Large-Scale Land Cover Mapping Framework Based on Prior Product Label Generation: A Case Study of Cambodia
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Images and Preprocessing
2.3. PPs and LLCM Taxonomy
2.4. Validation and Training Dataset
3. Methods
3.1. Label Generation Based on PPs
3.2. Dynamic Label Correction
3.2.1. Noise Label Correction Module
3.2.2. Label Correction Process
3.3. Land Cover Mapping (LLCM)
3.3.1. Classification Model Training
3.3.2. Land Cover Mapping
4. Results
4.1. Experimental Setup
4.2. Mapping Results and Accuracy Assessment
4.3. Comparison with Existing PPs
5. Discussion
5.1. Classification Accuracy of Different Networks
5.2. Evaluation of Each Part of the Framework
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; De Roo, B.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Fritz, S. Copernicus global land service: Land cover 100 m: Collection 3: Epoch 2019: Globe. Zenodo 2020, Version V3.0.1. Available online: https://zenodo.org/records/3939050 (accessed on 1 January 2023).
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Bertels, L.; Smets, B. Copernicus global land cover layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote. Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Chen, B.; Xu, B.; Zhu, Z.; Yuan, C.; Suen, H.P.; Guo, J.; Xu, N.; Li, W.; Zhao, Y.; Yang, J.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 3. [Google Scholar]
- Van De Kerchove, R.; Zanaga, D.; Keersmaecker, W.; Souverijns, N.; Wevers, J.; Brockmann, C.; Grosu, A.; Paccini, A.; Cartus, O.; Santoro, M.; et al. ESA WorldCover: Global land cover mapping at 10 m resolution for 2020 based on Sentinel-1 and 2 data. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 13–17 December 2021; Volume 2021, pp. GC45I–0915. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200. Available online: https://zenodo.org/records/7254221 (accessed on 8 August 2022).
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote. Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [Google Scholar] [CrossRef]
- Wambugu, N.; Chen, Y.; Xiao, Z.; Wei, M.; Bello, S.A.; Junior, J.M.; Li, J. A hybrid deep convolutional neural network for accurate land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102515. [Google Scholar] [CrossRef]
- Tong, X.Y.; Xia, G.S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef]
- Tait, A.M.; Brumby, S.P.; Hyde, S.B.; Mazzariello, J.; Corcoran, M. Dynamic World Training Dataset for Global Land Use and Land Cover Categorization of Satellite Imagery; PANGAEA: Wuhan, China, 2021. [Google Scholar] [CrossRef]
- Schmitt, M.; Hughes, L.H.; Qiu, C.; Zhu, X.X. SEN12MS–A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-2/W7, 153–160. [Google Scholar] [CrossRef]
- Schmitt, M.; Prexl, J.; Ebel, P.; Liebel, L.; Zhu, X.X. Weakly supervised semantic segmentation of satellite images for land cover mapping–challenges and opportunities. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 795–802. [Google Scholar] [CrossRef]
- Dong, R.; Li, C.; Fu, H.; Wang, J.; Li, W.; Yao, Y.; Gan, L.; Yu, L.; Gong, P. Improving 3-m resolution land cover mapping through efficient learning from an imperfect 10-m resolution map. Remote Sens. 2020, 12, 1418. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Li, C.; Gong, P.; Wang, J.; Zhu, Z.; Biging, G.S.; Yuan, C.; Hu, T.; Zhang, H.; Wang, Q.; Li, X.; et al. The first all-season sample set for mapping global land cover with Landsat-8 data. Sci. Bull. 2017, 62, 508–515. [Google Scholar] [CrossRef]
