linear
embedding, where they are flattened and transformed into a sequence of vectors via a
linear projection layer. This transformation is crucial as it prepares the spatiotemporal
features for further processing by converting them into a suitable format for the encoder
architecture. Finally, the resulting sequence of vectors, embedded with both spatial and
temporal information, is inputted into the Convformer encoder. This encoder comprises
multiple blocks of temporal and spatial attention, which iteratively refine these embeddings
using self-attention mechanisms and feed-forward networks, allowing the model to capture
intricate patterns and dependencies. Detailed information on each module is described
as follows.

3.4.2. Input

The Convformer takes as input a clip X consisting of inputs for T
time steps, where each input comprises five channels (SST, SSS, SSH, USSW, and VSSW),
with each channel having dimensions H and W.

c RTX5><H><W

3.4.3. Positional Encodeding

For the Transformer, since all temporal sequences are processed simultaneously within
the network, sequential information is lost when entering the network. Therefore, Trans-
formers require additional processing to inform the relative position of each input. The so-
lution is to use Positional Encoding. The traditional Positional Encoding in Transformers
mainly involves mapping positional information to a fixed mathematical representation
and adding it to the input embedding vector. However, this method may not be flexible
enough in some cases because it encodes all positions in the same way without considering
the specific semantic content of the input sequence. Thus, a practical approach is needed to
thoroughly address the challenge of disregarding sequential information. LSTM considers
positional information in a sequential input manner, where the input sequence is fed one
element at a time. Therefore, using LSTM as a positional encoding layer can effectively
capture sequential spatiotemporal information. Additionally, given that the Transformer
requires a large amount of data, CNN exhibits strong learning capabilities even with
relatively small training sets due to its robust inductive bias. Consequently, we employ
ConvLSTM as the positional encoding layer for Convformer, which considers positional
information in a sequential input manner like LSTM and effectively extracts spatiotemporal
features at an initial stage due to CNN’s inductive bias. The input X € RT*>*HxW jg
first fed into the positional encoding block to extract sequential positional information and
initial spatiotemporal features.



Remote Sens. 2024, 16, 2422 7 of 27

Trainning Datasets

Argo STA
Training label

1 |
1 I
1 |
1 I
1 |
1 I
1 |
1 1
| and " SSSA !
1 : SSHA 1
! Argo SSA ‘ ‘ i SSTA XT !
1 Training label | | SSWUA I
: SSWVA :
1 |
. | | .
s |
! Positional Encoding A Ty :
! ConvLSTM ¢+t & A G !
1 layer 1
i ~ fi :
1 ~s\ [}
1 \\ 1
: \~‘ hey hy :
1 [}
1 I
1 [}
' ConvLSTM Block % :
I
| } .
e I
Ty L L Ty m e b
! Patch Embedding \
| - :
I
1
! - - \* i Sl v e LT |
. | [Patches| | 1
1 vy
1 Sy o ‘ )y w - - o
' - I
| | |
! 1
e e e e = = D e e e e e L T T
TTTTToTToIoTTo T T TTTT T TS T T T T TS mmmmmsm———o———e- H
| Encoder !
1 V4 \\ 1
1 / . 1
! '," Convformer Encoder ., 1
: /’ \\ 1
1 L2 “ :
! 1
1 1
! 1
I P —_ B 1
: S EE{IESHF P EESIEUCI IR I N REH RN A P N R
) =N VAN B ~ N T2 > ZTEL > = > >
: s[4 12D SEs g S ET !
! =5 Sz &< |
1
: Time-Attention Block Space-Attention Block :
1
1 Encoder layers X L |
1
| |
L e E e EEE e e e, e e, e, e, e, e, e, e, e, e, —— - —— ]

Figure 2. The architecture of Convformer and flowchart of Pacific ST/SS reconstruction using remote
sensing data.

3.4.4. Patch Embeding

Following the approach of ViT [47], we decompose each channel of the processed
output from the ConvLSTM into N non-overlapping patches, where N = HW /P? and
each patch has a size of P x P. We flatten these patches into vectors x,, ;) € R5P*, where
n=1,2,..., N represents spatial positions and t = 1,2,..., T represents the time sequence.
Then, to convert them into a suitable format for the encoder architecture, we map each
patch x(,, ;) to an embedding vector z(, ;) € RP through a learnable linear embedding layer,
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as shown in Equation (12), where W € R>" %D The resulting embedding vectors z,, ;) are
fed into the encoder as input.

Z(np) = X(nt) - WE (12)

3.4.5. ConvFomer Encoder

Our ConvFomer Encoder consists of L encoding blocks. Each encoding block / com-
prises a temporal attention block and a spatial attention block, both equipped with residual
connections, for comprehensive extraction of temporal and spatial features, respectively.
The patch embedding results are processed layer by layer. The composition of the tem-
poral attention block and the spatial attention block is essentially similar: both comprise
alternating multi-head attention mechanisms and MLP blocks, with Layer Normaliza-
tion (LN) [54] applied before each block and residual connectivity applied after each
block. The query/key/value vectors for multi-head attention are computed based on

(I-1)

the representation z ( obtained from the preceding spatial or temporal attention block.
n,t)

The calculation process is as follows, where LN() represents LayerNorm, h = 1,2,...,H is
the index of multiple attention heads, and H represents the total number of attention heads,
with each head attention dimension set to D;, = D/H.

