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Abstract: Although atmospheric CO2 concentrations collected by satellites play a crucial role in
understanding global greenhouse gases, the sparse geographic distribution greatly affects their
widespread application. In this paper, a hybrid CNN and spatiotemporal Kriging (CNN-STK) model
is proposed to generate a monthly spatiotemporal continuous XCO2 dataset over China at 0.25◦ grid-
scale from 2015 to 2020, utilizing OCO-2 XCO2 and geographic covariates. The validations against
observation samples, CAMS XCO2 and TCCON measurements indicate the CNN-STK model is
effective, robust, and reliable with high accuracy (validation set metrics: R2 = 0.936, RMSE = 1.3 ppm,
MAE = 0.946 ppm; compared with TCCON: R2 = 0.954, RMSE = 0.898 ppm and MAE = 0.741 ppm).
The accuracy of CNN-STK XCO2 exhibits spatial inhomogeneity, with higher accuracy in northern
China during spring, autumn, and winter and lower accuracy in northeast China during summer.
XCO2 in low-value-clustering areas is notably influenced by biological activities. Moreover, relatively
high uncertainties are observed in the Qinghai-Tibet Plateau and Sichuan Basin. This study innova-
tively integrates deep learning with the geostatistical method, providing a stable and cost-effective
approach for other countries and regions to obtain regional scales of atmospheric CO2 concentrations,
thereby supporting policy formulation and actions to address climate change.

Keywords: XCO2; CNN model; spatiotemporal Kriging; TCCON; spatial inhomogeneity; greenhouse
gases

1. Introduction

Nowadays, global climate change is profoundly affecting both natural and human
systems [1,2]. In 2023, the sixth Synthesis Report of the Intergovernmental Panel on
Climate Change (IPCC) stated that human activities are undoubtedly contributing to global
warming through the emissions of greenhouse gases (GHGs) [3]. Carbon dioxide (CO2),
which has the highest concentration and broadest sources, exhibits pronounced absorption
characteristics for solar visible light and infrared radiation from Earth [4], as well as the
close association with biological activities, including human activities, establishes it as the
predominant GHG [5].

There are limited ways to determine the CO2 concentrations in the atmosphere.
Ground-based observation networks, such as the Network for the Detection of Atmo-
spheric Composition Change (NDACC) and the Total Carbon Column Observing Network
(TCCON), can obtain high-precision, ground-based measurements of GHGs [6,7]. However,
the high construction and operating costs of these networks and the strict site selection
have led to its uneven global geospatial distribution, making it difficult to obtain continu-
ous spatial distribution of CO2 concentration in large regions. Furthermore, atmospheric
physicochemical models (such as CESM, WRF-Chem, CTMs, etc.) can be used to simulate
and predict the transport, diffusion, and concentration distribution of various components,
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including atmospheric CO2. However, the calculation of such models involves many physi-
cal and chemical processes, requiring large amounts of computational resources and data
support, leading to inherent uncertainties [8,9].

Remote sensing data possess the advantages of consistency, stability, and objectiv-
ity. Envisat-1, launched by the European Space Agency in 2002, carried the Scanning
Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensor
for atmospheric mapping and was the first satellite that had the ability to measure atmo-
spheric CO2 in the world. This mission confirmed the feasibility of space-based detection of
near-surface CO2 concentrations in the near-infrared spectral range [10]. After that, GHG
satellite GOSAT, as well as carbon observation satellites such as OCO-2, OCO-3, and TanSat,
acquire the column-averaged dry air mole fraction of CO2—XCO2 by detecting short-wave
infrared reflected from the Earth’s surface and thermal infrared emitted by the surface
and atmosphere [11]. Bias correction of these raw XCO2 retrievals, including the removal
of footprint bias, the removal of XCO2 errors correlated with specific variables, and the
determination of global offsets based on the “truth proxy” (TCCON), allows users to obtain
the best estimated XCO2 L2 products directly. Thus, satellite observations have become one
of the most reliable means currently available for capturing changes in global and regional
atmospheric CO2 concentration [12,13]. This remote sensing method does not rely on
numerical model simulations and can provide independent atmospheric CO2 concentration
from space observation, which can address the sparsity problem of the GHG monitoring
network. However, due to factors such as clouds and aerosols and limitations in inversion
algorithms, the effective retrieval of XCO2 data is temporally and spatially discontinuous,
which significantly constrains the widespread application of satellite observations. Figure
S1 in the Supplementary Materials illustrates the XCO2 footprint density of OCO-2 satellite
over mainland China at daily, weekly, monthly, and yearly time scales, from which it
can be seen that the OCO-2 XCO2 data have the noticeable problem of missing data at
various temporal scales. Therefore, filling the spatial and temporal gaps in XCO2 data to
obtain high-precision and high-resolution full-coverage maps is significant for enhancing
the application potential of XCO2 satellite data and understanding the spatiotemporal
distributions and patterns of atmospheric CO2 on a large scale.

Various geostatistical methods can enhance the spatiotemporal coverage of XCO2 data.
For example, traditional ordinary Kriging [14,15], sliding window Kriging [16], empirical
Bayesian Kriging [17], precision-weighted Kriging [18], fixed-rank Kriging [19], among
others, have proved effective in obtaining large-scale spatial distributions of XCO2. The
spatiotemporal Kriging algorithm, an extension from spatial to spatiotemporal domains,
takes the temporal trend and spatial correlation within the data into account at the same
time, thereby improving the accuracy of interpolation [20]. However, the resolution of the
results obtained by such interpolation methods is limited, especially when the satellite
data are very sparse, making it challenging to obtain full-coverage results with high
temporal and spatial resolution. Moreover, this method may inadvertently smooth the
spatial characteristics of XCO2, which should not be ignored in applied researches like
atmospheric pollution source studies [21]. In addition to the various Kriging methods,
researchers have used the Bayesian Maximum Entropy (BME) [22] and the High-Accuracy
Surface Modeling (HASM) [23] to attain precise XCO2 distribution results, which have high
computational complexity and require substantial computational power when handling
large datasets.

In recent years, with the development of artificial intelligence technology and the
advent of the big data era, data-driven machine learning methods have rapidly evolved in
the field of remote sensing. Many scholars have already explored the potential of machine
learning methods to apply to the XCO2 gap-filling problem [24–26]. Based on multi-source
remote sensing datasets such as elevation, nighttime light, vegetation indices, meteorology,
land use, and socioeconomic data like population density as modeling independent vari-
ables, they used XCO2 retrieval data and existing XCO2 datasets simulated by atmospheric
physicochemical models (such as Carbon Tracker XCO2 and CAMS XCO2) to construct
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machine learning models including Random Forest (RF), Extreme Random Forest, XGBoost,
LightGBM and CatBoost to obtain full-coverage XCO2 datasets for different study areas.
The experiments indicate that machine learning models have satisfactory performances in
XCO2 data interpolation, especially the RF model. Furthermore, some researchers made
efforts to use deep learning methods. Li [27] constructed a Deep Neural Network (DNN)
model based on OCO-2 XCO2, CAMS XCO2, and auxiliary datasets, such as meteorology
datasets and vegetation indices, to generate a long-term daily full-coverage XCO2 dataset
with high accuracy (R2 = 0.866) compared to TCCON measurements. Zhang and Liu [28]
developed a Convolutional Neural Network (CNN) model based on XCO2 data from the
SCIAMACHY sensor, GOSAT satellite, OCO-2 satellite, and Carbon Tracker dataset, along
with multi-source remote sensing datasets as auxiliary variables. This model produced a
long-term monthly XCO2 dataset for China, and accuracy validation results demonstrate
its strong generalization ability and good agreement with TCCON observations, with an
average bias of −0.60 ppm, MAE of 0.95 ppm, and RMSE of 1.18 ppm.

