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Abstract: Large-Scale land cover mapping (LLCM) based on deep learning models necessitates a
substantial number of high-precision sample datasets. However, the limited availability of such
datasets poses challenges in regularly updating land cover products. A commonly referenced
method involves utilizing prior products (PPs) as labels to achieve up-to-date land cover mapping.
Nonetheless, the accuracy of PPs at the regional level remains uncertain, and the Remote Sensing
Image (RSI) corresponding to the product is not publicly accessible. Consequently, the sample dataset
constructed through geographic location matching may lack precision. Errors in such datasets are not
only due to inherent product discrepancies, and can also arise from temporal and scale disparities
between the RSI and PPs. In order to solve the above problems, this paper proposes an LLCM
framework for generating labels for use with PPs. The framework consists of three main parts. First,
initial generation of labels, in which the collected PPs are integrated based on D-S evidence theory
and initial labels are obtained using the generated trust map. Second, for dynamic label correction, a
two-stage training method based on initial labels is adopted. The correction model is pretrained in the
first stage, then the confidence probability (CP) correction module of the dynamic threshold value and
NDVI correction module are introduced in the second stage. The initial labels are iteratively corrected
while the model is trained using the joint correction loss, with the corrected labels obtained after
training. Finally, the classification model is trained using the corrected labels. Using the proposed
land cover mapping framework, this study used PPs to produce a 10 m spatial resolution land cover
map of Cambodia in 2020. The overall accuracy of the land cover map was 91.68% and the Kappa
value was 0.8808. Based on these results, the proposed mapping framework can effectively use PPs
to update medium-resolution large-scale land cover datasets, and provides a powerful solution for
label acquisition in LLCM projects.

Keywords: land cover; prior products; label generation; noisy label; confidence probability

1. Introduction

Regularly updated large-scale land cover mapping (LLCM) provides necessary in-
formation for land resource surveying, ecological environment assessment, urban spatial
planning, crop growth monitoring, and other related applications. A large number of
land cover classification prior products (PPs) have been made public to date. Large-scale
low-resolution products based on MODIS images include MCD12Q1 [1] products of 500 m
and MCD12C1 products of 0.05° for long time series, as well as Copernicus Global Land
Services (CGLS) land cover products of 100 m for 2015–2019 [2,3]. In addition, 30 m land
cover products based on Landsat series images include GlobeLand products for 2000, 2010,
and 2020 [4] and GLC_FCS30 Fine Dynamic products from 1985 to 2020 [5]. In recent
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years, products with 10 m resolution based on Sentinel-2 images have been released, such
as FROM_GLC in 2017 [6], ESA WorldCover v100 in 2020 [7], ESA WorldCover v200 in
2021 [8], and ESRI LandCover [9], produced annually since 2017, as well as the near-real-
time Dynamic World product [10]. The production of these products is mostly based on
traditional random forest or object-oriented methods, which rely on artificially constructing
features and require highly specialized knowledge, and as such cannot meet the efficiency
and accuracy needs of LLCM [11].

In recent years, because deep learning method can automatically extract and learn
features, it has been gradually applied to land cover mapping tasks in remote sensing
images (RSI) [12,13], providing a new possibility for realizing large-scale and high-precision
land cover mapping [14]. However, LLCM based on deep learning methods requires a
large number of high-precision sample datasets for model training, and labeling in samples
requires a high level of professional knowledge and rich interpretation experience of
labeling personnel, which greatly increases the cost of labeling and sample collection. The
limited availability of sample datasets poses challenges for regularly updating land cover
products. For example, the newly released 2017–2023 10-m ESRI LandCover and Dynamic
World v1 are based on training models and production of the National Geographic Society’s
Dynamic World Training dataset [15], which required a great deal of manpower and time.

In order to solve the problem of difficult label acquisition and repeated collection,
studies have begun to use existing PPs as sample datasets required for label construction
model training [16–18]. For example, using the 500-m MODIS land cover product to derive
a consistent continental scale 30 m Landsat land cover classification [19]. The 2017 10-m
FROM_GLC product applied the 2015 all-season land cover mapping sample library [20]
to Sentinel-2 images acquired in 2017, using a random forest classifier to generate a 10-m
resolution global land cover map. The 2015 GLC_FCS30 product was produced by taking
training samples from the CCI_LC [21] land cover product [22]. Although these studies
have addressed the issue of label acquisition to an extent, the accuracy of PPs at the regional
level is uncertain and remote sensing images (RSI) corresponding to products are not
publicly available. In addition, there are differences in time and resolution between RSI
and PPs for LLCM. As a result, datasets generated from existing public land cover products
may contain a large number of labels with inaccurate noise. A dataset with noisy labels
causes serious overfitting by the deep learning network, leading to reduced precision [23].

To solve those problems, an LLCM framework based on label generation for PPs is
proposed in this paper, which solves the difficulties in obtaining LLCM labels and the
problem of labels containing noise, allowing better use of PPs for generating labels and
correcting the noise in labels to complete LLCM. In order to make use of multiple products
to generate labels, D-S evidence theory is introduced. Based on the regional accuracy of
PPs, the evidence of PPs is combined to generate a trusted label that integrates multiple
products. In order to correct the noise in the labels, an online noise correction method is
proposed which takes into account the confidence probability (CP) and spectral index of
the model output to update the labels during the training process and then uses the united
noise correction loss to train the model to recover the correct labels from the noise labels.
Using the LLCM framework proposed in this paper, a 10-m land cover map of Cambodia
for 2020 was produced.