(Lh) _ 1ar(LR) (1-1)
A =Wo' * LN(Z(n,t) ) (13)
k() =W S NG ) (14)
L Lh -1
vEn,}) =W LN(ZEn,t))) (15)
Next, the temporal attention weights zxg;’ht))time and spatial attention weights sz;’h))Sp " for
the query patch, , are given by the following equations:
g
(Lh)time (n,t) (Lh) f4.(Lh)
¥t = Softmax vDh * {k(OIO) {k(ﬂrt’) }t’:l,. .. ,T} (16)
N
(Lh)space __ (nt) (Lh) [4.(Lh)
() = Softmax JDh * |:k(0'0){k(n,'t)}n/_l,...,l\f] (17)

The encoding zl((ntige) or zl((nsf)ﬂ %) at block [ is obtained by computing the weighted sum of

value vectors, utilizing the self-attention coefficients of each attention head:

T N

(Lh)(space [ time) (Lh)(space [ time) _ (k)

S(nt) =) ) %) Vint) (18)
t=1n=1

Then, the vectors from all heads are concatenated together, and residual connections are

applied after each operation:

(1,1)(time/space)
(n.t)
s1(time/space) . 1—1(space/time)
Z =Wo| : + Z(yp) (19)
(LH)(time/space)
S(nt)

It is worth mentioning that this only extracts the spatial interrelationships between the
N patches, while the spatial relationships within each patch are neglected. Therefore,
in addition to the temporal attention block, we have further added a local-space attention
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mechanism to the spatial attention block to additionally extract the interactions between
elements within each patch, implemented as follows:

T
QlacalKlocal

Vi

Finally, the results are passed through an MLP and connected using residual connections:

Attention—local(Qlocall Klocal/ Vlocul) = SOftmaX( )Vlocal (20)

I(time/space) 71(time/space) 11(time/space)
4 = MLP(LN(Z|() )+ 21)
The resulting output z[(;t,ig ¢/3¢) serves as the input for the next temporal or spatial

attention block.

3.4.6. Residual Connections and Differential Equations

Our Convformer encoder applies residual connectivity and layer normalization both
between temporal and spatial attention blocks as well as between their internal self-
attention blocks and feedforward network blocks. This is because residual networks
have a subtle relationship with differential equations. Each residual connection block can
be represented as:

Yi+1 =yt + G(LN(yt)) (22)

where y; represents the output at position t, LN() represents the layer normalization
function, and G() represents the computation function of the current layer, such as the
self-attention layer or the feed-forward layer. Iterative updating can be interpreted as a
discretization of a continuous function transformation. For simplicity, G(LN(y;)) can be
represented as the function. Then, if we relax y; to be a continuous function y(t), we can
rewrite Equation (22) as (23):

y(t+ A = y(t) + AtF(y(1)) (23)

where Af represents the change of ¢, also known as the step size. We can use the limit to
adjust At to obtain the following equation:

YA —y(E)

Lim A7 = F(y(t)) (24)

Thus, we can infer that each residual connection block can be viewed as describing a

first-order differential equation. Moreover, based on the formulation of the Covformer block

in (22)—(24) and the universal approximation theorem of neural networks, the complexity

of the network can be increased to model higher-order differential equations. Therefore, we

employ residual connections between each block, enabling the model to learn to simulate

underlying dynamic equations on its own, thereby enhancing the physical interpretability
of the model.

4. Results
4.1. Convformer Performance against Typical Models

To evaluate the performance of our model, we conducted subsurface temperature and
salinity field reconstruction experiments using the same dataset with the ConvLSTM, ViT
(Vision Transformer), and the popular Attention U-Net models in related research. We
calculated the Root Mean Square Error (RMSE) and the correlation coefficient (R?) between
the temperature and salinity profiles obtained from these models and the Argo profiles to
assess the performance of the different methods.

Figure 3 displays the vertical distribution of RMSE for temperature profiles estimated
by different models. The models exhibit relatively small RMSE on the sea surface. How-
ever, the RMSEs increased sharply with depth, reaching their maximum at 150 m depth,
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then sharply decreased with two subsequent increases at 500 m and 1100 m depth, re-
spectively. This phenomenon may be attributed to the complex dynamical processes in
the ocean’s upper layers and perturbations in the mixing and thermocline layers, mak-
ing the temperature distribution at specific depths exceptionally complex while deep-sea
water remains relatively stable. Compared to other methods, Convformer demonstrates
significantly superior performance in ST estimation, achieving the smallest RMSE at all
depth levels. Particularly noteworthy is that at depths where temperature changes sharply
(such as 100 m, 500 m, 1100 m, etc.), Convformer’s RMSE is significantly smaller than that
of other models. This suggests that Convformer possesses more substantial potential to
approximate highly nonlinear functions effectively. This is because at these depths, where
temperature changes rapidly, the relationship between temperature and depth becomes
more complex, potentially involving more intricate dynamic processes and significant
nonlinear characteristics.
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Figure 3. Vertical RMSE profiles for each model from 50 m down to 1500 m of ST: (a) models
comparison; (b—e) each model respectively.

Figure 4 depicts the bar graph of ST reconstruction using different models. The over-
all RMSEs and correlation coefficients at different depth levels between the estimates of
each model and ARGO grid data are summarized in Table 1. Overall, all models showed
good performance with similar trends. The models” average RMSE and correlation coeffi-
cients were 0.486/0.489/0.386/0.353 and 98.253%/97.795%/98.213% /98.663%, respectively.
The RMSE of the Convformer model is significantly smaller than that of CovLSTM and ViT
at all depth layers, with mean values reduced by 27.36% and 27.98%, respectively. Moreover,
Convformer’s estimated ST profiles exhibit higher correlation coefficients. At depths close
to the sea surface, such as 30 m and 50 m, all models exhibit relatively low RMSE values,
possibly because they are closer to the input temperature observed at the surface. However,
Convformer still demonstrates significantly lower RMSE, implying its more robust feature
extraction capability in accurately capturing temperature variations near the sea surface.
Furthermore, Convformer may excel at modeling complex nonlinear relationships near
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the sea surface, as various factors such as solar radiation and wind speed influence the sea
surface temperature.