Machine learning models can automatically capture complex surface features and pat-
terns, enabling the achievement of high-precision parameter extractions and spatiotemporal
predictions for quantitative problems caused by the lack of precise description through
traditional mechanisms. Although machine learning models have problems related to poor
interpretability, these models can provide full-coverage XCO2 datasets with high consis-
tency with ground-based measurements, showcasing significant practical utility. For deep
learning models, a substantial number of training samples are typically required, posing a
challenge in obtaining a sufficient quantity of high-quality labeled training datasets.

Among the existing methods for interpolating XCO2 data, geostatistical methods can
fully utilize the spatial and temporal correlation of geographic data and have significant
advantages in revealing the spatial trends and patterns of geographic phenomena, while
machine learning methods can mine various features of auxiliary data, efficiently process
large-scale data, and obtain high-precision estimation results. Combining different mod-
els allows for the synergistic utilization of the strengths of each type of model, thereby
mitigating the bias inherent in individual models and reducing the volatility of predictive
results [29,30]. However, most current researches rely on a single method to fill gaps in the
XCO2 dataset.

Therefore, in order to enhance the support of existing discrete XCO2 observations for
the studies of spatiotemporal trend of atmospheric CO2 concentrations, surface carbon
emission monitoring, and regional-scale carbon cycling under a space-based perspective,
this study considered to construct a novel hybrid model combining deep learning model
(CNN) and geostatistical method (spatiotemporal Kriging), termed CNN-STK, to derive
fully-covered regional atmospheric CO2 column concentration data from existing satellite
observations. Firstly, the CNN model was constructed by combining a variety of geo-
graphic covariates and the OCO-2 XCO2 data in order to extract the deterministic trends
in the XCO2 data. Secondly, the residuals of the CNN model were interpolated based on
the spatiotemporal Kriging method to optimize the residual distribution [31]. Thirdly, the
predicted trends of the CNN model were combined with the residual distributions interpo-
lated by the spatiotemporal Kriging to generate a high-precision monthly XCO2 dataset at
0.25◦ grid scale in China from 2015 to 2020. Last but not least, the hybrid CNN-STK model
was assessed for accuracy and reliability using multiple validation methods. The objectives
and novelties of this study are as follows:

(1) Introducing a novel method to transform discrete satellite observations into continu-
ous spatiotemporal datasets.

(2) Effectively integrating different types of models to optimize inherent biases of indi-
vidual models.

(3) Producing an independent, high-precision atmospheric CO2 dataset to enhance un-
derstanding of the carbon cycle and climate change.

The paper is organized as follows: Section 2 describes the datasets used in the study
and the research methodology. Section 3 shows the experimental results and model evalua-
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tions; Section 4 discusses the spatial inhomogeneity, seasonal fluctuations, and uncertainties
of CNN-STK XCO2 accuracy, as well as the advantages and limitations of this study.

2. Materials and Methods
2.1. Datasets
2.1.1. OCO-2 Dataset

Orbiting Carbon Observatory-2 (OCO-2) is a satellite launched by NASA dedicated to
monitoring the distribution and variability of atmospheric CO2 concentrations on Earth. Its
primary product is XCO2 data, which represents the average concentration of CO2 in the
dry air column extending from the Earth’s surface to the top of the atmosphere, measured
in parts per million (ppm). The OCO-2 spacecraft collects reflected sunlight in the A-band
of molecular oxygen centered at 765 nm and the CO2 bands centered at 1610 and 2060 nm in
high-resolution spectra. OCO-2 XCO2 data have a spatial resolution of 2.25 km × 1.29 km,
a 16-day revisit period, and a satellite observing footprint of approximately 10 km. Despite
the OCO-2 satellite can acquire nearly a million observations per day, only about 10% of
these measurements are valid due to cloud cover and optically thick aerosols that impede
observations of the entire atmospheric column [32]. Aerosol was the largest source of error
for OCO-2 XCO2, followed by spectroscopy and calibration. The total terrestrial error due
to all error sources is ~1.5–3.5 ppm [33].

In this study, we collected OCO-2 XCO2 data (OCO2_L2_Lite_FP V10r) from EARTH-
DATA (https://www.earthdata.nasa.gov/ [last access: 18 March 2023]) from 2015 to 2020.
Then, we filtered high-quality data with “xco2_quality_flag = 0” and removed outliers
for each month according to the 3σ criterion. Considering the uneven spatial distribution
of XCO2 data, which may introduce scale biases to the model results, we calculated the
average values of XCO2 data within each 0.25◦ grid in China and generated the monthly
0.25◦ grid-scale XCO2 data in China for the period from 2015 to 2020, with a total of
211,116 data points.

2.1.2. Reanalysis Datasets

(1) ERA5 dataset: ERA5 is the fifth-generation atmospheric reanalysis dataset released
by the European Center for Medium-Range Weather Forecasts (ECMWF). It provides
daily and monthly estimates of atmospheric, terrestrial, and oceanic climate variables on a
global scale based on information assimilation techniques. ERA5 has a spatial resolution
of 0.25◦ × 0.25◦ and a temporal resolution of monthly. It is accessible on the Climate
Data Store (https://cds.climate.copernicus.eu/ [last access: 26 June 2023]). This study
collected fourteen variables from 2015 to 2020. Please refer to Table S1 in the Supplementary
Materials for a detailed description.

(2) EGG4 dataset: CAMS global greenhouse gas reanalysis (EGG4) is a reanaly-
sis dataset focusing on CO2 and methane released by ECMWF. By simulating the CO2
fluxes from terrestrial vegetation, it captures the variability of CO2 at various tempo-
ral scales from daily to interannual. EGG4 has a spatial resolution of 0.75◦ × 0.75◦

and a temporal resolution of monthly. It is available on the Atmosphere Data Store
(https://ads.atmosphere.copernicus.eu/ [last access: 26 June 2023]). In this study, a total of
eight variables were collected from 2015 to 2020. Among them, the TCCO2 variable charac-
terizing the CO2 column concentration data was used to validate the model’s accuracy, and
the remaining variables were used to construct the model. We downscaled EGG4 data to a
resolution of 0.25◦ × 0.25◦ by spatial interpolation. For more detailed descriptions, please
refer to Table S2 in the Supplementary Materials.

2.1.3. Other Geographical Covariates

(1) NPP-VIIRS dataset: This dataset provides high-resolution global nighttime light
data. It is jointly maintained and published by NASA and the NOAA National Centers for
Environmental Information (NCEI). The dataset has a spatial resolution of 0.004◦ × 0.004◦

and can be obtained as monthly composite products from the Earth Observation Group

https://www.earthdata.nasa.gov/
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(EOG) Website at https://eogdata.mines.edu/products/vnl/ ([last access: 26 June 2023]).
(2) DEM: STRM DEM 90m data were collected from the Resource and Environment Sci-
ence and Data Center (https://www.resdc.cn/ [last access: 2 April 2021]). (3) Longi-
tude/Latitude: Previous studies have demonstrated that the XCO2 distribution has obvi-
ous latitudinal differences [34], so we extracted the latitude and longitude information of
each data point as auxiliary variables in this study. The above datasets were upscaled to
0.25◦ × 0.25◦ by resampling to standardize the spatial resolution of all variables.

2.1.4. TCCON Ground-Based Network

TCCON is a network of ground-based Fourier Transform Spectrometers recording
direct solar spectra in the near-infrared spectral region. From these spectra, accurate and
precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O, and HDO are
retrieved and reported. The TCCON data have become the primary ground-based data
source for systematic calibration of atmospheric CO2 column concentration data acquired
by GHG observing satellites and can provide high-precision CO2 measurements to validate
the accuracy of remote sensing products [35]. We collected the GGG2020 dataset of the
Hefei site and Xianghe site (Table 1), which are located in the study area, from the TCCON
data archive website (https://tccondata.org/ (accessed on 9 November 2023)).

Table 1. Information of TCCON sites selected in this study.