2. Study Area and Materials
2.1. Study Area

The Kingdom of Cambodia, referred to as Cambodia, is located in the south of In-
dochina Peninsula in Asia. Its geographical position between latitude 10.5◦N to 14.2◦N and
longitude 102.5◦E to 107.5◦E borders Laos and Thailand to the north, Vietnam to the east,
and the Gulf of Thailand and Gulf of Siam to the south, as shown in Figure 1. The total
area of Cambodia is about 181,035 km2, and its diverse terrain includes plains, mountains,
plateaus, and coastal lowlands. Cambodia’s climate is mainly tropical monsoon climate,
with the year divided into two seasons: May to October for the rainy season, and November



Remote Sens. 2024, 16, 2443 3 of 19

to April for the dry season. It is warm and humid throughout the year with plenty of
rainfall, which is conducive to the growth of various vegetation. Its ecological environment
is complex and diverse; a variety of ecosystems meet here, from tropical rainforests to arid
grasslands and from high mountains to coastal lowlands. Through in-depth research, we
can not only better understand its ecological environment, but can provide scientific basis
for resource management and environmental protection in Cambodia. However, due to
the complex terrain of Cambodia, frequent clouds and rain, and serious interference from
human behavior in some areas, the research encounters certain challenges.

Figure 1. The geographical location of Cambodia, showing the overall and major urban land cover
(ESRI LandCover): (a) location of Cambodia, (b) land cover in Cambodia, and (c) land cover in major
cities of Cambodia.

2.2. Images and Preprocessing

In Cambodia, the weather makes it difficult to obtain images without cloud at the
same time of year. Google Earth Engine (GEE) [24] is a cloud computing platform that
processes satellite image data and other earth observation data. The platform provides
global MODIS, Landsat, Sentinel, and other multi-source remote sensing data as well
as terrain, climate, and other types of data. Its powerful cloud computing and storage
capabilities greatly improve the efficiency of data processing, providing unprecedented
opportunities for dynamic study of the Earth system. In this paper, Sentinel-2 L2A data are
used. L2A data consist of the bottom of atmospheric reflectance after radiometric calibration
and atmospheric correction. Sentinel-2 Cloud Probabilities (S2C), Cloud Displacement
Index (CDI), and Directional Distance Transform (DDT) [25] for each cell in the image grid
(Figure 2) was used to generate masks to reduce clouds and cloud shadows covering all
available Sentinel-2 L2A-class images in the Cambodia region in 2020. The images were
synthesized and mosaicked according to the spatial position. Finally, a total of 37 cloudless
images of Cambodia in 2020 were obtained, covering about 181,000 km of land surface
of Cambodia and some surrounding areas, including nine bands: B2, B3, B4, B5, B6, B7,
B8, B11 and B12, all of which were sampled with the nearest neighbor sampling method
to a resolution of 10 m. Based on the above process, image data can be better managed
and processed to minimize the misclassification of ground objects caused by image quality,
clouds, and cloud shadows. In order to facilitate model training, we first used the maximum
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value of each band as the denominator to map the original data between 0 and 1, then used
the mean value and standard deviation for normalization processing.

Figure 2. Sentinel-2 image grid of Cambodia.

2.3. PPs and LLCM Taxonomy

Among the existing PPs, most rely on accurately labeled training samples, and the
labeling of these samples requires a large amount of labeling cost, which inevitably hinders
the rapid updating of LLCM. By integrating multiple land cover products with a resolution
of 10–30 m to generate training samples with relatively high accuracy and reliability on
a global scale, the cost of obtaining a large number of training samples for LLCM can be
greatly reduced while being more stable and reliable than a single product.

Therefore, in this paper we selected five global medium-resolution land cover prod-
ucts with similar primary LLCM taxonomy, three single-class products, and Open Street
Map(OSM) data [26] (Open source data). Of the five land cover products, ESA WorldCover
(European Space Agency, Paris, France), GLC_FCS30 (Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing, China), and Globeland30 (National Geo-
matics Center of China, Beijing, China) are based on traditional machine learning models
(random forests, multi-scale segmentation, etc.) which can provide finer class boundaries,
while ESRI LandCover (Environmental Systems Research Institute, Inc., Redlands, CA,
USA) and Dynamic World (Google Inc., Santa Clara, CA, USA) are products based on
deep learning models that are more accurate in most regions. Three additional products,
Global Impervious Surface GISD30 [27] (Aerospace Information Research Institute, Chi-
nese Academy of Sciences. Beijing, China), Global Flooded Vegetation GWL_FCS30 [28]
(Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.)
and Globe Cropland [29] (University of Maryland, College Park, MD, USA), were selected
to improve accuracy. OSM is often used as supplementary data in land cover or land use
mapping tasks. The data source, product year, spatial resolution and other information of
the nine products are shown in Table 1.
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Table 1. PPs information.