Table 1. RMSE and correlation coefficient (R%) of ST between ConvLSTM, Vision Transformer,
Attention U-NET and Convformer. Bolded fonts represent the optimal results among the models.

RMSE/°C R*/%
Depth/m
ConvLSTM ViT A-U-Net Convformer ConvLSTM ViT A-U-Net Convformer

30 0.568 0.575 0.608 0.487 98.432 98.339 98.114 99.071
50 0.742 0.780 0.746 0.665 97.546 97.110 97.352 98.158
100 1.205 1.315 0.987 0.885 96.740 95.083 97.135 97.525
150 1.180 1.422 0.990 0.883 96.862 94.305 97.377 97.845
200 1.172 0.959 0.784 0.737 97.919 96.974 98.017 98.357
300 0.683 0.655 0.538 0.506 98.578 98.378 98.551 98.950
400 0.465 0.489 0.392 0.369 97.633 97.206 97.551 97.926
500 0.971 0.979 0.500 0.470 96.560 95.304 95.559 96.947
600 0.546 0.514 0.408 0.384 97.275 96.724 97.155 97.650
700 0.302 0.275 0.222 0.208 97.850 97.361 97.912 98.186
800 0.202 0.196 0.142 0.133 98.072 97.698 97.960 98.370
900 0.213 0.239 0.145 0.136 98.309 98.009 98.272 98.604
1000 0.373 0.356 0.323 0.303 98.220 98.067 98.259 98.578
1100 0.493 0.482 0.395 0.371 98.409 98.269 98.446 98.720
1200 0.442 0.431 0.349 0.328 98.473 98.371 98.613 98.792
1300 0.349 0.346 0.293 0.275 98.687 98.591 98.886 98.983
1400 0.250 0.242 0.225 0.212 98.877 98.768 98.680 99.188
1500 0.181 0.173 0.150 0.141 99.154 99.087 99.066 99.470
1600 0.144 0.139 0.122 0.115 99.370 99.302 99.255 99.669
1700 0.105 0.104 0.090 0.085 99.457 99.404 99.402 99.773
1800 0.058 0.053 0.052 0.045 99.553 99.523 99.508 99.865
1900 0.038 0.037 0.037 0.033 99.589 99.620 99.618 99.952
Average 0.486 0.489 0.386 0.353 98.253 97.795 98.213 98.663
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Figure 4. Bar graph for each model from 50 m down to 1900 m of ST. The legend colors correspond to
various models, while the symbols indicate the correlation coefficients” values for each model at a
given depth.

At depths of 100 m and 150 m, the RMSE of each model reaches its maximum value,
possibly due to the involvement of complex dynamical processes and temperature varia-
tions at these depths. However, Convformer exhibits a much more moderate increase than
the other models, and the gap in RMSE between Convformer and other models reaches
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its peak. This suggests that Convformer may excel at capturing complex dynamical pro-
cesses and the intricate nonlinear relationships of temperature variations, demonstrating
outstanding physical modeling capabilities. Subsequently, the RMSE of each model sharply
decreases, with two increases occurring at depths of 500 m and 1100 m, respectively. How-
ever, the increase in RMSE for Convformer remains relatively moderate. In the depth range
of 1100 m to 1900 m, the RMSE of each model shows a sharp decrease, and the differences
between them are slight. This indicates that all models perform excellently in the relatively
stable deep water layers.

Figure 5 shows the vertical distribution of RMSE for salinity profiles estimated by
different models. The trend of increase and decrease in salinity profiles is almost identical
to temperature, indicating that the distribution at specific depths in this region becomes
exceptionally complex due to dynamic changes and substantial thermocline variability. It
is evident from the figure that Convformer continues to demonstrate excellent performance
in salinity estimation, particularly at depths where salinity changes drastically (e.g., 150 m,
500 m, 1100 m, etc.). At these depths, the RMSE of the salinity profiles estimated by
Convformer is significantly smaller than that of other models, further highlighting the
model’s robust nonlinear approximation and physical modeling capabilities.
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Figure 5. Vertical RMSE profiles for each model from 50 m down to 1500 m of SS: (a) models comparison;
(b—e) each model respectively.

Figure 6 illustrates the bar graph of SS reconstruction using different models. The over-
all RMSEs and correlation coefficients at various depth levels, depicting the estimates of
each model compared to ARGO grid data, are summarized in Table 2. Notably, the errors
of salinity reconstruction models are significantly more minor than those of temperature
reconstruction models. The average RMSE and correlation coefficients for each model
are 0.09327/0.08649/0.07814/0.06951 and 99.96900% /99.96691% /99.96746% / 99.97145%,
respectively.
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Table 2. RMSE and correlation coefficient (R?) of SS between ConvLSTM, Vision Transformer,
Attention U-NET and Covformer. Bolded fonts represent the optimal results among the models.

