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Abstract: Cyanobacterial harmful algal blooms release toxins and form thick blanket layers on
the water surface causing widespread problems, including serious threats to human health, water
ecosystem, economics, and recreation. To identify the potential drivers for the bloom, there is a need
for extensive observations of the water sources with bloom occurrences. However, the traditional
methods for monitoring water sources, such as collection of point ground samples, have proven
limited due to spatial and temporal variability of water resources, and the cost associated with
collecting samples that accurately represent this variability. These limitations can be addressed
through the use of high-frequency satellite data. In this study, we explored the use of Random Forest
(RF), which is one of the widely used machine learning architectures, to evaluate the performance of
Sentinel-3 OLCI (Ocean and Land Color Imager) images in predicting bloom proxies in the western
region of Lake Erie. The sixteen available bands of Sentinel-3 images were used as the predictor
variables, while four proxies of the cyanobacterial masses, including Chlorophyll-a, Microcystin,
Phycocyanin, and Secchi-depth, were considered as response variables in the RF models, with
one RF model per proxy. Each of the proxies comes with a unique set of traits that can help with
bloom detection. Among four RF models, the model for Chlorophyll-a performed the best with
R? = 0.55 and RMSE = 20.84 pg/L, while R? performance for the rest of the other proxies was less
than 0.5. This is because Chlorophyll-a is the most dominant and optically active pigment in water,
while Phycocyanin, which is a strong indicator of harmful bloom, is present in low concentrations.
Additionally, Microcystin, responsible for bloom toxicity, has limited spectral sensitivity, and Secchi-
depth could be influenced by various factors besides blooms, such as colored dissolved organic
and inorganic matter. On further examining the relationship between the proxies, Microcystin and
Secchi-depth were significantly correlated with Chlorophyll-a, which enhances the usefulness of
Chlorophyll-a in accurately identifying the presence of algal blooms.
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1. Introduction

The proliferation of harmful algal blooms (HABs) in water bodies is recognized as a
major water quality issue. HABs can produce toxins that have adverse effects on aquatic
life and human health and incur high economic costs for water treatment procedures [1].
Among the most affected water sources in the U.S. is Lake Erie, which was declared
‘impaired” in 2018 by the Ohio Environmental Protection Agency (EPA) [2]. Besides natural
morphological characteristics (shallow depth among all the Great Lakes) and climatic
drivers (warm temperature over the summer), non-point source pollution from agricultural
sectors is driving the increasing frequency of algal blooms in Lake Erie [3,4].
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Since cyanobacterial blooms expand significantly in a short period, it is difficult to
frequently collect a representative number of ground truth data that are often useful for
monitoring blooms at a larger geographic scale in a cost time-effective manner [5-7]; Since
cyanobacterial blooms can grow rapidly, relying solely on ground-collected datasets to
monitor the bloom is not entirely feasible. Satellite images can serve as an alternative
valuable source to fill the gap of information from the traditional methods to monitor
the bloom dynamically and address the spatial heterogeneity over a large stretch cost-
effectively [8-11].

The use of satellite images for bloom monitoring began in 1978 when the Coastal
Zone Color Scanner (CZCS) equipped with six spectral bands was successfully tested
in identifying the presence of high levels of Chlorophyll in the Gulf of Mexico [12-14].
Afterward, several remote sensors such as Sea-viewing Wide Field-of-view Sensor (SeaW-
iFS), MODerate resolution Imaging Spectroradiometer (MODIS), Operational Land Imager
(OLI), and the Thermal Infrared Sensor (TIRS) on Landsat satellite, and Medium Resolution
Imaging Spectrometer (MERIS) were used for water quality monitoring [5,15,16].