Reference Data Image Data Years Resolution Source

Dynamic World Sentinel-2 2020 10 m https://code.earthengine.google.com/
(accessed on 24 July 2022)

ESRI LandCover Sentinel-2 2020 10 m https://livingatlas.arcgis.com/landcover/
(accessed on 13 April 2022)

ESA WorldCover Sentinel-1 Sentinel-2 2020 10 m https://esa-worldcover.org/ (accessed on 13 October 2021)

GLC_FCS30 Landsat 2020 30 m https://zenodo.org/record/3986872
(accessed on 13 October 2021)

Globeland30 Landsat HJ-1 GF-1 2020 30 m http://www.globallandcover.com/
(accessed on 21 November 2021)

GWL_FCS30 Sentinel-1 Landsat 2020 30 m https://zenodo.org/record/6575731
(accessed on 13 August 2021)

GISD30 Landsat 2020 30 m https://zenodo.org/record/5220816
(accessed on 13 August 2022)

Global cropland Landsat 2019 30 m https://glad.umd.edu/dataset/croplands
(accessed on 13 August 2022)

Open Street Map - 2020 - https://master.apis.dev.openstreetmap.org/
(accessed on 13 September 2022)

As shown in Table 2, the LLCM taxonomy used in this article references five prior
products, Dynamic World, ESRI LandCover, ESA WorldCover, GLC_FCS30, and Glo-
beland30,which use Landsat and Sentinel images as primary data sources. As Cambodia is
located in a tropical region, tundra, lichen, snow, and ice were removed from the LLCM
taxonomy. In addition, due to the relatively small and low accuracy of shrubland and
grassland cover in GLC_FCS30 and Globeland30 in Cambodia, shrubland and grassland
were combined into the class of “Grass & Shrub”. Eventually, the LLCM taxonomy was
simplified into seven categories: water body, forest, impervious surface, cropland, Grass &
Shrub, flooded vegetation, and bareland.

Table 2. Taxonomy of PPs and LLCM.

LLCM Dynamic World ESRI LandCover ESA WorldCover GLC_FCS30 GlobeLand30

Water body Water Water Permanent
water bodies Water body Water bodies

Forest Trees Trees Tree cover Forest Forest

Impervious
surface Built area Built area Built-up Impervious

surfaces Artificial surfaces

Cropland Crops Crops Cropland Cropland Cultivated Land

Grass & Shrub
Shrub & Scrub

Rangeland
Shrubland Shrubland Shrubland

Grass Grassland Grassland Grassland

Flooded vegetation Flooded vegetation Flooded vegetation
Herbaceous

Flooded vegetation Flooded vegetation Wetland

Mangroves

Bareland Bare ground Bare ground
Bare/Sparse vegetation

Bare areas Bareland
Moss and Lichen

https://code.earthengine.google.com/
https://livingatlas.arcgis.com/landcover/
https://esa-worldcover.org/
https://zenodo.org/record/3986872
http://www.globallandcover.com/
https://zenodo.org/record/6575731
https://zenodo.org/record/5220816
https://glad.umd.edu/dataset/croplands
https://master.apis.dev.openstreetmap.org/
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2.4. Validation and Training Dataset

To assess the accuracy of the land cover map for Cambodia, we annotated individual
pixel points with mapping units of 10 × 10 m (1 × 1 pixel). Cambodia was uniformly
divided into hexagonal grids [30,31] with side lengths of 0.2°, and 20 verification points
(corresponding to 10 × 10 m pixels) were randomly selected in each hexagonal grid. In
order to avoid repeated sampling in the same homogeneous material, the interval of each
verification point was at least 2 km. All annotation was performed using Remote sensing
data processing software, which provides vector editing tools to directly annotate Sentinel-2
images. It is easier to label categories such as water body, forest, cropland, impervious
surface, and bareland at 10-m resolution in Sentinel-2 because these elements tend to occur
in fairly uniform plots. The grassland, shrub, and flooded vegetation categories are more
challenging to label, and are often confused with each other. Therefore, in addition to
Sentinel-2 images, we obtained matched high-resolution satellite images through Google
Maps and used ESRI LandCover as an aid for comprehensive judgment to label verification
points. The above random sampling method can ensure that the collected verification points
are evenly distributed in geographical space as much as possible and that all categories
have a certain number of sample points. Finally, 3712 verification points were marked, as
shown in Figure 3a.

The training dataset was based on a grid, and the generated initial labels and corre-
sponding images were clipped according to a grid of size 256 × 256 without overlapping.
The same number of samples were randomly selected for each cell. For each grid, we
randomly selected 20% of the slices as training data. The spatial distribution of the training
dataset, which finally contained 13,869 data pairs, is shown in Figure 3b.

(a) validation point distribution. (b) Train tile distribution.

Figure 3. Distribution of dataset used for validation and training.

3. Methods

Figure 4 shows the methodological flow used to produce a land cover map in Cambodia.
Based on publicly available land cover products and Sentinel-2 data, this paper completed a
10-m resolution land cover mapping of Cambodia for 2020. In the data processing part, fusion
labels were first generated based on D-S evidence theory, then initial labels were obtained by
selecting fusion labels using a synchronously generated trust graph. In the label correction part,
the pretraining of the label correction model was carried out first, then the pretraining weight
training model was loaded, and finally the classification graph and corresponding CP map
were predicted during the training process. The designed CP label screening and NDVI label
screening modules were used to screen and update the labels, and the joint loss function was
calculated using the update label and the initial label, finally obtaining the corrected labels. In
the training part of the classification model, the corrected labels and weighted loss function



Remote Sens. 2024, 16, 2443 7 of 19

were used to train the model. Finally, land cover classification and accuracy assessment were
completed. The details are described in the following section.

Figure 4. Mapping process of LLCM framework based on multi-source prior product label generation.

3.1. Label Generation Based on PPs

The sources of land cover data are diverse, and there are differences in accuracy, classifi-
cation systems, and spatiotemporal scale. Moreover, there may be uncertain factors such as
sensor error and classification algorithm error in the process of land cover data classification
and acquisition. Dempster-Shafer (D-S) evidence theory can be used as a method of data
fusion to effectively integrate data from these different sources in order to generate more
reliable results. Therefore, this paper uses D-S evidence theory for fusion of PPs.