RMSE/psu R%/%
Depth/m
ConvLSTM ViT A-U-Net Convformer ConvLSTM ViT A-U-Net Convformer

30 0.115 0.115 0.107 0.092 99.90794 99.89066 99.89220 99.91870
50 0.131 0.115 0.118 0.104 99.86417 99.86597 99.87158 99.87522
150 0.168 0.151 0.135 0.121 99.87167 99.86614 99.86373 99.87265
200 0.118 0.109 0.099 0.089 99.90785 99.90153 99.91057 99.91341
300 0.083 0.074 0.060 0.054 99.96621 99.96467 99.96565 99.96757
400 0.203 0.196 0.117 0.105 99.97482 99.97107 99.94515 99.97500
500 0.199 0.191 0.185 0.166 99.98963 99.98773 99.98899 99.98978
600 0.146 0.138 0.137 0.122 99.99631 99.99527 99.99601 99.99665
700 0.125 0.117 0.113 0.101 99.99741 99.99623 99.99710 99.99773
800 0.093 0.084 0.081 0.073 99.99810 99.99692 99.99762 99.99831
900 0.096 0.085 0.069 0.062 99.99848 99.99748 99.99789 99.99851
1000 0.109 0.096 0.098 0.088 99.99870 99.99789 99.99846 99.99880
1100 0.117 0.108 0.100 0.090 99.99912 99.99849 99.99825 99.99915
1200 0.105 0.093 0.086 0.077 99.99932 99.99860 99.99690 99.99933
1300 0.028 0.028 0.011 0.010 99.99984 99.99984 99.99973 99.99985
1400 0.009 0.009 0.009 0.008 99.99986 99.99985 99.99984 99.99987
1500 0.025 0.023 0.022 0.020 99.99990 99.99989 99.99988 99.99990
1600 0.015 0.013 0.014 0.012 99.99992 99.99991 99.99990 99.99992
1700 0.010 0.009 0.009 0.008 99.99993 99.99992 99.99991 99.99993
1800 0.008 0.007 0.007 0.006 99.99994 99.99994 99.99994 99.99995
1900 0.006 0.006 0.006 0.005 99.99995 99.99995 99.99995 99.99996
Average 0.093 0.086 0.078 0.069 99.96900 99.96691 99.96746 99.97145

0.42 7 1.000
0.36 e

0.998

0.996

RMSE((psu)
e
-
%
R2

0.994

e
—
~

0.992

e
I
S

0.990

)
>
X
30 0000w
500 By

50 B
100 By
150 B
200 B
300 B
400 F
600
700 B
800 e
900 N,

1000 Bl
1100 By

1200 & .

1300 &
1400 &
1500 =5
1600 =
1700 &
1800 &
1900 &

Depth(m)
Convformer ConvLSTM Vision Transformer - Attention U-Net

Figure 6. Bar graph for each model from 50 m down to 1900 m of SS. The legend colors correspond to
various models, while the symbols indicate the correlation coefficients” values for each model at a
given depth.

At each depth level, the salinity reconstruction RMSE of the Convformer model
remains significantly smaller than that of CovLSTM, ViT, and Attention U-net, with re-
ductions of 25.47%, 19.63%, and 11.04%, respectively. However, it is noteworthy that the
reduction in RMSE for salinity is relatively minor. This is primarily due to the overall
more straightforward structure of salinity, which makes all models perform superiorly and
accurately on salinity compared to temperature, resulting in less room for Convformer to
improve. However, within 30 m to 50 m, the RMSE of salinity for Convformer remains a
significant estimation ability at this depth level. This highlights Convformer’s capability
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to better capture surface spatiotemporal features. At 400 m and 500 m depths, the salinity
RMSE of all models reaches its maximum value. However, Convformer still performs better
than other models, particularly at 400 m, where it achieves reductions of 48.33% and 46.34%
relative to ConvLSTM and ViT, respectively. At depths where RMSE briefly increases,
such as at 1000 m and 1100 m, Convformer’s accuracy improves significantly. This further
highlights the model’s outstanding capability in capturing complex deep-sea dynamic
processes and nonlinear relationships, which is particularly suitable for extracting more
complex salinity distribution features. In the depth range of 1300 m to 1900 m, the accuracy
of all models is very high; however, while Convformer’s RMSE remains lower than the
other models, the difference is insignificant. This suggests that within this depth range,
the salinity distribution is relatively simple, and the features are easy to extract, resulting in
relatively minor performance improvements.

Overall, in the experiments reconstructing subsurface temperature and salinity fields,
Convformer demonstrates superior performance compared to models such as ConvLSTM,
ViT, and Attention U-net. Its average RMSE shows a significant percentage reduction,
accompanied by higher correlation coefficients, further validating Convformer’s superi-
ority in reconstructing subsurface temperature and salinity fields. Of particular note is
Convformer’s strong capability in capturing complex deep-sea dynamic processes and
modeling nonlinear relationships within depth ranges where such processes are intricate
and nonlinear relationships predominate.

4.2. Sensitivity Analysis of Model Input

To assess the sensitivity of temperature and salinity profile estimation to various
input parameters, we conducted a detailed comparison of Convformer’s estimates under
different training input conditions.

Figure 7 displays the vertical distribution of the root mean square error (RMSE) of ST
and SS under various input conditions, with detailed results recorded in Tables 3 and 4.
Observing the root mean square temperature error, we noticed that differences are small
but sufficient to account for differences in sensitivity between input elements.
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Table 3. RMSE for SS From Convformer With Different Inputs. The bold represents the optimal.

RMSE/psu
Depth/m
w/o SSA w/oSTA w/o SWUA w/oSWVA w/o SWHA w/o None

30 0.169 0.095 0.094 0.094 0.096 0.092
50 0.153 0.103 0.113 0.108 0.111 0.104
100 0.118 0.107 0.112 0.109 0.115 0.107
150 0.125 0.123 0.125 0.129 0.139 0.121
200 0.092 0.088 0.089 0.093 0.105 0.089
300 0.061 0.061 0.056 0.057 0.066 0.054
400 0.111 0.112 0.111 0.117 0.121 0.105
500 0.174 0.176 0.175 0.181 0.181 0.166
600 0.126 0.127 0.127 0.133 0.131 0.122
700 0.106 0.107 0.109 0.115 0.117 0.101
800 0.074 0.074 0.076 0.081 0.091 0.073
900 0.063 0.062 0.065 0.069 0.076 0.062
1000 0.090 0.091 0.090 0.090 0.095 0.088
1100 0.091 0.091 0.090 0.091 0.095 0.090
1200 0.078 0.078 0.078 0.079 0.081 0.077
1300 0.012 0.010 0.012 0.011 0.013 0.010
1400 0.008 0.008 0.008 0.008 0.009 0.008
1500 0.020 0.020 0.021 0.022 0.024 0.020
1600 0.013 0.012 0.013 0.013 0.015 0.012
1700 0.009 0.008 0.008 0.008 0.009 0.008
1800 0.006 0.006 0.006 0.006 0.007 0.006
1900 0.005 0.005 0.005 0.005 0.005 0.005
Average 0.078 0.071 0.072 0.074 0.077 0.069

Table 4. RMSE for ST from Convformer with different inputs. The bold represents the optimal.