Site Latitude Longitude Start Date End Date

Hefei 31.9◦N 117.17◦E 2015-11-02 2020-12-31
Xianghe 39.8◦N 116.96◦E 2018-06-14 2022-05-31

2.1.5. Mapping-XCO2 Dataset

The global 1◦ land mapping XCO2 dataset (Mapping-XCO2) was derived from satellite
XCO2 retrievals of GOSAT and OCO-2 spanning the period of April 2009 to December 2020.
The dataset adjusted and integrated XCO2 retrievals from GOSAT and OCO-2, and then,
utilizing spatiotemporal Kriging method to interpolate XCO2 values in data-sparse regions,
resulting in a comprehensive global terrestrial XCO2 dataset [36]. The spatial resolution
is 1◦ × 1◦ and the temporal resolution is 3 days or 1 month. The overall bias of Mapping-
XCO2 dataset is 0.01 ppm, and a standard deviation of the difference of 1.22 ppm compared
with TCCON observations, indicating high quality and reliability. We collected monthly
Mapping-XCO2 from January 2015 to December 2020 and extracted for the China region.

In general, in our experiment, the target variable is OCO-2 XCO2, while the aux-
iliary variables comprise fourteen meteorological features from ERA5 dataset (blh, u10,
v10, si10, msl, t2m, e, skt, ssr, sp, tco3, tcw, tp, totalx), seven flux features from EGG4
dataset (aco2gpp, aco2nee, aco2rec, fco2gpp, fco2nee, fco2rec, tcch4), and four additional
geographic covariates (nighttime light dataset, DEM, latitude and longitude), totaling 25.
The tcco2 variable, representing CO2 column concentrations from the EGG4 dataset, along
with ground-based XCO2 observations from the TCCON network and the Mapping-XCO2
dataset, were used to assess the accuracy and uncertainty of the experimentally generated
dataset across multiple dimensions.

2.2. Methods

The CNN-STK model is a hybrid model combining a CNN model with the spa-
tiotemporal Kriging method, which is similar in essence to regression Kriging [37], i.e.,
decomposing the non-stationary regionalized variables into two components: a determin-
istic trend and stochastic residuals [38] (p. 8), as expressed in Equation (1). To the best of
our knowledge, this integrated method is new and has never been reported. Implementing
the CNN-STK method involves three main steps. Firstly, a CNN model is constructed
based on XCO2 observations and geographic covariates to extract the deterministic spatial
trend. Secondly, the spatiotemporal Kriging method is employed to handle the stochastic

https://eogdata.mines.edu/products/vnl/
https://www.resdc.cn/
https://tccondata.org/
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residuals, involving the computation of its empirical semi-variogram, construction of the
covariance functions, and prediction of unsampled points. Thirdly, the final interpolated
results of the CNN-STK model are obtained by combining the trend values extracted by
the CNN model with the residual terms estimated by the spatiotemporal Kriging. The
flowchart of this study is shown in Figure 1.

Ẑ(s, t) = M̂(s, t) + R̂(s, t) (1)

where Ẑ(s, t) denotes the XCO2 estimation of the unknown point at position s and time t;
M̂(s, t) represents the trend component simulated by the CNN model at the same unknown
point; R̂(s, t) is the residual term at the same unknown point obtained by the spatiotemporal
Kriging interpolation.
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2.2.1. CNN Model

Compared to traditional machine learning models, the CNN model possesses the
capability to autonomously extract and learn features as well as correlations within images,
thus eliminating the necessity to manually perform feature engineering to filter out vari-
ables with weak correlation. We utilized the approach proposed by Zhang and Liu [28] to
construct a training dataset and validation dataset for the CNN model. Initially, we defined
9 × 9 as the length and width of the sample, the number of auxiliary variables as the depth
(i.e., 25), and each XCO2 observation point as the sample center to create high-dimensional
arrays with dimensions (25, 9, 9), where the label value of each array is the XCO2 value
corresponded to the sample center. In total, there are 211,116 samples. Subsequently,
80% of the samples were randomly selected as the training dataset, while the remaining
20% served as the validation dataset. We normalized the training dataset to remove the
magnitude differences between the feature variables. Through several experiments, we
constructed a three-layer neural network structure, as depicted in Figure 2. There are
two convolutional layers and one fully connected layer in the network, and we added an
activation layer after each convolutional layer. Additionally, the MSELoss function was
used to monitor the model loss. We retained the optimal model through adjustments to the
trainable parameters and ultimately utilized it to predict all points in the study area. The
model was constructed using Python based on the PyTorch framework.
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2.2.2. Spatiotemporal Kriging

It is a common mapping method for spatiotemporal discrete points to a continuum.
The process of calculating weight coefficients and estimating weighted averages is basi-
cally the same as that of spatial Kriging interpolation, which extends the computational
dimension from space to space-time. Suppose

{
Z(s, t), (s, t) ∈ D × T ⊆ Rd+1

}
is a space-

time random field, s = (s1, s2, · · · , sd) (d ≤ 3, generally) is the space coordinate and
t ≤ T is the time coordinate. The interpolation formula of the spatiotemporal Kriging is as
follows [38] (p. 39):

Z(̂s, t)0 =
n

∑
i = 1

λiZ(s, t)i (2)

where Z(̂s, t)0 is the predicted result of point s at t time. Z(s, t)i denotes the observation;
n is the number of observations; and λi is the weight coefficient which constitutes the
optimal set of coefficients that satisfy the minimum difference between the estimation
and the observation at the point (s, t)0, i.e.,: min

λi
Var

(
Ẑ(s, t)0 − Z(s, t)0

)
. Simultaneously,

satisfying the conditions for unbiased estimation (Equation (3)) [38] (pp. 31–32):

E
(

Ẑ(s, t)0 − Z(s, t)0

)
= 0 (3)

For the residuals R̂(s, t) obtained in this study, we need to test its stationarity before
constructing the spatiotemporal Kriging model. After passing the test, we first calculated
the spatiotemporal empirical semi-variogram function and then fit the spatiotemporal
theoretical variogram function model. In this step, we chose the spatiotemporal product-
sum model as the theoretical variogram model to fit the spatiotemporal variational structure
of the spatiotemporal geographic data [18,36], which is obtained by transforming the
known pure spatial covariance and pure temporal covariance functions by addition and
multiplication, mixing, and integrals. The covariance function and variational function are
as follows (Equations (4) and (5), [38], pp. 25–27):

C(hs, ht) = k1Cs(hs)Ct(ht) + k2Cs(hs)+k3Ct(ht) (4)

γ(hs, ht) = (k1Ct(0) + k2)γs(hs) + (k1Cs(0) + k3)γt(ht)− k1γs(hs)γt(ht) (5)

In Equation (4), γ(hs, ht), γs(hs), γt(ht) are the corresponding spatiotemporal, spatial,
and temporal variogram functions, respectively, while C(0, 0), Cs(0), Ct(0) are the corre-
sponding sill values, respectively. Generally, the maximum value approaching stability is
taken when computing the spatiotemporal variogram function for the sample. This study
implemented spatiotemporal Kriging interpolation based on the “gstat” package in the R
programming language.

Finally, the constructed spatiotemporal model was used to interpolate the residuals.
The trend term was added to the residual term so as to obtain the final XCO2 estimates.
For a more comprehensive understanding, please refer to the previous works [39,40].
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2.2.3. Validation Methods

In order to assess the accuracy of the CNN-STK model, the common metrics, including
the coefficient of determination (R2), root mean square error (RMSE), and mean absolute
error (MAE), were computed using the independent validation dataset. The formulas of
the metrics are as follows:

R2 = 1 − ∑n
i = 1(yi − ŷi)

2

∑n
i = 1(yi − y)2 (6)

RMSE =

√
∑n

i = 1(ŷi − yi)
2

n
(7)

MAE =
∑n

i = 1|ŷi − yi|
n

(8)

where n represents the number of sample points; yi is the observation of the ith point; ŷi
is the estimation of the ith point; y is the mean of the observations. The larger the R2, the
lower the RMSE and MAE, and the higher the accuracy of model estimations.