D-S evidence theory, a generalization of probability theory, can express random uncer-
tainty as well as incomplete information and subjective uncertainty [32,33]. The principle of
D-S evidence theory is to assume that D is the set of all possible values of variable X and that
the elements in the set Ω satisfy the mutually exclusive relationship. Then, the set Ω is the
identification framework of variable X. For the power set 2D of Ω, it constitutes a proposition
set. If the function m: 2D → [0, 1] satisfies m(ϕ) = 0 and ∑A ∈ D m(A) = 1, then m is
called the Basic Probability Assignment(BPA) and m(A) is the basic probability number of
proposition A, representing the accuracy of the credibility assigned to A.

For each grid image, we used the collected validation data set to analyze Dynamic
World Land Cover, ESRI LandCover, and ESA World Accuracy evaluation for each class
of cover in the Globeland30, GLC_FCS30, GISD30, GWL_FCS30, and Global_cropland
products. The producer’s accuracy and user’s accuracy of eight products in each grid were
obtained, and F1 scores calculated with both kinds of accuracy were assigned as the BPA:

mi(Tj) =
2 × Recalli j × Precisioni j

Recalli j + Precisioni j
(1)

In Equation (1), Recalli j and Precisioni j are the producer’s accuracy and user’s accuracy
of the i-th product for the target land cover type Tj, respectively, mi(Tj) is the basic probability
assignment of the i-th product for the target land cover classes Tj in the unit grid, and j
indicates the eight land cover classes in this classification system, taking values from 1 to 8.

The essence of the evidence combination rule adopted by D-S evidence theory is
the orthogonal sum of multiple pieces of evidence. Combined with the actual situation,
Dynamic World Land Cover, ESRI LandCover, ESA WorldCover, Globeland30, GLC_FCS30,
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GISD30, GWL_FCS30, and Global Cropland were fused to obtain the comprehensive
probability mi(Tj) of each class for each pixel:

k = ∑
T1 j∩T2 j ......T8 j=D

m1(Tj)m2(Tj) . . . . . . m8(Tj) (2)

m(Tj) = m1(Tj)⊕ m2(Tj) . . . . . . ⊕ m8(Tj) =
1

(1 − k) ∑
T1 j∩T2 j ......T8 j=Tj

m1(Tj)m2(Tj) . . . . . . m8(Tj) (3)

where ⊕ represents the orthogonal sum, m1(Tj), m2(Tj) . . . m8(Tj) is the basic probabilistic
assignment of the above products to the target land cover classes Tj, respectively, and k is
the conflict coefficient.

In order to determine the final land cover classes of each pixel, it is necessary to
judge the orthogonality of the evidence theory and the results obtained. In this paper,
the maximum comprehensive probability is selected as the judgment criterion and the
comprehensive probability m(Tj) of each pixel classes is compared. The class with the
largest value is the final land cover class T of the pixel:

m(Tm) = max
j∈0,1,......6,255

(m(Tj)), (4)

T = Tm. (5)

In Equations (4) and (5), m(Tm) and Tm are the maximum comprehensive probability
and the land cover type corresponding to the maximum value, respectively, and m(Tj) is
the comprehensive probability of each classes. The initial Cambodia land cover labeling
data were synthesized according to the decision principle. Finally the OSM data were
superimposed on the D-S evidence theory fusion labeled data.

The trust degree of each pixel class can be calculated according to the trust function of
D-S evidence theory. However, in the scenario of this paper, each class only has a subset
of itself, meaning that the trust degrees of the classes obtained by the orthogonal sum are
equal to their respective probability values:

Bel(Tm) = m(Tm) (6)

In Equation (6), the value of Bel(Tm) ranges from 0 to 1; the greater the value of trust degree,
the more reliable the fusion result. In order to select the regions with a high degree of trust
and sufficient number of various types from the obtained labels as training labels, in this
paper we divided the trust level into 255 levels and conducted cumulative histogram statistics.
The lower limit value of the intermediate value of each trust level was taken as the threshold
value and the fusion results were screened to obtain the initial labels, as shown in Figure 5.

Figure 5. The degree of trust.
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3.2. Dynamic Label Correction
3.2.1. Noise Label Correction Module

(1) CP Correction Module: Deep learning models are able to maintain efficient per-
formance when confronted with a variety of different data inputs. They can accurately
predict results even in the presence of noise, missing data, or other anomalies. Moreover,
the probability of model prediction is shown to reflect the accuracy of model classification
as confidence [34]. Therefore, in this paper, we use the classification results of the model
output and the corresponding CP map [35] as the basis for correction labels and define the
way in which the two thresholds are calculated.

We define the sample of high CP as P(yi|x). The closer P(yi|x) is to 1, the higher the
CP; specifically, given a sample X, there is a higher CP that x belongs to class yi if P(yi|x) is
greater than the set threshold or closer to 1:

U1 = P(ŷ0|x). (7)

In Equation (7), ŷ0 represents the class with the greatest possibility of x; a larger U1 indicates
that the class corresponding to the maximum CP of the pixel is more reliable.

Due to the fact that pixels in the model prediction results are easily classified into two
categories with little difference in probability, in order to find pixels with high CP that are
not easily confused in the model prediction results, the difference between the maximum
and the second largest class probability of the model prediction is defined as the judgment
threshold:

U2 = P(ŷ0|x)− P(ŷ1|x). (8)

In Equation (8), ŷ0 and ŷ1 represent the classes with the greatest possibility of x and second-
greatest possibility of X, respectively; the difference between the two possibilities reflects
the uncertainty of these two categories of the model. The larger the difference, the smaller
the uncertainty, indicating that the two categories are not confused.