RMSE/°C
Depth/m
w/o SSA w/o STA w/o SWUA w/oSWVA w/o SWHA w/o None

30 0.492 0.711 0.496 0.506 0.510 0.487
50 0.666 0.819 0.691 0.678 0.701 0.665
100 0.905 0.920 0.887 0.956 1.089 0.885
150 0.915 0.888 0.887 0.915 1.071 0.883
200 0.770 0.764 0.738 0.741 0.846 0.737
300 0.502 0.517 0.512 0.532 0.596 0.506
400 0.364 0.370 0.376 0.377 0.443 0.369
500 0.507 0.488 0.484 0.518 0.584 0.470
600 0.402 0411 0.394 0.415 0.506 0.384
700 0.205 0.214 0.217 0.212 0.264 0.208
800 0.137 0.138 0.135 0.137 0.188 0.133
900 0.146 0.136 0.137 0.146 0.231 0.136
1000 0.305 0.304 0.308 0.307 0.356 0.303
1100 0.380 0.372 0.375 0.373 0.484 0.371
1200 0.337 0.332 0.330 0.330 0.432 0.328
1300 0.278 0.278 0.278 0.282 0.344 0.275
1400 0.213 0.212 0.212 0.222 0.237 0.212
1500 0.141 0.144 0.141 0.152 0.171 0.141
1600 0.115 0.116 0.115 0.115 0.138 0.115
1700 0.086 0.087 0.090 0.089 0.100 0.085
1800 0.048 0.047 0.044 0.047 0.053 0.045
1900 0.033 0.033 0.033 0.033 0.035 0.033
Average 0.361 0.377 0.358 0.367 0.426 0.353
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As for ST, significant errors across all depths when SSHA information was not included
in the input conditions. This may be because the interaction of multiple factors on the
subsurface, including heat exchange, internal thermal expansion, and ocean circulation, can
lead to significant changes in sea surface height. The upper ocean (<150 m) demonstrates
the highest RMSE without SSTA input. However, beyond a depth of 150 m, the disparity
between the model without SSTA input and the one utilizing all parameters as input is
insignificant. This suggests that SSTA significantly affects model performance in the upper
ocean, while its impact diminishes in deeper waters. SSTA may be linked to more intricate
dynamic processes and temperature fluctuations in the upper ocean, causing significant
RMSE when SSTA input is absent, as the model fails to capture these complexities accurately.
Conversely, in deeper waters, other parameters may begin to govern temperature dynamics,
reducing the relative influence of SSTA. Consequently, the performance gap between the
model without SSTA input and the one utilizing all parameters as input diminishes in
deeper layers. Moreover, the RMSE from the model without SSA indicates an insignificant
correlation between SSSA and ST, suggesting a weak association between SSSA and the
complex dynamic variations of subsurface temperature. This could be attributed to the
independent dynamic processes experienced by SSSA and temperature profiles within
the ocean interior, where surface salinity anomalies do not directly influence temperature
changes. The impact of SWUA and SWVA in the upper ocean (<150 m) resembles that of
SSTA, showing significant RMSE. This is likely due to sea surface wind being one of the
primary driving forces behind surface ocean water movement. Consequently, variations in
sea surface wind may directly influence surface ocean flow, leading to a higher correlation
between SWUA, SWVA, and temperature profiles in surface regions. It is worth noting
that the RMSE of without SWVA is relatively large, indicating that the model is more
sensitive to variations in SWVA. This may reflect the model’s higher sensitivity to vertical
wind shear in the ocean. Additionally, at a depth of 500 m, without SWVA and SWUA, all
input modes exhibit the maximum RMSE for temperature. This is likely because, at this
depth, the dynamic processes within the ocean become more complex, involving more
vertical movements and interactions between water masses. SWVA and SWUA are typically
associated with seawater’s vertical and horizontal movement, and their absence may lead
to inadequate dynamic capture of temperature changes at this depth level.

The relationship between salinity and temperature on density is a fundamental aspect
influencing SSH changes, resulting in a specific correlation between SSHA and salinity
profiles. Therefore, similar to temperature, salinity profiles estimated at all depths under
input conditions with SSHA information exhibit significant errors. SSTA does not notably
enhance the reconstruction of salinity profiles. However, within the depth range of 400 m
to 600 m, the RMSE of salinity profiles in the model without SSTA input is noticeably larger.
This indicates that temperature contributes to the estimation of salinity profiles to some
extent in water regions with more complex dynamic processes and salinity distributions.
In the model without SSSA input, the upper ocean (<150 m) demonstrates larger RMSE
values. Compared to the impact of SSTA on temperature profiles, the error in salinity
profiles in the upper ocean is more prominent, indicating a higher sensitivity to SSSA
in this region. This sensitivity may stem from SSSA often reflecting deviations of sea
surface salinity from long-term averages, which could be closely related to upper ocean
dynamic processes and surface salinity distributions. The impacts of SWUA and SWVA
on salinity are almost analogous to those on temperature. In the upper ocean and the
relatively complex 400-600 m structure, errors are prominent, and still more significant
errors in the model without SWVA. This further indicates that the surface ocean flow,
as well as the vertical movement and interaction of water masses induced by sea surface
wind, significantly influence the distribution of both salinity and temperature.