The suitability of satellite sensors for HAB monitoring depends on various factors,
including spatial resolution, temporal revisit frequency, and spectral resolution. Among
these, spectral capabilities are the most important criterion as HABs could be better dif-
ferentiated based on their inherent spectral signature [5,13]. Since MERIS sensor on the
ENVISAT satellite had high radiometric sensitivity with dedicated ocean color sensors
focusing on the optical properties of water, it was employed in several studies [17-19].
After MERIS ended its mission in 2012, Sentinel-3 satellite from the Copernicus Earth
Observation Program has become one of the most sought-after options for water quality
monitoring [20-22]. Sentinel-3 equipped with an OLCI MultiSpectral Instrument (MSI)
sensor includes a wide range of 21 bands that are useful for water quality monitoring,
particularly detecting bloom proxies. [21] used Sentinel-3 OLCI imagery to estimate Phy-
cocyanin (PC) and Chlorophyll-a (Chl-a) at Lake Erie from 2016 to 2018. Similarly, [15]
leveraged Sentinel-2 and Sentinel-3 images to monitor the presence of and extension of the
algal biomass during the COVID-19 lockdown.

While there are myriad studies of bloom monitoring and detection based on satel-
lite images, a majority of these studies have used Chl-a as a proxy of cyanobacterial
bloom [17,20,22-25]. A review study that focuses on spatiotemporal trends in HAB detec-
tion and monitoring using remote sensing methods showed that around 80% of researchers
used Chl-a as an indicator of algal abundance [25]. The rest 20% used indices such as
the Floating Algal Index (FAI), Normalized Difference Chlorophyll Index (NDCI), and
Cyanobacterial Index (CI), while merely 2% focused on PC. While detecting Chl-a is
relatively straightforward, even within the visible spectrum, inferring the presence of
cyanobacterial bloom using this pigment is much more difficult. There are several studies
that have been conducted on individual HAB proxies such as turbidity [26,27], microcystin
(MC) [28,29], and PC [30,31].

A multitude of approaches entailing detection and monitoring of the bloom proxies
have been practiced over the years. As per the review by [25], a total of 67% of the studies
involve regression as a method for estimating HABs, while machine learning holds only 5%
of the domain. To this date, this number is growing more than ever. Ref. [32] developed a
multiple linear regression (MLR) to establish the relationship between the Landsat TM band
reflectance as well as its ratio and the counted algal densities. Similarly, the relationships
between the HAB proxies were analyzed using MLR to predict the Chl-a levels [33]. Al-
though the MLR is simple and easy to use, it might not be sufficient to reflect the non-linear
relationship between band reflectance and HAB proxies [6,34,35]. Machine learning offers
significant advantages due to its ability to approximate complex nonlinear responses of
the variables. These particularly include handling multi-dimensional datasets, unraveling
trends, and automating the identification of correlation among variables [10,36-38]. Some
studies like [39] utilized the regression-based Extreme Gradient Boosting (XGBoost) model
to analyze the lake water clarity across the U.S. on a multi-decadal scale while others
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like [40] used a Random Forest (RF) classification-based model to investigate highly toxic
18 marine microalgae at the genus level. Given the demonstrated effectiveness of RF models
in prior studies [6,20,41-43], we employed RF model in our study to assess the efficacy of
Sentinel-3 OLCI Level-2 dataset to independently predict four bloom proxies (i.e., Chl-a, PC,
MC, and Secchi Depth), which are also considered surrogates. This model utilizes spectral
information from satellite images along with ground-based measurements, considering the
nonlinear relationship between the two [6,40]. While each of these proxies has a significant
role in determining the existence of algal mass, some are more sensitive to band reflectance
than others. Further, we explored the relationships between these proxies that help explain
the presence of algal mass.