(2) Adaptive Threshold Control: This paper uses the CP U1 calculated by the maximum
CP and the uncertainty U2 calculated by the maximum and second maximum probability
to set a threshold to determine whether the pixels on the label should be updated. However,
updating a tag using a fixed threshold to determine which pixels need to be updated results
in different tags being updated to different degrees. Therefore, the threshold value of the
batch image is obtained using the adaptive and phased method. The median values of
U1 and U2 for each batch of images were calculated as their updated thresholds. In order
to avoid restricting the threshold values of easily identifiable categories while relaxing
them for more difficult categories, the thresholds were truncated with empirical thresholds.
Finally, the two thresholds of each batch of images were expressed as follows.

φ1 =


0.9 , i f medianB×1×H×W(U1) ≥ 0.9

medianB×1×H×W(U1), i f 0.9 > medianB×1×H×W(U1) > 0.5
0.5 , i f medianB×1×H×W(U1) ≤ 0.5

(9)

φ2 =


0.5 , i f medianB×1×H×W(U2) ≥ 0.5

medianB×1×H×W(U2), i f 0.5 > medianB×1×H×W(U2) > 0.2
0.2 , i f medianB×1×H×W(U2) ≤ 0.2

(10)

Finally, if both φ1 and φ2 were satisfied, then the selected region was considered to be the
high-confidence region of the label.

(3) NDVI Correction Module: The model typically predicts results with a high CP for
the correct labels; however, the label is not completely correct, as there may be noisy regions
in the label and the model will gradually fit the noisy label, resulting in a gradual increase in
the CP of the label’s noisy region. Therefore, we used the Normalized Difference Vegetation
Index (NDVI) to screen those pixels in the label [36] that are incorrectly predicted. The
process and threshold are shown in Figure 6.



Remote Sens. 2024, 16, 2443 10 of 19

Figure 6. Label filter by NDVI.

3.2.2. Label Correction Process

The process of noisy label correction aims to mitigate the potential presence of noise
within the initial label, thereby diminishing the influence of these noisy labels on the
classification model. In the early training of deep learning models, the network usually first
learns those samples that are easy or correctly classified, which helps the model to establish
good generalization ability. Later in the training, the model will gradually begin to fit to
those samples containing noise or false labels [37]. Therefore, based on the above module,
a two-stage dynamic label correction method is proposed in this paper, which dynamically
corrects noise labels during deep learning model training rather than treating them as fixed
labels. The label correction method consists of two stages: an initial model training stage
and a noisy label self-correction stage. The two stages are described as follows:

Stage 1: Initial correction model. Although deep learning models have strong feature
learning ability, it is easy for them to fit random noise, which greatly reduces the perfor-
mance of the network. However, an interesting phenomenon is that deep learning models
tend to learn correctly labeled samples early on, and start learning mislabeled samples
only later [37]. Furthermore, when maintaining a high learning rate, deep learning models
do not easily fit the wrong sample [38]. Therefore, in the initial label, a UNet [39] was
trained utilizing the preliminary label and subsequently employed as the foundational
classification model. UNet, a prevalent encoder–decoder architecture, progressively con-
denses feature maps to extract high-level semantic features. Concurrently, the decoder
recuperates the spatial information of these feature maps, culminating in a prediction result
of an equivalent size to the input. To augment the spatial details of the prediction outcome,
the feature maps from the encoder are integrated into the decoder via skip connections.

Stage 2: Noisy label self-correction. We employed the initial network (Step 1) as the
foundation for training. The parameters of the network and noisy labels were dynamically
optimized throughout the training process. This iterative joint optimization can rectify
mislabeled samples, decrease the dataset’s noise rate, and enhance model performance.
The criterion for updating labels is based on the CP of the network prediction. Specifically,
for each pixel, the existing label is adjusted to align with the model’s prediction result if the
pixel’s predicted probability falls below a certain threshold; otherwise, it remains unaltered.
In this study, the threshold value was adaptive and dynamically changed, and NDVI was
used to further remove the incorrect regions in the label in order to avoid label update errors
caused by network overfitting. In addition, most areas of the initial label are correct after
confidence screening; if the loss is calculated based only on the updated label, the predicted
results of the network may deviate completely from the initial label [23]. Therefore, in order
to constrain the prediction results of the network, a joint loss function [40] is adopted in
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Step 2 to simultaneously consider the loss of the initial label along with the update label
and the model prediction probability:

Lcorrect =
Linitial(P, Y) + α×Lupdate(P, Ŷ)

1 + α
. (11)

In Equation (11), Y represents the initial label, Ŷ represents the label corrected after the last
training epoch, P is the probability of the network prediction, Linitial and Lupdate represent
the initial loss function and the update loss function, respectively, both of which use the
cross-entropy loss function, and is used to balance the two loss terms during training. α is
dynamically changed with training, as shown in Equation (12):

α =

{
0.5 , i f current_epoch + 1 > total_epoch

currect_epoch+1
total_epoch ×0.5, i f current_epoch + 1 ≤ total_epoch

(12)

where total_epoch is the total training round and current_epoch is the current training
round. By training the UNet with this loss function, the model can iteratively update and
correct the labels.