This study highlights the critical role of sea surface parameters in improving model
accuracy, particularly in the upper layers of the ocean. Among these parameters, the SSHA
emerged as a pivotal factor in estimating subsurface conditions.
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4.3. Effects of Different Components of Convformer

We conducted ablation studies to assess the influence of the time attention block,
global space attention block, local space attention block, and residual connections on
Convfomer’s performance. As temperature exhibits more significant and pronounced
variations compared to salinity, we chose subsurface temperature as an example for the
ablation experiments to facilitate a more precise comparison of the results.

Figure 8 illustrates the vertical distribution of RMSE of temperature profiles estimated
by different combinations, with detailed results documented in Table 5. The time attention
block in the Convformer model plays a crucial role in handling temporal dimension
information, as it can capture dependencies and evolutionary patterns between different
time steps in time series data. Therefore, ablating the time attention block may result in the
model not fully utilizing information on the temporal dimension. From the results, ablating
the time attention block leads to an overall increase in RMSE values of temperature profiles.
The average RMSE increases from 0.353 to 0.399, representing a 13% increase. The global
space attention block captures spatial dependencies between each patch. Ablating this
block may limit the model in handling global information, thus affecting its understanding
and prediction capabilities for the overall data. Similar to ablating the time attention block,
ablating the global space attention block also increases RMSE values of temperature profiles.
The increase is particularly significant at greater depths, with the average RMSE being 0.406,
representing a 15% increase. The local space attention block is responsible for capturing
spatial dependencies within patches; ablating this module may result in the model’s
inability to effectively identify and utilize local information, thereby reducing its ability to
grasp detailed information. The results indicate that after ablating the local space attention
block, there is a slight increase in the RMSE values of temperature profiles compared to
ablating the global space attention block. This implies that while the contribution of the
local space attention block to model performance is relatively minor, it still constitutes
a part of the overall model performance. Residual connections alleviate the vanishing
gradient and exploding gradient problems, facilitating better information propagation
within the network. According to previous analysis, residual connections can simulate
physical differential equations. Hence, ablating residual connections may lead to difficulties
in information propagation, impacting the model’s ability for physical modeling and
subsequently influencing its optimization capability and performance. Experimental results
indicate that ablating residual connections results in a significant increase in RMSE values of
temperature profiles, with errors reaching their maximum, further affirming the importance
of residual connections in the Convformer model.

In summary, the time attention block, global space attention block, local space attention
block, and residual connections play crucial roles in the performance of the Convformer
model. Ablating any of these modules can result in a pronounced decline. This highlights
the necessity and effectiveness of these modules in the Convformer model and their
significance in the subsurface temperature and salinity field reconstruction experiments.

Table 5. RMSE for ST from models with different components in ablation Study. “w/o T” represent
Convformer without time attention block, “w/o S” represent Convformer without global space
attention block, “w/o S_local” represent convformer without local space attention block and “w/o
residual” represent convformer without residual connection. The bold represent the best.

RMSE/°C
Depth/m
w/o T wl/o S w/oS_Local w/o Residual Convformer
30 0.506 0.502 0.501 0.667 0.487
50 0.648 0.657 0.664 0.747 0.665
100 0.964 1.014 0.967 1.104 0.885
150 0.978 0.968 0.992 1.071 0.883

200 0.794 0.828 0.851 0.837 0.737
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Table 5. Cont.
RMSE/°C
Depth/m
wlo T w/o S w/o S_Local w/o Residual Convformer
300 0.562 0.575 0.561 0.608 0.506
400 0.419 0.433 0.409 0.434 0.369
500 0.512 0.562 0.531 0.589 0.470
600 0.470 0.484 0.473 0.454 0.384
700 0.245 0.234 0.248 0.258 0.208
800 0.172 0.173 0.165 0.165 0.133
900 0.215 0.206 0.205 0.210 0.136
1000 0.348 0.349 0.348 0.358 0.303
1100 0.467 0.468 0.471 0.476 0.371
1200 0.422 0.424 0.424 0.435 0.328
1300 0.337 0.331 0.339 0.348 0.275
1400 0.233 0.230 0.236 0.240 0.212
1500 0.168 0.166 0.165 0.178 0.141
1600 0.129 0.134 0.132 0.145 0.115
1700 0.098 0.099 0.096 0.100 0.085
1800 0.049 0.051 0.049 0.052 0.045
1900 0.034 0.034 0.035 0.035 0.033
Average 0.399 0.406 0.403 0.432 0.353
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Figure 8. Vertical RMSE profiles for Convformer with different components in ablation study from

50 m down to 1500 m of ST: (a) models comparison; (b—f) each model respectively.

4.4. Error Analysis of Reconstruction Result
4.4.1. Temporal Error Analysis

The RMSE for temperature and salinity reconstructed using the Convfomer model for
different months in 2018 is depicted in the Figure 9 and Figure 10 respectively. Each grid
point represents the average measure between predicted and actual values for that month
at the specified depth, with all performance results obtained from the test set.
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Overall, the temperature reconstruction experiment shows considerable differences in
RMSE between months at shallower depths (30-600 m), whereas the variations between
months at deeper levels (700-1900 m) are less pronounced. This is probably because the
shallow waters are affected by more factors such as wind, insolation, and seasonal mixing,
which can lead to rapid changes in temperature. In contrast, deeper waters are relatively
stable and less affected by surface climate variations, resulting in more minor differences in
prediction errors between months at these depth levels. The errors between the layers are
almost always more significant from February to May and September to November. This
is mainly due to the occurrence of El Nifio phenomena during these periods, resulting in
abnormally high ST. These abnormal sea temperatures can affect atmospheric circulation,
thereby influencing the temperature distribution of the ocean’s surface layer.