2. Study Area and Datasets
2.1. Study Area

The study is focused on the Western Lake Erie basin, which is one of the three basins
of Lake Erie. Lake Erie (42°30'N, 81°00'W) is the fourth largest among the five Great Lakes
in North America, with its boundaries shared with Canada (Ontario) on the northern side
and with the state of Michigan, Ohio, Pennsylvania, and New York on the west, south, and
east sides (Figure 1). It is naturally divided into three basins, including eastern, central,
and western, based on batahymetric, geological, thermal, and tropical characteristics [44].
Unlike other basins, there is a high recurrence of algal blooms in the Western basin, which
is mainly attributed to the loading of high nutrients and sediments from anthropogenic
activities such as urbanization, industrialization, and agriculture [45,46].
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Figure 1. (I) Ground samples distributed in the Western Lake Erie basin. The location map shows

Phycocyanin (ug/L) , Chlorophyll-a (ug/L)

Secchidepth (m

Lake Erie as part of the Great Lakes Basin. (II) Boxplot of the values for algal bloom proxies
(a) Chlorophyll-a, (b) Phycocyanin, (c) Microcystin, and (d) Secchi-depth. The box indicates the
interquartile range, i.e., 25-75 percentile and the line inside the box shows the median. The dots
following the whisker (error bar) represent the outliers.

2.2. Datasets
2.2.1. Sentinel-3A OLCI Level-2 Dataset

This study uses OLCI Level-2 Water Full Resolution (OL_2_WFR) data product from
Sentinel-3A, a satellite that was launched in February 2016 and is currently operational [47].
We focused on the period between 2016 and 2021. OLCI sensor on Sentinel-3A provides
multi-channel spectral measurements for land and water surfaces at a spatial resolution
of 300 m and a daily temporal frequency [48,49]. Specifically, it comprises a wide range
of 21 spectral bands, covering visible to near-infrared regions (400 nm to 1020 nm) of
the wavelength spectrum [47]. In addition, OLCI has a channel at 1.02 pm to improve
the atmospheric correction and another at 673 nm for better observations of Chlorophyll
fluorescence [50].
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The OLCI Level-2 product, which was reprocessed based on the latest standards, was
accessed from two sources. One of them was Copernicus Online Data Access CODA web
portal (https://user.eumetsat.int/data-access/data-centre, accessed on 1 August 2022)
which provides data on a one-year rolling archive basis while data older than a year
were retrieved from EUMETSAT Data Center [51]. The final Level-2 product includes
16 bands excluding bands 13, 14, 15, 19, and 20 which are meant to be used for measuring
atmospheric gas absorption [52].

2.2.2. Ground-Based Station Datasets

For a study period of 2016 through 2021, in-situ data for four proxies, Chl-a, PC, MC,
and SD, were compiled from two ground-based monitoring programs, one conducted by
National Oceanic and Atmospheric Administration Great Lakes Environmental Research
Laboratory (NOAA GLERL) and another by Ohio Sea Grant Stone Lab Algal and Water
Quality Laboratory (https://ohioseagrant.osu.edu/research/live/water, accessed on 5
August 2022). The distribution of the measurements in the study area is illustrated in
Figure 1. Among the ground samples that matched with the satellite images, 240 were
collected from NOAA GLERL while the rest 127 samples were from Stone Lab Algal and
Water Quality Laboratory. A sample of a raw Sentinel-3A image, along with the distribution
of Chl-a, PC, MC, and SD for the same date overlaid on the Sentinel-3 image, can be found
in the Supporting Document (Figure S1).

The water quality monitoring of the western basin of Lake Erie started in 2012, with
the collaboration between the NOAA GLERL, the Cooperative Institute for Great Lakes
Research (CIGLR), and the University of Michigan (UM). CIGLR deployed buoys to gather
in situ observations that involve the parameters like wind speed, depth, water temper-
ature, turbidity, dissolved oxygen, Chl-a, PC, nitrate, and phosphate through recurring
weekly sampling trips to a set of stations before, during, and after HAB events (from
May—October) [53]. The physical, chemical, and biological water quality data are available
through Water Quality and Buoy Data Portal (https://www.glerl.noaa.gov/res/HABs_
and_Hypoxia/habsMon.html, accessed on 5 August 2022).