In addition, we used the same variables and samples to construct a CNN model, an RF
model, and an RF-STK model (a hybrid method combining RF and spatiotemporal Kriging
with the same strategy as CNN-STK) for comparison. The accuracies of these models were
evaluated using the same metrics, enabling a comparative assessment of the effectiveness
of the CNN-STK model. Then, we compared the CNN-STK interpolation results with a
model simulation dataset (CAMS XCO2) and ground-based measurements (TCCON XCO2)
to assess the reliability of the model predictions.

Last but not least, we separately calculated the relative errors (REs) (Equation (9))
between the CNN-STK estimations and observations to discuss the spatial heterogeneity of
accuracy. The smaller the RE, the higher the precision of the interpolation.

RE =

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (9)

3. Experimental Result and Accuracy Evaluation
3.1. Experimental Results

In this experiment, a CNN model was initially constructed using geographic covariates
and OCO2 XCO2 data to extract deterministic trends. The stationarity test conducted on the
residuals showed that the CNN model has the capability to capture the primary trends and
relationships within the data, with the residuals exhibiting stationarity at a 1% confidence
level, which meets the prerequisite for Kriging interpolation.

Subsequently, the sample variogram and the theoretical variogram model were cal-
culated for the residuals. The quality of the sample variogram depends on the number
and distribution of available sample points. A sufficient number and good distribution of
sample points can reduce the lag distance as much as possible and obtain more reliable
calculation results. We aggregated discrete OCO-2 XCO2 retrievals into 0.25◦ grids at a
monthly time scale, greatly reducing data gaps, but over 60% of the positions still have
less than 10% valid values within a 72-unit time frame. Therefore, we attempted to fit
residual semi-variogram models using all grid positions and subsets with at least 12, 24,
36, or 48 valid values as sample points. It was found that when using all positions and
the subset with at least 12 valid values as sample points, we were unable to obtain the
semi-variogram fitting curve converged to a stable value over space and time at certain
distances. In other words, to achieve stable spatial and temporal variation scales when
distances between spatiotemporal sample points are excessively large, it is necessary to
screen the points to reduce uncertainties. After several experimental comparisons, it was
recommended to select grid points with at least one-third (24-time units) of valid values as
sample points to participate in the calculation and modeling of the variational function.
The least squares method was used for parameter estimation, and the product-sum model



Remote Sens. 2024, 16, 2433 9 of 21

was used to fit the empirical spatiotemporal variogram. The resulting model achieved
relatively stable spatiotemporal sill values within certain time lags and spatial distances.
Detailed descriptions of the stationarity test of residuals and the process and results of con-
structing the theoretical spatiotemporal variogram are given in Supplementary Materials
Sections S1 and S2.

Finally, the trend values estimated by the CNN model were combined with the residu-
als optimized through the spatiotemporal Kriging method to obtain the spatiotemporal
distribution of monthly XCO2 for the study area from 2015 to 2020 at a resolution of
0.25◦ × 0.25◦, as shown in Figure 3.

3.2. Evaluation of Model Performance

The accuracy of the CNN-STK model was first evaluated based on a completely
random independent validation dataset consisting of 51,054 samples. The model exhibited
satisfactory performance, achieving an R2 of 0.936, an RMSE of 1.300 ppm, and an MAE
of 0.946 ppm, as illustrated in Figure 4a. Then, to validate the efficacy of this model, we
compared it against a single CNN model, an RF model, and an RF-STK model, all trained
and evaluated using the same data sets (Figure 4b–d). The accuracies of the comparative
models are inferior to that of the CNN-STK model, suggesting that the CNN-STK model is
better at accurately reconstructing full-coverage XCO2 data. Meanwhile, both the CNN-STK
and RF-STK models demonstrated higher accuracies compared to their respective non-STK
counterparts, indicating that the spatiotemporal Kriging method effectively optimizes the
error distribution by considering the spatiotemporal autocorrelation of residuals, thereby
improving prediction accuracy. In particular, the RF-STK model demonstrates a more
pronounced improvement in accuracy through the spatiotemporal Kriging method. The
CNN model can probably comprehensively learn the spatial relationships and features
from sample points and surrounding auxiliary data, while, in contrast, the RF model
faces challenges in capturing spatial relationships between data points. Consequently, the
spatiotemporal Kriging method exhibits a notable application advantage in addressing the
residuals of the RF model.

Due to the latitudinal and seasonal variations in XCO2 data, we systematically cat-
egorized all data points based on latitudes and seasons, respectively. Then, the accuracy
of each category was validated to assess the overall stability of the model. As illustrated
in Table 2, the model exhibits higher accuracy in the low latitude region (I) compared to
the mid-latitude regions (II–V), as evidenced by higher R2 and lower RMSE and MAE. The
accuracy in summer (VII) is slightly lower than that in other seasons, probably attributable
to the hot and rainy climate during the summer in the study area, resulting in fewer valid
data points acquired by satellites. Nevertheless, there is no strong fluctuation in the accura-
cies across different latitude zones and seasons, indicating the robustness of the CNN-STK
model, with an average R2 of 0.942 across latitudes and 0.931 across seasons.

Table 2. Accuracy validation results of CNN-STK model by latitude and by season.

Latitude (◦N) R2 RMSE MAE

I [Min *, 20] 0.963 0.903 0.670
II (20, 30] 0.944 1.133 0.822
III (30, 40] 0.932 1.295 0.953
IV (40, 50] 0.937 1.303 0.964
V [50, Max *] 0.934 1.487 1.101

Season R2 RMSE MAE

VI Spring (Mar, Apr, May) 0.939 1.129 0.824
VII Summer (Jun, Jul, Aug) 0.920 1.540 1.169
VIII Autumn (Sep, Oct, Nov) 0.932 1.235 0.911
IX Winter (Dec, Jan, Feb) 0.933 1.170 0.845

* “Min” and “Max” refer to the minimum and maximum latitude of China.
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good agreement across all sites (±1%) compared to TCCON, with a monthly mean 
difference of ±4 ppm. There is a seasonal pattern of deviations, with maximum deviations 
up to 10 ppm in summer. 

Comparing the 2015–2020 XCO2 values reconstructed in this paper with the CAMS 
XCO2 data, it can be seen that there is a consistent temporal trend between the CNN-STK 
XCO2 and CAMS XCO2 (Figure 5). From 2015 to 2019, the two datasets show close 
agreement, with an average deviation of approximately 0.18 ppm. In contrast to the CAMS 
XCO2, the CNN-STK model underestimates in all summers but generally overestimates 
in the other seasons. After June 2019, the CNN-STK XCO2 estimates are consistently lower 
than CAMS XCO2, although the trend aligns with previous years. Furthermore, the results 
of Spearman’s rank correlation coefficient (ρ) between the two datasets reveal positive 
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3.3. Validation with Model Simulation

The CAMS EGG4 dataset provides globally continuous spatiotemporal XCO2 data
obtained by data assimilation and model simulations. It serves as a valuable supplementary
dataset for understanding atmospheric CO2 concentrations in regions where precise ground-
based measurements and satellite XCO2 observations are not available. According to the
official validation report [41] (p. 6), CAMS XCO2 showed very good agreement across all
sites (±1%) compared to TCCON, with a monthly mean difference of ±4 ppm. There is a
seasonal pattern of deviations, with maximum deviations up to 10 ppm in summer.