Month
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Figure 9. RMSE of the ST estimation at each depth level and in each month of 2018.
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Figure 10. RMSE of the SS estimation at each depth level and in each month of 2018.
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The variations in errors between months for salinity are relatively minor compared
to temperature. This is partly because the salinity distribution itself is more stable than
temperature, and it also underscores the robust learning ability of our model in capturing
spatiotemporal variations in salinity. Salinity errors are generally higher in autumn and
winter compared to spring and summer. This is mainly due to the seasonal solid mixing
and convection that typically occur during spring and summer in the ocean, resulting
in higher salinity uniformity within the water column. In autumn and winter, however,
the sea undergoes stratification and becomes more stagnant, forming distinct water masses
and interfaces. This increases spatial variability and complexity in salinity, making it
challenging for the model to estimate salinity distribution, resulting in increased errors
accurately. Overall, our model can accurately estimate subsurface temperature and salinity
field distribution with consistent performance across varying depths and times.

4.4.2. Longitude Profile Validation

To deepen our understanding of the distribution of subsurface temperature and salinity
fields in the Pacific Ocean and assess the reconstruction performance of the Conformer
model from a vertical perspective, we chose a profile for analyzing vertical variations in ST
and SS.

Figure 11 depicts a vertical profile along 188.5° longitude. Figure 11a shows widespread
warm water areas in the central and western equatorial Pacific due to a weak La Nifia
phenomenon, with the southern areas exhibiting warmer temperatures compared to the
northern regions. Surface seawater from the eastern Pacific is pushed towards the central
western Pacific, leading to a noticeable warm water zone below 200 m in depth. The La
Nifia effect gradually diminishes as depth increases, and the ST distribution stabilizes
beyond 300 m. In the Pacific region, around 5-10°N, there is a noticeable cold zone from
approximately 50 m to around 400 m depth, likely caused by accelerated flow of the North
Equatorial Warm Current during La Nifia. Figure 11c shows the reconstruction results of
the Conformer model for the vertical profile of ST at longitude 188.5° (171.5°W). The re-
construction results of the model closely resemble those of the Argo observation grid,
with 95.86% of prediction errors within +1.2 °C and 85.5% within 0.8 °C. Figure 11b
illustrates the vertical profile of Argo SS at longitude 188.5°. Salinity distribution is similar
to temperature, with higher values in the southern part than in the northern part, gradually
decreasing with depth. A high-salinity water mass is present between 100 and 250 m depth,
a feature less prominent in the temperature profile. Figure 11d presents the SS profile
reconstructed by the Conformer model at longitude 188.5°. Overall, 99.49% of profile points
exhibit errors within +0.3 practical salinity units (PSU), with over 91.59% showing errors
within 0.2 PSU. Thus, it can be concluded that the Conformer model’s reconstruction
results are excellent. The overall predictive trends of temperature and salinity profiles
resemble the actual values, indicating the robust performance of our model.

4.4.3. Spatial Error Analysis

Figures 12 and 13 compare the subsurface temperature and salinity fields reconstructed
by the Convformer model at specific periods and the corresponding Argo labels at different
depths (50, 100, 300, 600, and 1000 m). Regarding spatial distribution, the subsurface
temperature and salinity fields estimated by the Convformer model demonstrate a spatial
distribution pattern consistent with the Argo grid data.

The ST distribution estimated by the Convformer model shows its high consistency
with Argo data at various depths. The Convformer model accurately captures the sea
surface data in the target area and demonstrates notable temperature characteristics. At a
depth of 50 m, both the Convformer model and Argo data indicate a trend of higher
temperatures in the western Pacific Ocean compared to the eastern Pacific Ocean. As one
moves from the equator towards the poles, sea water temperature gradually decreases,
forming significant temperature fronts near 20°N and 24°S. The temperature differences in
most regions range from —0.5 °C to 0.5 °C, with primary errors occurring in the eastern
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equatorial Pacific region, likely attributed to the influence of the La Nifia phenomenon.
The Convformer model’s ST estimation at a depth of 100 m exhibits good consistency with
Argo observations. However, the reconstructed details gradually fade in the marginal
areas, and the contours become smoother. Compared to a depth of 50 m, the differences
at 100 m have slightly increased, ranging from —0.8 °C to 0.8 °C. It is worth noting that
relatively significant differences are observed in the region between the equator and 10°N,
which may be attributed to the presence of the thermocline and the influence of upwelling
currents. At a depth of 300 m, contrary to the shallow seas, both the Convformer model and
Argo data demonstrate that sea water temperature in the equatorial region is notably lower
than on both sides, with differences more minor than those at 100 m depth. Furthermore,
the error in the western Pacific Ocean exceeds that in the eastern Pacific Ocean, likely
attributed to the influence of ocean circulation and climate change. With increasing depth,
temperature becomes more stable. At depths of 500 m and below, the differences between
temperature estimates from the Convformer model and temperature values from Argo
data are relatively small, ranging from —0.1 °C to 0.1 °C.
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Figure 11. The vertical profiles of the ocean subsurface temperature and salinity fields in March
2018 at the longitude of 188.5° for (a) Argo ST, (b) Argo SS, (c) Convformer-reconstructed ST,
and (d) Convformer-reconstructed SS.