Datasets from Ohio Sea Grant Stone Lab, also commonly called “Charters Captain”
datasets, are collected by charter boat captains and aboard Stone Lab science cruises using
a surface-to-2-m intergraded tube sampler under the support of Ohio EPA Environmental
Education Fund and Surface Water Improvement Fund [54]. The samples are analyzed in
the laboratory to detect the presence of water quality indicators namely, Chl-a (an indicator
of algal biomass), MC (a toxin generated by cyanobacteria), total suspended solids (mass
of all particulates in the water), total phosphorus and nitrogen (indicators of maximum
biomass potential), dissolved nitrate, phosphate, and silicate (nutrients accessible for
algae) while the ancillary datasets like GPS location, water temperature, and Secchi disk
depth (an indicator of water clarity) are also recorded. The dataset holds water quality
information from 2013 to 2022 and can be accessed through Stone Lab Algal and Water
Quality Laboratory website (https:/ /ohioseagrant.osu.edu/research/live/water, accessed
on 5 August 2022).

7

2.3. Cyanobacteria Proxies

Chl-a is a primary photosynthetic pigment in phytoplankton (or algae) and is thus
considered a proxy for the bloom [55,56]. Since it is a general measure of identification
for all phytoplankton, it can be less useful in categorizing distinct phytoplankton species.
Phycocyanin (PC) is another type of photo-pigment widely found in cyanobacteria and
thus it can be useful in measuring pigments specific to cyanobacteria [30]. Even though it
may not be as effective as Chl-a at low cyanobacterial biomass, the implicit link between
remotely-sensed PC and the toxicity of the algal group can provide important information
about any potential harm [57].

While Chl-a and PC indicate the presence of cyanobacterial bloom, MC indicates
cyanotoxins that are seen in cyanobacterial blooms [28,56]. However, MC comes with
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poor optical sensitivity. With the waters that is heavily infested with cyanobacteria, [58]
suggested that high algal biomass represented by high Chl-a concentration could indicate
the chances of high cyanotoxin concentration. As such, MC has commonly been explained
based on its relationship with Chl-a and PC [59,60].

In addition to the chemical parameters mentioned above, Secchi depth (SD), a physical
parameter indicating water clarity, is estimated based on how light is absorbed and scattered
by the water and, consequently, how deep it may penetrate the water [61]. Most often,
excessive presence of bloom at the water body surface hinders the penetration of light,
consequently, affecting the SD [62,63]. Primarily, SD is more indicative of water clarity than
the bloom itself and is influenced by various factors such as suspended inorganic particles,
colored dissolved organic matter (CDOM), and the resuspension of bottom sediments. It is
one of the simple yet inexpensive method to provide a reasonable estimate of bloom [64].
When used in conjunction with other chemical parameters like Chl-a, it can offer a better
understanding of the bloom phenomenon. Therefore, an empirical correlation between SD
and Chl-a has been established, as Chlorophyll is the dominant attenuating substance in
the bloom [61].

2.4. Data Quality Control

Before analyzing the collected ground samples, a quality control process was con-
ducted to ensure the accuracy and reliability of the dataset. Certain criteria were followed
in filtering the datasets. Since the use of clouded pixels hinders the interpretation of
the details, the ground samples for which the corresponding reflectance (pixel) values
from Sentinel-3 OLCI images were flagged as cloud-ambiguous or cloud margins, were
discarded. Similarly, to ensure that only near-surface samples are considered, samples
collected at depths greater than 0.5 m were not taken into consideration. Additionally, to
avoid the mixed pixel effect, samples collected within or less than 300 m (the pixel size of
OLClI images), were removed. Furthermore, the ground samples collected from shallow
waters along the shoreline were ignored as the reflection of light off the waterbed can
interfere with the accuracy of the measurements. Moreover, the negative values of the
proxies in ground-collected samples were considered outliers and hence discarded. For
further analysis, a total of 367 ground-based samples that matched the OLCI images were
taken into consideration.