- Defourny, P.; Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M. Land cover CCI. Prod. User Guide Version 2012, 2, 10-1016. [Google Scholar]
- Hua, T.; Zhao, W.; Liu, Y.; Wang, S.; Yang, S. Spatial consistency assessments for global land-cover datasets: A comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens. 2018, 10, 1846. [Google Scholar] [CrossRef]
- Yi, K.; Wu, J. Probabilistic end-to-end noise correction for learning with noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7017–7025. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Frantz, D.; Haß, E.; Uhl, A.; Stoffels, J.; Hill, J. Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds from bright surfaces based on parallax effects. Remote Sens. Environ. 2018, 215, 471–481. [Google Scholar] [CrossRef]
- Zhu, Q.; Lei, Y.; Sun, X.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Knowledge-guided land pattern depiction for urban land use mapping: A case study of Chinese cities. Remote Sens. Environ. 2022, 272, 112916. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Gao, Y.; Chen, X.; Mi, J. GISD30: Global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform. Earth Syst. Sci. Data 2022, 14, 1831–1856. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Chen, X.; Lin, S.; Wang, J.; Mi, J.; Liu, W. GWL_FCS30: Global 30 m wetland map with fine classification system using multi-sourced and time-series remote sensing imagery in 2020. Earth Syst. Sci. Data Discuss. 2022, 2022, 1–31. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef]
- White, D.; Kimerling, J.A.; Overton, S.W. Cartographic and geometric components of a global sampling design for environmental monitoring. Cartogr. Geogr. Inf. Syst. 1992, 19, 5–22. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, H.; Li, Z.; Hackman, K.O.; Liu, C.; Andriamiarisoa, R.L.; Ny Aina Nomenjanahary Raherivelo, T.; Li, Y.; Gong, P. Automatic high-resolution land cover production in madagascar using sentinel-2 time series, tile-based image classification and google earth engine. Remote Sens. 2020, 12, 3663. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976; Volume 42. [Google Scholar]
- Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. In Classic Works of the Dempster-Shafer Theory of Belief Functions; Springer: Berlin/Heidelberg, Germany, 2008; pp. 57–72. [Google Scholar]
- Frénay, B.; Verleysen, M. Classification in the presence of label noise: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 845–869. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; He, X.; Zhang, L.; Yang, L. Cleannet: Transfer learning for scalable image classifier training with label noise. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5447–5456. [Google Scholar]
- Chen, Y.; Zhang, G.; Cui, H.; Li, X.; Hou, S.; Ma, J.; Li, Z.; Li, H.; Wang, H. A novel weakly supervised semantic segmentation framework to improve the resolution of land cover product. ISPRS J. Photogramm. Remote Sens. 2023, 196, 73–92. [Google Scholar] [CrossRef]
- Arazo, E.; Ortego, D.; Albert, P.; O’Connor, N.; McGuinness, K. Unsupervised label noise modeling and loss correction. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 312–321. [Google Scholar]
- Tanaka, D.; Ikami, D.; Yamasaki, T.; Aizawa, K. Joint optimization framework for learning with noisy labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5552–5560. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Wang, Y.; Ma, X.; Chen, Z.; Luo, Y.; Yi, J.; Bailey, J. Symmetric cross entropy for robust learning with noisy labels. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 322–330. [Google Scholar]
- Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation. arXiv 2016, arXiv:1606.02147. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703. [Google Scholar]
Reference Data | Image Data | Years | Resolution | Source |
---|---|---|---|---|
Dynamic World | Sentinel-2 | 2020 | 10 m | https://code.earthengine.google.com/ (accessed on 24 July 2022) |
ESRI LandCover | Sentinel-2 | 2020 | 10 m | https://livingatlas.arcgis.com/landcover/ (accessed on 13 April 2022) |
ESA WorldCover | Sentinel-1 Sentinel-2 | 2020 | 10 m | https://esa-worldcover.org/ (accessed on 13 October 2021) |
GLC_FCS30 | Landsat | 2020 | 30 m | https://zenodo.org/record/3986872 (accessed on 13 October 2021) |
Globeland30 | Landsat HJ-1 GF-1 | 2020 | 30 m | http://www.globallandcover.com/ (accessed on 21 November 2021) |
GWL_FCS30 | Sentinel-1 Landsat | 2020 | 30 m | https://zenodo.org/record/6575731 (accessed on 13 August 2021) |
GISD30 | Landsat | 2020 | 30 m | https://zenodo.org/record/5220816 (accessed on 13 August 2022) |
Global cropland | Landsat | 2019 | 30 m | https://glad.umd.edu/dataset/croplands (accessed on 13 August 2022) |
Open Street Map | - | 2020 | - | https://master.apis.dev.openstreetmap.org/ (accessed on 13 September 2022) |
LLCM | Dynamic World | ESRI LandCover | ESA WorldCover | GLC_FCS30 | GlobeLand30 |
---|---|---|---|---|---|
Water body | Water | Water | Permanent water bodies | Water body | Water bodies |
Forest | Trees | Trees | Tree cover | Forest | Forest |
Impervious surface | Built area | Built area | Built-up | Impervious surfaces | Artificial surfaces |
Cropland | Crops | Crops | Cropland | Cropland | Cultivated Land |
Grass & Shrub | Shrub & Scrub | Rangeland | Shrubland | Shrubland | Shrubland |
Grass | Grassland | Grassland | Grassland | ||
Flooded vegetation | Flooded vegetation | Flooded vegetation | Herbaceous Flooded vegetation | Flooded vegetation | Wetland |
Mangroves | |||||
Bareland | Bare ground | Bare ground | Bare/Sparse vegetation | Bare areas | Bareland |
Moss and Lichen |
Mapped Class | Reference Class | ||||||||
---|---|---|---|---|---|---|---|---|---|
Water Body | Forest | Impervious Surface | Cropland | Grass & Shrub | Flooded Vegetation | Bareland | Total | UA | |
Water body | 191 | 0 | 0 | 0 | 0 | 1 | 0 | 192 | 0.9948 |
Forest | 0 | 1626 | 0 | 10 | 14 | 5 | 0 | 1655 | 0.9825 |
Impervious surface | 2 | 0 | 161 | 1 | 0 | 0 | 3 | 167 | 0.9641 |
Cropland | 3 | 10 | 1 | 912 | 79 | 6 | 8 | 1019 | 0.8950 |
Grass & Shrub | 1 | 6 | 0 | 134 | 407 | 0 | 0 | 548 | 0.7427 |
Flooded vegetation | 7 | 1 | 0 | 6 | 9 | 82 | 0 | 105 | 0.7810 |
Bareland | 0 | 0 | 0 | 2 | 0 | 0 | 24 | 26 | 0.9231 |
Total | 204 | 1643 | 162 | 1065 | 509 | 94 | 35 | 3712 | |
PA | 0.9363 | 0.9897 | 0.9938 | 0.8563 | 0.7996 | 0.8723 | 0.6857 | ||
mF1 = 0.8837, mIOU = 0.8023, OA = 0.9168, Kappa = 0.8808 |
Mapped Class | Metric | DW | ESRI | ESA | GLC | GLB | Our |
---|---|---|---|---|---|---|---|
Water body | F1 | 0.9703 | 0.9524 | 0.9072 | 0.9211 | 0.8238 | 0.9646 |
IOU | 0.9423 | 0.9091 | 0.8301 | 0.8538 | 0.7004 | 0.9317 | |
Forest | F1 | 0.9637 | 0.9557 | 0.9550 | 0.7691 | 0.7556 | 0.9861 |
IOU | 0.9299 | 0.9151 | 0.9139 | 0.6249 | 0.6072 | 0.9725 | |
Impervious surface | F1 | 0.9384 | 0.9388 | 0.8949 | 0.8737 | 0.5191 | 0.9787 |
IOU | 0.8840 | 0.8846 | 0.8098 | 0.7758 | 0.3506 | 0.9583 | |
Cropland | F1 | 0.7432 | 0.8506 | 0.8101 | 0.7340 | 0.6547 | 0.8752 |
IOU | 0.5914 | 0.7400 | 0.6808 | 0.5798 | 0.4866 | 0.7782 | |
Grass & Shrub | F1 | 0.6621 | 0.7460 | 0.5133 | 0.0267 | 0.1872 | 0.7701 |