These findings suggest that the Convformer model accurately estimates subsurface
temperatures in the tropical Pacific. Similarly, the Convformer model exhibits good consis-
tency with Argo gridded data in estimating SS, with no significant differences observed
between the Convformer model’s estimates and Argo data, effectively capturing the distri-
bution characteristics of SS. In the upper ocean (50 m and 100 m), salinity differences in
most regions range from —0.24 psu to 0.24 psu. With increasing depth, salinity becomes
more stable, and the differences between salinity estimates from the Convformer model
and those derived from Argo data are less than 0.1 psu. These results affirm the accuracy of
the Convformer model in estimating salinity in the tropical Pacific.
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a S0m

Figure 12. Distribution of temperature field estimated by the (i) Convformer compared to the
(ii) Argo ST and their (iii) difference (dS = STConvfomer — STArgo) at the depth of (a) 50 m,
(b) 100 m, (c) 300 m, (d) 600 m, and (e) 1000 m.
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Figure 13. Distribution of salinity field estimated by the (i) Convformer compared to the (ii) Argo ST
and their (iii) difference (dS = SSConvfomer — SSArgo) at the depth of (a) 50 m, (b) 100 m, (c) 300 m,
(d) 600 m, and (e) 1000 m.
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5. Discussion

The Convformer model represents a significant advancement in estimating subsurface
temperature and salinity in the tropical Pacific Ocean, showcasing notable improvements
over existing models such as ConvLSTM, Vision Transformer, and Attention U-Net. This
enhanced performance is primarily attributed to the unique spatiotemporal attention mech-
anism and residual connections integrated within the Convformer architecture, facilitating
the effective extraction and representation of complex oceanographic processes. At depths
near the thermocline (100-150 m), the accuracy of temperature and salinity predictions
decreases. However, the model still achieves minor errors compared to other models. This
demonstrates the robustness of Convformer to extract complex spatial and temporal features.

We comprehensively assess the model in terms of model comparison, ablation experi-
ments, temporal errors, spatial errors, and longitude profiles. We also explored the potential
of Convformer to extract physical and dynamic information from a model mechanism
perspective. Together, these demonstrate that our study offers a practical approach to
reconstructing ST and SS from satellite-observed sea surface data.

The comprehensive assessment conducted in this study underscores the reliability
of the Convformer model in reconstructing subsurface temperature and salinity fields
across various depths. This is critical for applying deep learning methods in oceanographic
research and provides valuable insights for enhancing future ocean models.

6. Conclusions

In marine science research, accurately estimating the temperature-salinity structure
of the ocean subsurface is crucial for a deeper understanding of ocean dynamics and
climate change. We propose a noval neural network model called Convformer to tackle
this challenge. This model integrates satellite remote sensing data and observational data
to reconstruct the subsurface temperature and salinity fields of the tropical Pacific. We
utilized sea surface elements, including sea surface temperature, sea surface salinity, sea
surface height, and sea surface wind, to reconstruct subsurface temperature and salinity
fields at various depths. Argo gridded products and float profiles were employed as exper-
imental labels and validation sets. The results indicate that the Convformer model excels in
the task of reconstructing temperature-salinity fields, surpassing models like ConvLSTM,
Vision Transformer, and Attention U-Net, as evidenced by smaller RMSE and more sig-
nificant correlation coefficients values. This superior performance is likely attributed to
the Convformer model’s unique spatiotemporal attention mechanism and the potential for
extracting physical information through residual connections, allowing for better capture
of spatiotemporal information and representation of complex ocean processes.

Additionally, the study conducted a comprehensive assessment of the performance
of the Convformer model from various angles. We evaluated the influence of sea surface
parameters on the performance of the Convformer model, revealing that sea surface vari-
ables are more significant in the upper ocean, especially in shallow waters. Sea surface
height anomaly (SSHA) was identified as one of the most critical factors for estimating
subsurface temperature and salinity. Additionally, we compared the model-estimated
subsurface temperature and salinity with Argo gridded data at different depths. The results
demonstrate that the Convformer model exhibits robust performance, effectively capturing
the characteristics of the observed subsurface temperature and salinity fields. However,
due to the presence of a thermocline, the accuracy of temperature and salinity estimates
decreases at depths around 100-150 m, presenting a challenge for accurate estimation.
Nonetheless, the Convformer model performs admirably overall, accurately estimating ST
and SS below 500 m.

In summary, the proposed Convformer model demonstrates exceptional performance
in estimating ST and SS in the tropical Pacific. The model exhibits high accuracy and relia-
bility in reconstructing subsurface temperature and salinity at various depths. The findings
of this study are crucial for applying machine learning methods to subsurface temperature
and salinity fields reconstruction and offer insights for the improvement and development
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of future ocean models. However, as a statistical tool, the Convformer model has limi-
tations in estimating extreme anomaly events. In future research, we will utilize more
advanced machine learning methods and further integrate ocean dynamic mechanisms.
This will help improve the robustness and accuracy of the model, thereby enhancing our
understanding and prediction of extreme events in the ocean. Since 2016, some global
salinity datasets have experienced severe drift, and we will attempt to address the drift
problem with this method. Additionally, the model’s applicability can be expanded to vast
oceanic regions, allowing for precise reconstruction of subsurface temperature and salinity
fields in multiple oceanic areas and even the gradual establishment of global products for
subsurface temperature and salinity. This can contribute to practical applications such as
sound propagation, mixed layer depth (MLD) estimation, and ocean disaster prediction.
Additionally, the model can be extended to estimate other critical ocean parameters, such
as velocity fields and ocean density, offering extensive exploration opportunities for future
research. By broadening the application scope of the Convformer model, we can gain a
deeper understanding of the complexity of the ocean system and provide more avenues for
exploring ocean dynamics and climate change.
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