2.5. Spatial Matchups

To accurately identify spatial matchups, satellite overpasses that were in close proxim-
ity to in situ measurements sites, both geographically temporally, were considered. This
approach ensures that the satellite data and the ground-based observations are comparable.
Given the large pixel size and significant variability observed even within a short distance,
a single pixel from the satellite data containing the station coordinates were selected. By
focusing on one specific pixel, potential discrepancies arising from spatial heterogeneity
are minimized, thereby enhancing the reliability of the comparative analysis.

3. Methods

The overall workflow considered in the study is illustrated in Figure 2. This involves
the compilation of water quality proxies from ground datasets and band reflectance from
Sentinel-3, followed by data preparation and pre-processing to train and validate four RF
models, with each model per proxy.
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Figure 2. Flowchart showing the different stages of working methodology involving acquisition of
datasets, data preparation and pre-processing, model prediction and validation, and model assessment.

3.1. Overview of the Algorithm: Random Forest

This study utilized the RF model, a well-known ensemble learning method, to assess
Chl-a, PC, MC, and SD. It has been used for a wide variety of applications for its ability
to depict the nonlinear effect of involved variables and its robustness to outliers [8,41,65].
In addition, the ability to assess the relative importance of the predictor variables and
identify the most relevant ones helps reduce the dimension of the model [31]. The RF is
built on multiple decision trees, each of which is trained on a subset of the input variable
set, which is randomly chosen at each node known as feature bagging [66-68]. Hence, an
uncorrelated forest of decision trees is produced by incorporating randomness into the
model. The RF regression model averages the results of these decision trees to make the
final prediction [67]. The averaging out of uncorrelated trees helps in bringing down the
variance, therefore reducing the chances of overfitting. In this study, the models were
trained on 70% (257 samples) of the datasets, while the rest 30% (110 samples) were used in
testing the performance of the model.

In the model, while 16 spectral bands act as predictors, four HAB proxies (i.e., Chl-a,
MC, PC, and SD) act as the response variables. To address the skewness and heteroscedas-
ticity exhibited by the residuals of response variables, they are log-transformed before
being used in the model. As an example, Figure 3 shows the transformation of Chl-a
measurements to a log-normal distribution.
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The RF models were built using the scikit-learn machine learning library in a Python
environment. The model was tuned using four hyperparameters, including maximum
depth, minimum sample leaf, minimum leaf split, and the number of regression trees (also
referred to as N_estimator), to optimize the model performance. To automate the process
of identifying an optimal combination of hyperparameters values that offers the best RF
model performance, the function GridSearchCV from scikit-learn was implemented. It
carries out k-fold cross-validation internally for every set of hyperparameters. Specifically,
the dataset is divided into k folds. The model is then trained on k-1 folds and validated
on the remaining fold. This process is repeated k times. The performance is averaged
over all folds to determine which combination of hyperparameters yields the highest
performance [68]. In this study, GridSearchCV used 5-fold cross-validation. Table 1 lists
hyperparameters obtained from GridSearchCV, utilized for each of the three response
variables in the RF models.

Table 1. Hyperparameters used for the random forest modeling.

Variables Chl-a Secchi Microcystin Phycocyanin
Max_depth 10 10 10 10
Min_sample_leaf 2 10 2 2
Min_sample_split 2 2 5 5
N_estimator 500 300 100 100

The relative importance of each band in the model was derived from the built-in
feature importance method for Random Forest available in Scikit-learn library in python.
The values inherited from the importance table are helpful in understanding that not all the
bands substantially affect the prediction in the model. Therefore, sensitivity analysis was
conducted to assess how the model’s performance varied with different combinations of
bands. For the sensitivity analysis, all the predictor variables were present at the beginning
of the model run, followed by successive elimination of the predictor variable with the
lowest relative importance to a given response variable from the model. This process was
done for all four proxies. Further, the relationship between the number of spectral bands
used in the model and the model performance was assessed.