Comparing the 2015–2020 XCO2 values reconstructed in this paper with the CAMS
XCO2 data, it can be seen that there is a consistent temporal trend between the CNN-
STK XCO2 and CAMS XCO2 (Figure 5). From 2015 to 2019, the two datasets show close
agreement, with an average deviation of approximately 0.18 ppm. In contrast to the CAMS
XCO2, the CNN-STK model underestimates in all summers but generally overestimates in
the other seasons. After June 2019, the CNN-STK XCO2 estimates are consistently lower
than CAMS XCO2, although the trend aligns with previous years. Furthermore, the results
of Spearman’s rank correlation coefficient (ρ) between the two datasets reveal positive
correlations in summer and negative correlations in autumn, though these correlations are
both weak. The significant differences emerge from nonparametric tests simultaneously
(Section S3 in the Supplementary Materials). We specifically discussed the uncertainty of
the CNN-STK XCO2 dataset relative to CAMS-XCO2 in Section 4.2.1.
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3.4. Validation with TCCON Measurements

To ensure the spatial consistency of ground-based data and XCO2 estimates, we
defined circular geographical regions centered on TCCON sites with diameters of 1◦, 3◦,
and 5◦ as the validation areas (Figure S5). The averages of XCO2 estimates for each period
within different validation regions were calculated. Meanwhile, the mean values for each
period of the TCCON sites were obtained by first calculating the daily means and then
calculating the monthly mean values. The standard deviations of the measurements relative
to the monthly means at Hefei and Xianghe sites are in the ranges of 0.26–2.64 ppm and
0.67–2.9 ppm, respectively. The comparison between the two datasets was conducted to
validate the accuracy of the interpolated data, as illustrated in Figure 6.
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Figure 6. Comparisons between CNN-STK XCO2 and TCCON XCO2. (a–c) are validation results
of the average CNN-STK XCO2 within circular geographic regions centered on TCCON sites, with
diameters of 1◦, 3◦, and 5◦, respectively, compared against measurements from the Hefei site and
Xianghe site of the TCCON network. (d) presents line plots of CNN-STK XCO2 and TCCON
measurements within the 3◦ diameter geographic region, accompanied by a bar chart of their biases.

The validation results of three geographic ranges of each site prove that the model-
estimated XCO2 data is highly consistent with TCCON data. The validation accuracy of
the Hefei site ranges from 0.961 to 0.968 for R2, 0.75 to 0.833 ppm for RMSE, and 0.628 to
0.688 ppm for MAE, which is higher than that of the Xianghe site. Taking the 3◦ region as an
example (Figure 6d), the biases between model-estimated XCO2 and TCCON XCO2 reveal
a general underestimation at the Xianghe site. On the one hand, this discrepancy may be
attributed to the close proximity of the Xianghe site to Beijing, China, which is affected
strongly by human activities. On the other hand, the 3◦ and 5◦ regions of the Xianghe
site include a portion of the maritime area for which corresponding XCO2 estimates are
unavailable. As a result, the omission of XCO2 values over the marine airspace near the
Xianghe site from the calculation of regional average concentrations may have contributed
to the relatively large biases at the Xianghe site. In general, the experimental results fit well
with the TCCON data, with an overall accuracy of about R2 of 0.954, RMSE of 0.898 ppm,
and MAE of 0.741 ppm.

4. Discussion
4.1. Spatial Inhomogeneity of Accuracy

Given the large spatial heterogeneity of urban structure, climatic conditions, vegeta-
tion, and other characteristics in the study area and the uneven distribution of satellite
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observation data across different seasons and regions, there may be corresponding differ-
ences in the accuracy of CNN-STK XCO2 data. We separately calculated the REs between
the interpolations and observations for each season and plotted their spatial distributions
(Figure 7) for specific evaluation.
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In spring, autumn, and winter, a similar pattern of error distribution is observed,
with higher error points clustering in southern China, particularly in the eastern margin
of the Qinghai-Tibet Plateau (highlighted by the blue box in Figure 7a), which marks
the transition zone between two climatic regions (Figure 7d). Lower error points are
concentrated in the green box area, situated in temperate arid/semi-arid regions and the
western part of the Qinghai-Tibet Plateau. Based on the climatic zoning map, it is evident
that southern China, heavily influenced by monsoons, has significantly fewer effective
XCO2 data points collected by carbon observation satellites compared to northern regions.
Especially in the subtropical humid region of the middle and lower reaches of the Yangtze
River Plain, noticeable data gaps occur in spring, autumn, and winter, greatly impacting
data reconstruction accuracy in this area.

Summer exhibits a different distribution pattern. Figure 7b illustrates that high-error
points are clustered in northeastern China, which boasts the largest natural forest area
in China, accounting for approximately 37% of the national total forest area. Although
summer is brief, characterized by abundant precipitation and high temperatures fostering
vigorous vegetation activity, it serves as an important forest carbon sink region. Therefore,
the data quality here is slightly poorer compared to other seasons, potentially influenced
by vegetation photosynthesis-respiration dynamics. Additionally, apart from the northern
marginal region of China, data scarcity prevails across most regions during this season,
hindering the assessment of error value clustering.

We further conducted statistical analysis on the data accuracy within areas of high and
low XCO2 aggregation for each season, as shown in Figure 8, where the hot spot indicates
regions of high-value aggregation. In contrast, cold spots represent areas of low-value
aggregation. Details of the XCO2 aggregation method and distribution maps are provided
in the Supplementary Materials Section S4. Within a 95% confidence interval, all four
seasons exhibit significant clustering characteristics (Table S6). Figure S6 shows distinct
patterns of hot and cold spots across different seasons in China. Specifically, in spring,
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autumn, and winter, the spatial distribution of hot and cold spots is generally similar, with
hot spots widely distributed in the central and eastern regions, as well as the northeastern
region. In contrast, cold spots are mainly concentrated in the western regions. In contrast,
during summer, hot spots are predominantly located in southern and western China, while
cold spots are evident in the northeastern region.
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The various clustering regions demonstrate relatively high accuracies across different
seasons. The accuracies of cold spots are generally lower than those of hot spots and areas
without significant clustering, with average R2 of 0.91, 0.93, and 0.93, respectively. The
lowest accuracy is observed in cold-spot regions during summer, with an R2 of 0.89.

In general, the CNN-STK model we constructed can generate high-precision spa-
tiotemporal continuous datasets based on sparse satellite data. Since data distribution
from satellite collection during spring and autumn is relatively uniform, resulting in high-
quality XCO2 reconstruction datasets. Moreover, the accuracy is higher in the northern
regions compared to the southern regions. However, during summer, particularly in
the northeastern region where low-value aggregation occurs, accuracy is lower, possibly
due to significant disturbances from biosphere activities. Future research could consider
vegetation characteristics and conduct separate modeling analyses for this region.

4.2. Uncertainty Analysis

Assessing the uncertainty of a dataset is essential to understanding its reliability and
limitations, as well as aiding other researchers in comprehension and validation. Previous
analyses have shown fairly significant seasonal characteristics in the distribution of XCO2
data and its errors. Therefore, in this section, we independently analyze the uncertainty
of the CNN-STK XCO2 dataset for different seasons using both the CAMS XCO2 dataset
and the open-source 1◦ Mapping-XCO2 product. Furthermore, the RF feature importance
algorithm will be used to explore the key impact factors on XCO2 data.
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4.2.1. Comparison with CAMS XCO2

We computed the mean and standard deviation of the absolute differences between
CNN-STK XCO2 and CAMS XCO2 for each season to quantify the uncertainty of CNN-STK
XCO2. The uncertainties for spring, summer, autumn, and winter are 0.54 (±0.46) ppm,
1.40 (±1.09) ppm, 0.63 (±0.55) ppm, and 0.61 (±0.51) ppm, respectively. Uncertainty is sig-
nificantly higher in summer than in other seasons. The spatial distribution of uncertainties
for each season is shown in Figure 9.
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The CNN-STK XCO2 uncertainties calculated from CAMS XCO2 have significant
differences in geographical distribution. Overestimation is more prevalent in western
China than in the central and eastern regions. Statistically, CNN-STK XCO2 exhibits more
positive deviations in spring and winter, accounting for approximately 66% and 81% of
mainland China. During this period, negative deviations are primarily clustered in south-
central China. Conversely, negative deviations dominate in summer and autumn, covering
approximately 88% and 61%, with positive deviations concentrated in the western regions.
Moreover, we highlighted several key regions with large uncertainties. Firstly, the Qinghai-
Tibet Plateau region in southwest China (the magenta boxes in Figure 9a–c), which has a
complex topography and climate, shows the maximum overestimations in spring, autumn,
and winter. Secondly, the Sichuan Basin in the south-central region (the bright blue boxes
in Figure 9a–c), which is characterized by topographic occlusion, experienced maximum
underestimations during spring, autumn, and winter. Thirdly, the northeastern region
exhibits significant negative anomalies during summer, consistent with the biosphere
disturbance error mentioned in Section 4.1.