3.3. Land Cover Mapping (LLCM)
3.3.1. Classification Model Training

In the classification model training stage, the UNet model is retrained following
the normal training process using the corrected labels. In particular, the ENet [41] class-
based cumulative frequency method is used to calculate the weights and build a weighted
cross-entropy loss function to balance the classes:

Lclassi f y = − 1
N

N

∑
i=1

wỹiln(P(xi)), (13)

wi =
1

ln(c + pi)
. (14)

In Equation (13), ỹi indicates whether the corrected label is in class i (if yes, it is 1; otherwise it
is 0) and P(xi) indicates the model’s output probability. The weight wi of class i is shown as
Equation (14), where pi represents the proportion of the number of pixels of class i in all pixel
numbers. Here, c is set to 1.02, meaning that the class weight is limited to the interval [1, 50].

3.3.2. Land Cover Mapping

In order to obtain a seamless land cover map of Cambodia, a seamless mapping
and fusion strategy was used to process the RSI covering Cambodia in the process of
trained network reasoning. Specifically, as shown in Figure 5, the process consisted of
four steps. First, RSI tiles covering Cambodia were stitched together into the entire image.
Second, in order to obtain a batch of data that could be processed by the model, the
concatenated image was read into the memory in a sequence of 256 × 256 patches with
64 overlapping pixels in the adjacent two patches. Patches were then passed batch-by-batch
into a trained classification model to obtain land cover mapping results for the predicted
batches. Although the input batches had 64 overlapping pixels, the overlapping regions had
the same prediction results; thus, for the overlapping regions we used the prediction results
of the later patch in the adjacent patch and seamlessly merged the prediction batches into
the land cover map block. The hardware limitations of model prediction were reduced by
reading data for specified positions and sizes in the image, and the patches were continuous
between each other, reducing the impact of edge cracks between clipped prediction batches.
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4. Results
4.1. Experimental Setup

The networks were all trained using AdamW while implementing the algorithms on
NVIDIA 3090Ti GPUs with a total batch size of 16. In the first stage of dynamic correction,
we took 0.01 as the initial learning rate, selected the cross-entropy loss function, and used
the ReduceLROnPlateau strategy. When the minimum training loss of epochs did not
decrease for ten consecutive years, the learning rate was scaled to 0.1 times the previous
one and the training was stopped when the learning rate began to change for the first
time. The weights before 10 epochs were selected as the weights for the second stage of
the network initialization. In the second phase of dynamic correction, we initialized the
UNet with the parameters pretrained in the first phase, used the constructed label dynamic
correction method and our newly constructed loss function, fixed the learning rate at 0.01,
and trained for 60 epochs.

When using the correction label to train the classification model, we used the ReduceL-
ROnPlateau strategy. When the minimum training loss was not reduced for ten consecutive
epochs, the learning rate was scaled to 0.1 times the previous value; the initial learning rate
was 0.01 and 100 rounds of training were performed. In order to balance the classes, the
weighted cross-entropy loss function mentioned above was used.

4.2. Mapping Results and Accuracy Assessment

In order to assess the efficacy of the proposed method on Land Cover tasks, we employed
six widely recognized evaluation metrics. First, the user’s accuracy(UA), also known as the
precision, measures a model’s ability to accurately classify an instance into a specific category.
This is calculated by dividing the number of true positive instances (i.e., instances correctly
classified as the target class) by the total number of instances predicted to belong to that class.
The second metric is the producer’s accuracy(PA), also referred to as the recall, which gauges
a model’s capacity to correctly identify a particular type of land cover. This is determined
by dividing the number of true positive instances (i.e., instances correctly classified as the
target class) by the total number of instances of that class in the ground truth. The third
metric is the F1 score(F1), also known as the balanced score, which is defined as the harmonic
mean of the precision and recall. The fourth metric is the intersection over union (IoU), which
is commonly used to evaluate the performance of semantic segmentation tasks. The IoU
is calculated by dividing the intersection area between the predicted segmentation and the
ground truth by the union area between them. The fifth metric is the overall accuracy (OA),
which is a frequently used as an evaluation index for classification models. It represents the
samples correctly classified by the classifier in proportion to the total number of samples.
Finally, Kappa is an indicator used to evaluate the performance of a classifier; it is typically
used to measure the consistency between the classification result and the true value, and can
also be employed to evaluate unbalanced samples.

The confusion matrix and classification result are shown in Table 3 and Figure 7
respectively. The confusion matrix shows that the accuracy was higher than 80% for all
categories except Grass & Shrub and bareland, and was higher than 90% for water, forest,
and impervious surfaces. The number of water samples is sufficient, and there is little noise
or obvious features; thus, the accuracy is very high. The PA of impervious surfaces reached
99.38%, and the UA reached 96.41%, indicating that the model has strong ability to identify
buildings. Due to the influence of different growth states of crops, the UA of cultivated
land is relatively high and the PA is relatively low. As shown in Figure 7, the PA and
UA of grass scrub species are relatively low due to the high degree of confusion between
cultivated land and grass scrub species. Due to the large number of paddy fields and tidal
flats in Cambodia, the PA of submerged vegetation is very low. Due to the confusion of
bare soil with some impervious surfaces composed of gravel during the seeding process,
and the confusion of bare soil with cultivated land, PA is lower in these cases. Overall, the
OA reached 91.68% and the mF1 reached 0.8837, which is relatively high for the national
scale land cover mapping with a resolution of 10 m.
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Table 3. Confusion matrix of the LLCM in Cambodia.