3.2. Model Performance Assessment

To assess the performance of the RF models, two metrics, including root mean square
error (RMSE) and coefficient of determination (R?), were used on the testing dataset
(Equations (1) and (2)). In the equations, y; is the measured value for ith observation, Jiis
the predicted values for corresponding to the y;, while ¥ is the average of y with N number
of samples.

YN (i — )

Coefficient of determination (R?) =1 — ~
i - 9)?

1)
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Root Mean Square Error (RMSE) = )

Since the dependent variables are subjected to logarithmic transformation while
fitting into the model, the predictions were transformed back to their original range before
calculating the error metrics that involve them. Since a straightforward method of taking
an antilog would essentially add a bias during back transformation, the back-transformed
estimates are multiplied by an exponential of half the variance of transformed variable
errors [69,70].

Relationship between Chl-a, PC, MC, and SD were further assessed as they reflect
similar behaviors in some band spectrums. Given the easier detection of Chl-a compared to
other proxies, Chl-a could be used as a stand-in for other proxies representing the harmful
algal bloom. Since the RF models underperformed with the low concentrations of proxies,
the relationship between Chl-a and other proxies during peak bloom periods with warm
temperatures and comparatively high concentrations were investigated. Similar analysis
was conducted in prior work [71]. Specifically, for the study period of 2016 to 2021, monthly
average of proxies from April through October were examined.

4. Results
4.1. Model Prediction and Feature Importance

The RF model estimates for Chl-a, PC, MC, and SD in relation to ground observations
for the test dataset are illustrated in Figure 4. Chl-a showed the highest prediction accuracy,
with the RF model explaining 55% of the variability and an RMSE of 20.84 ug/L. Followed
by Chl-a are SD (R? = 0.47 and RMSE = 0.71 m), PC (R? = 0.46 and RMSE = 70.92 ug/L), and
MC (R? = 0.44 and RMSE = 3.39 ug/L), all with the comparable performances. Section 4.2
delves deeper into the relationships between these proxies.
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Figure 4. Predicted and observed values for (a) Chlorophyll-a, (b) Microcystin, (c¢) Phycocyanin, and
(d) Secchi-depth.

To determine the importance of 16 spectral bands on the prediction of each proxy,
they were ranked based on their relative importance as illustrated in Figure 5. Among
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16 bands, Band 04 peaked with a large fold for three out of four proxies, Chl-a, PC, and MC.
In addition to Band 04, Chl-a was also influenced by a few other bands, including Bands 16,
11, 21, and 03. Similar to Chl-a, Bands 04, 03, and 11 were the most influential for PC
when all bands were included. Like Chl-a, Band 04 among all other bands showed a high
importance for MC. This illustrated how, despite MC’s lower sensitivity to optical sensors,
it was correlated with Chl-a. Contrarily, for the SD model, spectral Bands 12, followed by
16 and 11 played the most important role, unlike the rest of other proxies.
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Figure 5. Ranking of the relative importance of 16 bands which are predictor estimates of HAB
proxies (a) Chlorophyll-a, (b) Microcystin, (c¢) Phycocyanin, and (d) Secchi-depth. The OLCI bands
are represented by “Oa” followed by the band number.