4.2.2. Comparison with Mapping-XCO2

We further assessed the possible uncertainties of the CNN-STK XCO2 dataset by
comparing it with the existing open-source XCO2 product, Mapping-XCO2. Initially, the
CNN-STK XCO2 data were upscaled to 1◦ × 1◦ using mean aggregation to unify the
spatial resolution. Subsequently, the uncertainties between CNN-STK XCO2 and Mapping-
XCO2 for each season were quantified using the same method. The results reveal that
the uncertainties of CNN-STK XCO2 are 0.21 (±0.19) ppm of spring, 0.25 (±0.20) ppm of
summer, 0.20 (±0.18) ppm of autumn, and 0.25 (±0.21) ppm of winter, which is in better
agreement with Mapping-XCO2 than CAMS XCO2. No significant seasonal bias in the
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uncertainties was identified. The spatial distribution of uncertainties for each season is
illustrated in Figure 10.
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The uncertainty of CNN-STK XCO2 does not exhibit particularly distinct spatial
clustering characteristics, but there is a general underestimation observed, encompassing
approximately 62% of mainland China. From Figure 10, we note that the Qinghai-Tibet
Plateau (the bright blue boxes in Figure 10a,c and the magenta box in Figure 10b) and
the Sichuan Basin (the magenta box in Figure 10c,d) are still the focal areas of uncer-
tainty. Hainan Province shows the largest overestimations in spring, probably because the
upscaling of the CNN-STK XCO2 data enhances the uncertainties in this region.

The uncertainty analysis indicates that the CNN-STK XCO2 dataset is comparable
to the model simulation dataset and the open-source dataset released by scholars. It is
expected that datasets produced from different sources and methods could be integrated in
future studies to obtain a more comprehensive and reliable XCO2 dataset.

4.2.3. Feature Importance Evaluation

Feature importance analysis elucidates the degree to which each variable impacts
the dependent variable. Using the Random Forest feature importance algorithm, we
systematically evaluated and ranked all features to find the impact factors of XCO2 and their
weights, presenting the outcomes in Figure 11. Detailed definitions of each variable can be
found in Tables S1 and S2 in the Supplementary Materials. A higher feature importance
value indicates a greater influence on XCO2. Notably, the nighttime light data (NTL)
emerges as the most influential variable, followed by CH4 column-mean molar fraction
(tcch4), total column ozone (tco3), total column water (tcw), and surface solar radiation
(ssr), all significantly contributing to XCO2. To enhance the interpolation accuracy of the
XCO2 dataset, we propose choosing the independent variables with higher accuracy and
reliability, particularly those with substantial weight. Moreover, given China’s pronounced
spatial heterogeneity, regional variations in optimal independent variables and modeling
approaches should be considered. Zoning the study area based on topographic or climatic
factors could thus refine the models and improve dataset accuracy.
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4.3. Advantages and Limitations

In recent years, carbon observation satellite data has made significant contributions
to the global-scale monitoring of atmospheric CO2 concentrations, but its spatial and tem-
poral discontinuities have become the main reason for restricting the wide application. In
response to this situation, some scholars have explored different spatiotemporal recon-
struction methods for XCO2 and obtained better accuracy results [20,27,42]. Compared
with the machine learning models constructed by Wang [24], Wu [25], and He [26], with
R2 ranging from 0.61 to 0.91, the CNN model utilized in this study performs better. Deep
learning models typically outperform machine learning models in tasks with large amounts
of training samples and can automatically learn features without the need for feature
engineering before modeling. This study has a considerable sample size and possesses the
prerequisites for exploring the application of deep learning models. Moreover, we tried
to integrate the CNN model with the spatiotemporal Kriging method, aiming to leverage
the advantages of these two types of models, i.e., after getting the predictions from the
CNN model, we further refined the model errors using the spatiotemporal Kriging method,
which led to a more accurate interpolation result. To the best of our knowledge, this attempt
to effectively integrate a deep learning model with a geostatistical method is new and has
never been reported. Compared to single deep learning models constructed by Li [27]
and Zhang [28] (accuracy validations based on TCCON are: R2 = 0.87; RMSE = 0.90 ppm
and MAE = 0.74 ppm, respectively), this study also has higher accuracy, which not only
indicates that the model constructed in this paper is reliable, but also demonstrates that the
strategy of optimizing the residuals using spatiotemporal Kriging method is effective. It is
worth mentioning that all of their experiments introduced existing XCO2 datasets from
model simulations as a priori knowledge or constraints in modeling, which may cause
unnecessary biases. In contrast, we only used XCO2 satellite data for modeling and interpo-
lation and then validated it with model simulations, which effectively avoids this problem
and ensures the model results are independent. In addition, although the experiment used
the strategy of randomly selecting 20% of the sample points as an independent validation
dataset to evaluate the model accuracy, we used different randomly selected training and
validation datasets several times in constructing the CNN and spatiotemporal Kriging
models, and all of them obtained stable accuracy results.

However, the CNN-STK model proposed in this study also has some limitations. For
instance, the density of valid data points significantly affects interpolation precision when
using the spatiotemporal Kriging method. Future research aiming for finer-scale analysis
should consider integrating more satellite data sources, such as GOSAT, OCO-3, TanSat,
etc., to enhance data density and improve the reliability of geostatistical methods. Secondly,
we directly used the cropping method for CNN model samples provided by the previous
study, wherein the surrounding imagery of each satellite observation point was cropped
into an independent sample. However, the appropriate sample size should be determined
through corresponding comparative experiments. To be specific, larger samples may be
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able to provide richer features and thus improve the model accuracy, but it is also possible
to affect the model accuracy because of the spatiotemporal heterogeneity.

Furthermore, current studies often use XCO2 as auxiliary data for modeling anthro-
pogenic carbon emissions of interest or computing enhancement and anomaly indicators
to characterize the spatial distribution of anthropogenic carbon emissions. Exploration of
its potential practical significance remains insufficient. The XCO2 dataset constructed in
this study exhibits spatial consistency with datasets of fossil fuel CO2 emissions such as
EDGAR and ODIAC (Figure 12). Hence, XCO2 data may possess a certain potential for
characterizing patterns and trends of anthropogenic carbon emissions, yet current research
inadequately explores this aspect (it is important to note that XCO2 data are not equivalent
to CO2 emissions). In future work, we will delve into in-depth spatiotemporal pattern
recognition of XCO2 data.
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5. Conclusions

This study introduces a novel approach to transforming discrete satellite observations
into continuous spatiotemporal datasets. Specifically, we developed a CNN-STK model to
leverage the strengths of deep learning and geostatistical method, reconstructing a monthly
spatiotemporal XCO2 dataset of China at 0.25◦ grid-scale from 2015 to 2020 based on
single-satellite retrievals. It provides a new workflow to obtain comprehensive, objective,
and reliable regional estimates of atmospheric CO2 concentrations, which is particularly
beneficial for countries and regions lacking effective terrestrial CO2 observations.