Mapped Class
Reference Class

Water Body Forest Impervious
Surface Cropland Grass & Shrub Flooded

Vegetation Bareland Total UA

Water body 191 0 0 0 0 1 0 192 0.9948

Forest 0 1626 0 10 14 5 0 1655 0.9825

Impervious
surface 2 0 161 1 0 0 3 167 0.9641

Cropland 3 10 1 912 79 6 8 1019 0.8950

Grass & Shrub 1 6 0 134 407 0 0 548 0.7427

Flooded
vegetation 7 1 0 6 9 82 0 105 0.7810

Bareland 0 0 0 2 0 0 24 26 0.9231

Total 204 1643 162 1065 509 94 35 3712

PA 0.9363 0.9897 0.9938 0.8563 0.7996 0.8723 0.6857

mF1 = 0.8837, mIOU = 0.8023, OA = 0.9168, Kappa = 0.8808

Note: mF1 = mean F1; mIOU = mean IOU.

Figure 7. 10 m land cover map of Cambodia for 2020.

4.3. Comparison with Existing PPs

Figure 8 shows the Sentinel-2 images and land cover classification maps for 2020 obtained
with the Dynamic World(DW), ESRI LandCover(ESRI), ESRI LandCover(ESA), GLC_FCS30(GLC),
Globeland30(GLB) products. Compared with existing products, the cartographic process presented
in this paper achieves better results in terms of vision and accuracy. Using the verification points
collected in 2020 for quantitative comparison, the results in Table 4 show that the results for the
method in this paper have the highest accuracy in most categories. Compared with ESRI LandCover,
the F1-score for the hard-to identify Grass & Shrub class was higher by 2.41%. Compared with
ESA WorldCover, the F1-score for flooded vegetation increased by 18.19%, while for bare ground it
increased by 9.94% compared to Dynamic World. The Dynamic World land cover map is based
on the land cover situation of all images in the study area in 2020, and the land feature category
with the most frequent occurrences is generated as the final result. Because the water body class
experiences fewer changes in a year, the accuracy of the Dynamic World land cover map with the
most frequent category as the final category is higher than that of the method presented in this paper.
In general, the results obtained by this method have the highest accuracy, with an overall accuracy
of 91.68%, which is 3.80% higher than that of ESRI LandCover, and a Kappa coefficient of 0.8808.
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(a) Sentinel-2 (b) DW (c) ESRI (d) ESA (e) GLC (f) GLB (g) Our

Figure 8. Comparison of the products obtained through our method and other PPs.

Table 4. Comparison with existing PPs.

Mapped Class Metric DW ESRI ESA GLC GLB Our

Water body F1 0.9703 0.9524 0.9072 0.9211 0.8238 0.9646
IOU 0.9423 0.9091 0.8301 0.8538 0.7004 0.9317

Forest F1 0.9637 0.9557 0.9550 0.7691 0.7556 0.9861
IOU 0.9299 0.9151 0.9139 0.6249 0.6072 0.9725

Impervious surface F1 0.9384 0.9388 0.8949 0.8737 0.5191 0.9787
IOU 0.8840 0.8846 0.8098 0.7758 0.3506 0.9583

Cropland F1 0.7432 0.8506 0.8101 0.7340 0.6547 0.8752
IOU 0.5914 0.7400 0.6808 0.5798 0.4866 0.7782

Grass & Shrub F1 0.6621 0.7460 0.5133 0.0267 0.1872 0.7701
IOU 0.4949 0.5949 0.3452 0.0136 0.1033 0.6262

Flooded vegetation F1 0.3978 0.5379 0.6422 0.1688 0.5323 0.8241
IOU 0.2483 0.3679 0.4730 0.0922 0.3627 0.7009

Bareland F1 0.6875 0.5882 0.4909 - - 0.7869
IOU 0.5238 0.4167 0.3253 - - 0.6486

mF1 0.7661 0.7956 0.7448 0.4991 0.4961 0.8837
mIOU 0.6592 0.6900 0.6254 0.4200 0.3730 0.8023

OA 0.8419 0.8788 0.8394 0.6781 0.6595 0.9168
Kappa 0.7757 0.8292 0.7667 0.5283 0.4947 0.8808
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5. Discussion
5.1. Classification Accuracy of Different Networks

In this section, the proposed mapping process is compared with the five most com-
monly used image classification methods: UNet, SegNet [42], PSPNet [43], DeepLabv3+ [44],
and HRNet [45]. All of the training data, training parameters, loss functions, schedulers,
optimizers, etc., were the same, and no pretraining parameters were loaded.

As shown in Table 5, the F1-scores and IoUs of all categories except cultivated land
were the highest, and the overall accuracy was 91.68%. Compared with Table 4, it can be
seen that the overall accuracy of the model trained with the initial labels is higher than
that of the five compared land cover products, indicating the feasibility of using existing
products as training labels. Figure 9 shows the classification results of the different models.
The method proposed in this paper can distinguish forest land from the Grass & Shrub class
well, while the other models misclassify Grass & Shrub into forest land. Compared with
the results of other models, the method proposed in this paper can obtain finer results for
the impervious surface class, and the surface boundary obtained by our method is clearer.
There are a large number of paddy fields and aquaculture plots widely distributed across
Cambodia. The aquatic vegetation in the interface area between these plots and the land is
well extracted by our method, ensuring that these plots have obvious boundaries, while
the results of other models are often wrongly divided into water bodies. In general, the
noise is corrected and refined following the label generation and label correction processes
described in this paper, significantly improving the classification accuracy of the model
and fineness of the results. Compared with the UNet model trained without corrected
labels, the overall accuracy of the model trained with the corrected labels is increased by
1.35%, and is improved by 3.8% compared to the highest overall accuracy of the public
ESRI LandCover product.

Table 5. Comparison of models.