IOU | 0.4949 | 0.5949 | 0.3452 | 0.0136 | 0.1033 | 0.6262 | |
Flooded vegetation | F1 | 0.3978 | 0.5379 | 0.6422 | 0.1688 | 0.5323 | 0.8241 |
IOU | 0.2483 | 0.3679 | 0.4730 | 0.0922 | 0.3627 | 0.7009 | |
Bareland | F1 | 0.6875 | 0.5882 | 0.4909 | - | - | 0.7869 |
IOU | 0.5238 | 0.4167 | 0.3253 | - | - | 0.6486 | |
mF1 | 0.7661 | 0.7956 | 0.7448 | 0.4991 | 0.4961 | 0.8837 | |
mIOU | 0.6592 | 0.6900 | 0.6254 | 0.4200 | 0.3730 | 0.8023 | |
OA | 0.8419 | 0.8788 | 0.8394 | 0.6781 | 0.6595 | 0.9168 | |
Kappa | 0.7757 | 0.8292 | 0.7667 | 0.5283 | 0.4947 | 0.8808 |
Mapped Class | Metric | UNet | SegNet | PSPNet | DeepLabv3+ | HRNet | Our |
---|---|---|---|---|---|---|---|
Water | F1 | 0.9572 | 0.9521 | 0.9495 | 0.9471 | 0.9552 | 0.9646 |
IOU | 0.9179 | 0.9087 | 0.9038 | 0.8995 | 0.9143 | 0.9317 | |
Forest | F1 | 0.9731 | 0.9607 | 0.9632 | 0.9710 | 0.9615 | 0.9861 |
IOU | 0.9476 | 0.9245 | 0.9289 | 0.9437 | 0.9258 | 0.9725 | |
Impervious surface | F1 | 0.9501 | 0.9326 | 0.9280 | 0.9501 | 0.9529 | 0.9787 |
IOU | 0.9050 | 0.8736 | 0.8656 | 0.9050 | 0.9101 | 0.9583 | |
Cropland | F1 | 0.8783 | 0.8689 | 0.8724 | 0.8768 | 0.8753 | 0.8752 |
IOU | 0.7830 | 0.7682 | 0.7737 | 0.7807 | 0.7783 | 0.7782 | |
Grass & Shrub | F1 | 0.7073 | 0.6888 | 0.6869 | 0.7117 | 0.6644 | 0.7701 |
IOU | 0.5471 | 0.5253 | 0.5231 | 0.5525 | 0.4974 | 0.6262 | |
Flooded vegetation | F1 | 0.7826 | 0.7175 | 0.7981 | 0.7822 | 0.7293 | 0.8241 |
IOU | 0.6429 | 0.5594 | 0.6640 | 0.6423 | 0.5739 | 0.7009 | |
Bareland | F1 | 0.7500 | 0.7273 | 0.6538 | 0.6792 | 0.5106 | 0.7869 |
IOU | 0.6000 | 0.5714 | 0.4857 | 0.5143 | 0.3429 | 0.6486 | |
mF1 | 0.8569 | 0.8354 | 0.8360 | 0.8455 | 0.8070 | 0.8837 | |
mIOU | 0.7634 | 0.7330 | 0.7350 | 0.7483 | 0.7061 | 0.8023 | |
OA | 0.9033 | 0.8893 | 0.8936 | 0.9014 | 0.8920 | 0.9168 | |
Kappa | 0.8603 | 0.8404 | 0.8460 | 0.8575 | 0.8425 | 0.8808 |
D-S Trust | NDVI | Label Correction | mF1 | mIOU | OA | Kappa | |
---|---|---|---|---|---|---|---|
1 | 0.8569 | 0.7634 | 0.9033 | 0.8603 | |||
2 | ✓ | 0.8666 | 0.7766 | 0.9084 | 0.8686 | ||
3 | ✓ | 0.8656 | 0.7775 | 0.9133 | 0.8750 | ||
4 | ✓ | 0.8406 | 0.7471 | 0.9009 | 0.8554 | ||
5 | ✓ | ✓ | 0.8728 | 0.7841 | 0.9154 | 0.8778 | |
6 | ✓ | ✓ | 0.8759 | 0.7921 | 0.9133 | 0.8747 | |
7 | ✓ | ✓ | 0.8587 | 0.7676 | 0.9084 | 0.8669 | |
8 | ✓ | ✓ | ✓ | 0.8837 | 0.8023 | 0.9168 | 0.8808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Yu, T.; Mi, X.; Yang, J.; Tian, C.; Liu, P.; Yan, J.; Meng, Y.; Jiang, Z.; Ma, Z. Large-Scale Land Cover Mapping Framework Based on Prior Product Label Generation: A Case Study of Cambodia. Remote Sens. 2024, 16, 2443. https://doi.org/10.3390/rs16132443
Zhu H, Yu T, Mi X, Yang J, Tian C, Liu P, Yan J, Meng Y, Jiang Z, Ma Z. Large-Scale Land Cover Mapping Framework Based on Prior Product Label Generation: A Case Study of Cambodia. Remote Sensing. 2024; 16(13):2443. https://doi.org/10.3390/rs16132443
Chicago/Turabian StyleZhu, Hongbo, Tao Yu, Xiaofei Mi, Jian Yang, Chuanzhao Tian, Peizhuo Liu, Jian Yan, Yuke Meng, Zhenzhao Jiang, and Zhigao Ma. 2024. "Large-Scale Land Cover Mapping Framework Based on Prior Product Label Generation: A Case Study of Cambodia" Remote Sensing 16, no. 13: 2443. https://doi.org/10.3390/rs16132443
APA StyleZhu, H., Yu, T., Mi, X., Yang, J., Tian, C., Liu, P., Yan, J., Meng, Y., Jiang, Z., & Ma, Z. (2024). Large-Scale Land Cover Mapping Framework Based on Prior Product Label Generation: A Case Study of Cambodia. Remote Sensing, 16(13), 2443. https://doi.org/10.3390/rs16132443