We conducted multiple experiments to assess the CNN-STK XCO2 dataset. Firstly, we
evaluated the CNN-STK model using an independent validation dataset and comparative
experiments, demonstrating its high precision with an R2 of 0.936, an RMSE of 1.3 ppm,
and an MAE of 0.946 ppm. Besides, the integrated approach proved effective. Secondly, we
categorized interpolation results by latitude and season, revealing minimal fluctuations
in precision, indicating its robustness. Finally, we compared the CNN-STK XCO2 dataset
with model-simulated CAMS XCO2 dataset and TCCON ground-based observations. The
experimental results show coherence between CNN-STK XCO2 and CAMS XCO2 trends,
as well as the validation results against TCCON XCO2, demonstrate an R2 of 0.954, RMSE
of 0.898 ppm, and MAE of 0.741 ppm, underscoring the reliability of CNN-STK dataset.

We further extensively discussed the spatial distribution of the accuracy of the CNN-
STK XCO2 dataset across different seasons and hot-spot/cold-spot regions, along with its
uncertainties and influencing factors. The error distributions in spring, autumn, and winter
exhibit similarities. The northern region of China has relatively more XCO2 observations
with uniform distribution, resulting in generally higher accuracy compared to the southern
region. High errors and uncertainties are concentrated in the Qinghai-Tibet Plateau, Sichuan
Basin, and the northeastern region. Summer is the period of high uncertainty for the CNN-
STK XCO2 dataset. Additionally, the accuracies of cold-spot regions are lower than that of
hot-spot areas and regions with no significant clustering characteristics, indicating potential
large biogenic disturbances in areas where XCO2 low values cluster, such as forest carbon
sink absorption. Furthermore, we assessed that nighttime light data exerted the greatest
influence on CNN-STK XCO2, followed by CH4 column-mean molar fraction, total column
ozone, total column water, and surface solar radiation.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs16132433/s1, Figure S1. The XCO2 data acquired by OCO-
2 at daily, weekly, monthly, and yearly time scales; Figure S2. Histogram of residual frequency
distribution of CNN model; Figure S3. The spatial empirical variogram function and temporal
empirical variogram function of the residuals (red points), and their corresponding fitted variogram
function models (blue lines); Figure S4. The empirical spatiotemporal variogram functions for
residuals and its fitted variogram function model; Figure S5. Locations of Hefei site and Xianghe
site (a). Circular geographical regions centered on each site, with diameters of 1◦, 3◦, and 5◦. The
land cover data was obtained from GlobeLand30 dataset (http://globallandcover.com/ (accessed
on 9 November 2023)), and the blank area in the diagrams is the oceanic area (b); Figure S6. Spatial
distribution of hot and cold spots of XCO2 in different seasons; Table S1. ERA5 variables collected
in this study; Table S2. EGG4 variables collected in this study; Table S3. ADF test results; Table S4.
The optimal parameters of the theoretical spatiotemporal variogram function model; Table S5. Non-
parametric statistical test results for CNN-STK XCO2 and CAMS XCO2; Table S6. Global Moran’s I of
different seasons. Table S6. Global Moran’s I of different seasons [43–47].
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16. Tadić, J.M.; Qiu, X.; Miller, S.; Michalak, A.M. Spatio-Temporal Approach to Moving Window Block Kriging of Satellite Data v1.0.
Geosci. Model Dev. 2017, 10, 709–720. [CrossRef]

17. Ma, X.; Zhang, H.; Han, G.; Mao, F.; Xu, H.; Shi, T.; Hu, H.; Sun, T.; Gong, W. A Regional Spatiotemporal Downscaling Method for
CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8084–8093. [CrossRef]

18. He, Z.; Lei, L.; Zhang, Y.; Sheng, M.; Wu, C.; Li, L.; Zeng, Z.-C.; Welp, L.R. Spatio-Temporal Mapping of Multi-Satellite Observed
Column Atmospheric CO2 Using Precision-Weighted Kriging Method. Remote Sens. 2020, 12, 576. [CrossRef]

19. Zammit-Mangion, A.; Cressie, N.; Shumack, C. On Statistical Approaches to Generate Level 3 Products from Satellite Remote
Sensing Retrievals. Remote Sens. 2018, 10, 155. [CrossRef]

20. Zeng, Z.-C.; Lei, L.; Strong, K.; Jones, D.B.A.; Guo, L.; Liu, M.; Deng, F.; Deutscher, N.M.; Dubey, M.K.; Griffith, D.W.T.; et al.
Global Land Mapping of Satellite-Observed CO2 Total Columns Using Spatio-Temporal Geostatistics. Int. J. Digit. Earth 2017, 10,
426–456. [CrossRef]

21. Van Zoest, V.; Osei, F.B.; Hoek, G.; Stein, A. Spatio-Temporal Regression Kriging for Modelling Urban NO2 Concentrations. Int. J.
Geogr. Inf. Sci. 2020, 34, 851–865. [CrossRef]

22. Gao, Z.; Jiang, Y.; He, J.; Wu, J. Spatiotemporal Variation Analysis of Global XCO2 Concentration during 2010–2020 Based on
DINEOF-BME Framework and Wavelet Function. Sci. Total Environ. 2023, 892, 164750. [CrossRef]

23. Liu, Y.; Yue, T.; Zhang, L.; Zhao, N.; Zhao, M.; Liu, Y. Simulation and Analysis of XCO2 in North China Based on High Accuracy
Surface Modeling. Environ. Sci. Pollut. Res. 2018, 25, 27378–27392. [CrossRef] [PubMed]

24. Wang, W.; He, J.; Feng, H.; Jin, Z. High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in
Beijing–Tianjin–Hebei Region. Int. J. Environ. Res. Public Health 2022, 19, 10853. [CrossRef] [PubMed]

25. Wu, C.; Ju, Y.; Yang, S.; Zhang, Z.; Chen, Y. Reconstructing Annual XCO2 at a 1 km × 1 km Spatial Resolution across China from
2012 to 2019 Based on a Spatial CatBoost Method. Environ. Res. 2023, 236, 116866. [CrossRef]

26. He, S.; Yuan, Y.; Wang, Z.; Luo, L.; Zhang, Z.; Dong, H.; Zhang, C. Machine Learning Model-Based Estimation of XCO2 with High
Spatiotemporal Resolution in China. Atmosphere 2023, 14, 436. [CrossRef]

27. Li, T.; Wu, J.; Wang, T. Generating Daily High-Resolution and Full-Coverage XCO2 across China from 2015 to 2020 Based on
OCO-2 and CAMS Data. Sci. Total Environ. 2023, 893, 164921. [CrossRef] [PubMed]

28. Zhang, M.; Liu, G. Mapping Contiguous XCO2 by Machine Learning and Analyzing the Spatio-Temporal Variation in China from
2003 to 2019. Sci. Total Environ. 2023, 858, 159588. [CrossRef]

29. Liu, D.; Di, B.; Luo, Y.; Deng, X.; Zhang, H.; Yang, F.; Grieneisen, M.L.; Zhan, Y. Estimating Ground-Level CO Concentrations
across China Based on the National Monitoring Network and MOPITT: Potentially Overlooked CO Hotspots in the Tibetan
Plateau. Atmos. Chem. Phys. 2019, 19, 12413–12430. [CrossRef]

30. Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M.L.; Di, B. Satellite-Based Estimates of Daily NO2 Exposure in
China Using Hybrid Random Forest and Spatiotemporal Kriging Model. Environ. Sci. Technol. 2018, 52, 4180–4189. [CrossRef]

31. Shao, Y.; Ma, Z.; Wang, J.; Bi, J. Estimating Daily Ground-Level PM2.5 in China with Random-Forest-Based Spatiotemporal
Kriging. Sci. Total Environ. 2020, 740, 139761. [CrossRef] [PubMed]

32. Osterman, G.; O’Dell, C.; Eldering, A.; Fisher, B.; Crisp, D.; Cheng, C.; Frankenberg, C.; Lambert, A.; Gunson, M.; Mandrake, L.;
et al. Orbiting Carbon Observatory-2 & 3 (OCO-2 & OCO-3) Data Product User’s Guide, Operational Level 2 Data Versions 10
and Lite File Version 10 and VEarly. 2020. Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/
OCO2_OCO3_B10_DUG.pdf (accessed on 18 March 2023).