Mapped Class Metric UNet SegNet PSPNet DeepLabv3+ HRNet Our

Water F1 0.9572 0.9521 0.9495 0.9471 0.9552 0.9646
IOU 0.9179 0.9087 0.9038 0.8995 0.9143 0.9317

Forest F1 0.9731 0.9607 0.9632 0.9710 0.9615 0.9861
IOU 0.9476 0.9245 0.9289 0.9437 0.9258 0.9725

Impervious surface F1 0.9501 0.9326 0.9280 0.9501 0.9529 0.9787
IOU 0.9050 0.8736 0.8656 0.9050 0.9101 0.9583

Cropland F1 0.8783 0.8689 0.8724 0.8768 0.8753 0.8752
IOU 0.7830 0.7682 0.7737 0.7807 0.7783 0.7782

Grass & Shrub F1 0.7073 0.6888 0.6869 0.7117 0.6644 0.7701
IOU 0.5471 0.5253 0.5231 0.5525 0.4974 0.6262

Flooded vegetation F1 0.7826 0.7175 0.7981 0.7822 0.7293 0.8241
IOU 0.6429 0.5594 0.6640 0.6423 0.5739 0.7009

Bareland F1 0.7500 0.7273 0.6538 0.6792 0.5106 0.7869
IOU 0.6000 0.5714 0.4857 0.5143 0.3429 0.6486

mF1 0.8569 0.8354 0.8360 0.8455 0.8070 0.8837
mIOU 0.7634 0.7330 0.7350 0.7483 0.7061 0.8023

OA 0.9033 0.8893 0.8936 0.9014 0.8920 0.9168
Kappa 0.8603 0.8404 0.8460 0.8575 0.8425 0.8808
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(a) Sentinel-2 (b) UNet (c) SegNet (d) PSPNet (e) DeepLabV3+ (f) HRNet (g) Our

Figure 9. Comparison of land cover classification results for different models.

5.2. Evaluation of Each Part of the Framework

In ablation experiments, one or more components of the entire process are removed
in order to understand how each part contributes to the overall process. Table 6 lists the
accuracy of various combinations of the different steps in the mapping process. Based on
the D-S evidence theory and integrating multiple products to generate labels, it includes
three steps: “D-S Trust”, consisting of D-S evidence theory trust label screening; “Filter by
NDVI”, consisting of NDVI label screening; and “Label Correction” based on CP.

All eight experiments were conducted on the basis of labels generated by the fusion
of D-S evidence theory, and each row was trained on the accuracy of the land cover map
produced after label processing. The first line indicates the precision of the land cover map
obtained by the label without any processing. The second line is the result of the land
cover map obtained by D-S evidence theory trust screening of the label, showing slightly
improved precision compared with the first line. The third line is the accuracy of the land
cover map after pixel-by-pixel screening by NDVI. Compared with the second line, the
accuracy improvement is higher, indicating that the optimization effect of NDVI screening
on labels is greater than that of trust screening. The results of the fourth line show that the
accuracy with label noise correction is lower than no label correction when trust and NDVI
screening are not used. In the fifth line, both confidence screening and NDVI screening
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are carried out, and it can be seen that the accuracy is significantly improved compared
with the first line. The sixth line uses trust screening followed by label noise correction,
with a slight improvement in accuracy compared to the second line. The seventh line uses
NDVI to filter the participating label noise correction; the accuracy is slightly lower than
the results in the third line. The eighth line uses trust screening first, followed by NDVI
screening for participating label noise correction, with higher accuracy than the previous
lines. The above results show that while all three parts of the proposed cartographic process
can improve the accuracy of classification, it is worth noting that the use of label noise
correction must be used to filter the labels before the accuracy of the land cover map can be
improved. For label noise correction using NDVI screening, it is necessary to first screen the
labels for trust in order to achieve the best results. Finally, the effect of label noise correction
with NDVI filtering is lower than that without NDVI filtering after trust screening.

Table 6. Influence of each combination of different steps on the accuracy of the cartographic process.

D-S Trust NDVI Label Correction mF1 mIOU OA Kappa

1 0.8569 0.7634 0.9033 0.8603
2 ! 0.8666 0.7766 0.9084 0.8686
3 ! 0.8656 0.7775 0.9133 0.8750
4 ! 0.8406 0.7471 0.9009 0.8554
5 ! ! 0.8728 0.7841 0.9154 0.8778
6 ! ! 0.8759 0.7921 0.9133 0.8747
7 ! ! 0.8587 0.7676 0.9084 0.8669
8 ! ! ! 0.8837 0.8023 0.9168 0.8808

6. Conclusions

The difficulty of acquiring training data limits the updating of land cover products.
In order to reduce the cost of acquiring labels, existing products can be used as labels;
however, these labels contain noise. This paper proposes a land cover mapping framework
based on multi-source prior product label generation. Existing land cover products are
used to generate noise labels for medium-resolution remote sensing images. Through a
three-stage model training process combining label correction with NDVI and confidence
probability screening, a 10-m land cover map of Cambodia was completed based on existing
products. The results show that the proposed method is effective and that the land cover
map produced using the proposed mapping framework has higher precision and a better
visual effect than existing land cover products with 10 m resolution. In general, the method
presented in this paper does not require manually labeling samples, shortening the time
needed to update land cover products and improving their accuracy. However, because
the use of time information was not considered, the ability to identify flooded vegetation,
grassland, shrubs, and other difficult categories remained limited, and the accuracy of the
actual map was not reached. In future studies, we will further explore how to make better
use of multi-modal and multi-temporal imagery, existing products, and publicly available
statistics in order to achieve more accurate and faster updating of land cover maps.
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