33. Connor, B.; Bösch, H.; McDuffie, J.; Taylor, T.; Fu, D.; Frankenberg, C.; O’Dell, C.; Payne, V.H.; Gunson, M.; Pollock, R.; et al.
Quantification of Uncertainties in OCO-2 Measurements of XCO2 Simulations and Linear Error Analysis. Atmos. Meas. Tech. 2016,
9, 5227–5238. [CrossRef]

34. Jacobs, N.; Simpson, W.R.; Graham, K.A.; Holmes, C.; Hase, F.; Blumenstock, T.; Tu, Q.; Frey, M.; Dubey, M.K.; Parker, H.A.; et al.
Spatial Distributions of XCO2 Seasonal Cycle Amplitude and Phase over Northern High-Latitude Regions. Atmos. Chem. Phys.
2021, 21, 16661–16687. [CrossRef]

https://doi.org/10.1016/j.atmosenv.2014.12.053
https://doi.org/10.5194/amt-11-1251-2018
https://doi.org/10.1016/j.scitotenv.2017.06.018
https://doi.org/10.3390/rs14153769
https://doi.org/10.1007/s10661-017-6285-8
https://www.ncbi.nlm.nih.gov/pubmed/29124415
https://doi.org/10.3390/atmos12030384
https://doi.org/10.5194/gmd-10-709-2017
https://doi.org/10.1109/TGRS.2021.3052215
https://doi.org/10.3390/rs12030576
https://doi.org/10.3390/rs10010155
https://doi.org/10.1080/17538947.2016.1156777
https://doi.org/10.1080/13658816.2019.1667501
https://doi.org/10.1016/j.scitotenv.2023.164750
https://doi.org/10.1007/s11356-018-2683-x
https://www.ncbi.nlm.nih.gov/pubmed/30033484
https://doi.org/10.3390/ijerph191710853
https://www.ncbi.nlm.nih.gov/pubmed/36078571
https://doi.org/10.1016/j.envres.2023.116866
https://doi.org/10.3390/atmos14030436
https://doi.org/10.1016/j.scitotenv.2023.164921
https://www.ncbi.nlm.nih.gov/pubmed/37331401
https://doi.org/10.1016/j.scitotenv.2022.159588
https://doi.org/10.5194/acp-19-12413-2019
https://doi.org/10.1021/acs.est.7b05669
https://doi.org/10.1016/j.scitotenv.2020.139761
https://www.ncbi.nlm.nih.gov/pubmed/32559526
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_OCO3_B10_DUG.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_OCO3_B10_DUG.pdf
https://doi.org/10.5194/amt-9-5227-2016
https://doi.org/10.5194/acp-21-16661-2021


Remote Sens. 2024, 16, 2433 21 of 21

35. Yang, Y.; Zhou, M.; Langerock, B.; Sha, M.K.; Hermans, C.; Wang, T.; Ji, D.; Vigouroux, C.; Kumps, N.; Wang, G.; et al. New
Ground-Based Fourier-Transform near-Infrared Solar Absorption Measurements of XCO2, XCH4 and XCO at Xianghe, China.
Earth Syst. Sci. Data 2020, 12, 1679–1696. [CrossRef]

36. Zeng, Z.; Lei, L.; Hou, S.; Ru, F.; Guan, X.; Zhang, B. A Regional Gap-Filling Method Based on Spatiotemporal Variogram Model
of CO2 Columns. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3594–3603. [CrossRef]

37. Sun, X.-L.; Yang, Q.; Wang, H.-L.; Wu, Y.-J. Can Regression Determination, Nugget-to-Sill Ratio and Sampling Spacing Determine
Relative Performance of Regression Kriging over Ordinary Kriging? CATENA 2019, 181, 104092. [CrossRef]

38. Luo, X. Spatiotemporal Stochastic Models for Earth Science and Engineering Applications. Ph.D. Thesis, McGill University,
Montreal, QC, Canada, 1998.

39. Yang, J.; Hu, M. Filling the Missing Data Gaps of Daily MODIS AOD Using Spatiotemporal Interpolation. Sci. Total Environ. 2018,
633, 677–683. [CrossRef]

40. Hu, H.; Hu, Z.; Zhong, K.; Xu, J.; Zhang, F.; Zhao, Y.; Wu, P. Satellite-Based High-Resolution Mapping of Ground-Level PM2.5
Concentrations over East China Using a Spatiotemporal Regression Kriging Model. Sci. Total Environ. 2019, 672, 479–490.
[CrossRef] [PubMed]

41. Ramonet, M.; Langerock, B.; Warneke, T.; Eskes, H.J. Validation Report of the CAMS Greenhouse Gas Global Re-Analysis, Years
2003–2020, Copernicus Atmosphere Monitoring Service (CAMS) Report. 2021. Available online: https://atmosphere.copernicus.
eu/sites/default/files/2021-04/CAMS84_2018SC3_D5.1.2-2020.pdf (accessed on 26 June 2023).

42. Zhang, L.; Yue, T.; Wilson, J.; Wang, D.; Zhao, N.; Liu, Y.; Liu, D.; Du, Z.; Wang, Y.; Lin, C.; et al. Modelling of XCO2 Surfaces
Based on Flight Tests of TanSat Instruments. Sensors 2016, 16, 1818. [CrossRef]

43. Worden, K.; Iakovidis, I.; Cross, E.J. New Results for the ADF Statistic in Nonstationary Signal Analysis with a View towards
Structural Health Monitoring. Mech. Syst. Signal Process. 2021, 146, 106979. [CrossRef]

44. Gianfreda, A.; Maranzano, P.; Parisio, L.; Pelagatti, M. Testing for Integration and Cointegration When Time Series Are Observed
with Noise. Econ. Model. 2023, 125, 106352. [CrossRef]

45. Varouchakis, E.A.; Hristopulos, D.T. Comparison of Spatiotemporal Variogram Functions Based on a Sparse Dataset of Ground-
water Level Variations. Spat. Stat. 2019, 34, 100245. [CrossRef]

46. Sukkuea, A.; Heednacram, A. Prediction on Spatial Elevation Using Improved Kriging Algorithms: An Application in Environ-
mental Management. Expert Syst. Appl. 2022, 207, 117971. [CrossRef]

47. Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/essd-12-1679-2020
https://doi.org/10.1109/TGRS.2013.2273807
https://doi.org/10.1016/j.catena.2019.104092
https://doi.org/10.1016/j.scitotenv.2018.03.202
https://doi.org/10.1016/j.scitotenv.2019.03.480
https://www.ncbi.nlm.nih.gov/pubmed/30965262
https://atmosphere.copernicus.eu/sites/default/files/2021-04/CAMS84_2018SC3_D5.1.2-2020.pdf
https://atmosphere.copernicus.eu/sites/default/files/2021-04/CAMS84_2018SC3_D5.1.2-2020.pdf
https://doi.org/10.3390/s16111818
https://doi.org/10.1016/j.ymssp.2020.106979
https://doi.org/10.1016/j.econmod.2023.106352
https://doi.org/10.1016/j.spasta.2017.07.003
https://doi.org/10.1016/j.eswa.2022.117971
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x

	Introduction 
	Materials and Methods 
	Datasets 
	OCO-2 Dataset 
	Reanalysis Datasets 
	Other Geographical Covariates 
	TCCON Ground-Based Network 
	Mapping-XCO2 Dataset 

	Methods 
	CNN Model 
	Spatiotemporal Kriging 
	Validation Methods 


	Experimental Result and Accuracy Evaluation 
	Experimental Results 
	Evaluation of Model Performance 
	Validation with Model Simulation 
	Validation with TCCON Measurements 

	Discussion 
	Spatial Inhomogeneity of Accuracy 
	Uncertainty Analysis 
	Comparison with CAMS XCO2 
	Comparison with Mapping-XCO2 
	Feature Importance Evaluation 

	Advantages and Limitations 

	Conclusions 
	References