The sensitivity analyses indicated that RMSE and R? remained relatively stable for
Chl-a until 10 bands were dropped and only 6 were included in the model (Figure 6).
Similarly, the use of 10 bands as predictors yielded the highest R? and lowest RMSE for
both PC and MC, while some spikes and falls were observed after the saturation point.
For example, a significant decrease in R? was observed for MC after the number of bands
dropped from 10 to 8, but the change in RMSE was not as pronounced. Among four
different proxies, SD required a larger number of predictors (13 bands) to reach tentative
saturation compared to other proxies. All proxies showed a sharp decrease in R? as the
number of bands reduced to 2-4, while the corresponding changes in RMSE were less
pronounced. The overall result confirmed that eliminating a certain number of bands
yielded the best statistical performances for all the proxies.
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Figure 6. Variation of statistical metrics with respect to the number of predictor variables for
(a) Chlorophyll-a, (b) Microcystin, (c) Phycocyanin, and (d) Secchi-depth at each step through the
elimination procedure. The dotted blue vertical lines denote the tentative saturation levels of both
metrics.

4.2. Association of MC, PC, and SD with Chl-a

PC and MC tend to emulate the nature of Chl-a as demonstrated by the similar trend
in monthly averages across all years (Figure 7). Notably, with an increase in algal mass in
water, the concentration of Chl-a increases while there is a corresponding decrease in SD
This inverse relationship of SD with all the other proxies was observed in most months
except when the graph transcends from April to May and September to October. Also, in
September, the anticipated positive association between Chl-a and MC was not observed.

When proxies were analyzed for the peak bloom months, there was a relatively strong
linear relationship between Chl-a and MC with R?=0.83 (Figure 8a). The observed linear
relationship provided further evidence of the strong affinity between MC and Chl-a, in
addition to the previously noted strong model accuracy of MC and its ability to mimic
the band importance of Chl-a. The linear relationship of PC in Figure 8b was poorer than
MC with Chl-a explaining only 34% of the variance in PC. On the other hand, a peculiar
hyperbolic relationship between Chl-a and SD could be observed where Chl-a was able
to explain 30% of variance present in SD. With Chl-a concentration less than 50 pug/L, the
SD indicated a decline, after which it saturated as the Chl-a increased. Since the number
of Chl-a observations greater than 50 pg/L is low, the relationship between SD and Chl-a
values in the higher Chl-a concentration range could not be discerned.
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Figure 7. Monthly average concentration of the proxies across the years 2016 through 2021 for the
months of April through October (months witnessing the highest algal blooms).
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the regression models.

5. Discussion

Prior studies have investigated various models that employ different combinations of
spectral bands, such as two bands, three bands, or multiple band ratios, to estimate Chl-a
concentrations in water bodies. For instance, for Chl-a estimation, there are studies that used
a three-band model incorporating MERIS spectral bands (660-670 nm, 703.75-713.75 nm,
and 750-757.5 nm) and the 2-band model with MODIS spectral bands (662-672 nm and
743-753 nm) [72], while some experimented with multiple band ratios (e.g., green-blue
band ratios, green-red band ratio, NIR-red band ratios, and three-band ratio) [73]. Unlike
these studies, this study incorporated all the available 16 spectral bands in RF models
to capture the potential subtle variations in the spectral signature to predict HAB prox-
ies. Specifically, a RF model was employed for each of the four proxies, and the results
demonstrated varying levels of prediction accuracy. Notably, Chl-a exhibited the highest
predictability compared to other proxies. It could be attributed to the fact that Chl-a has a
higher dominance on harmful algae as compared to other variables. Compared to Chl-a,
PC is usually less prevalent in the bloom and in this study, PC concentration used was
very low (less than 10 ng/L), resulting in relatively low variability. On the other hand, MC,
despite being a chemical toxin that is hard to detect through remote sensing, and SD being
a coarse measure of water quality still depicted performances similar to PC.

5.1. Model Prediction and Feature Importance

In the study, the prediction model for Chl-a showed the highest accuracy compared to
three other proxies. It could be attributed to Chl-a’s higher dominance in harmful algal
blooms. Compared to Chl-a, PC is less prevalent in blooms, and its concentration in this
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study was below 10 pug/L (Figure 8b). This could be linked to lower sensitivity and poor
model performance. Similar behavior was found in the study carried out by [74] where PC
estimates retrieved from field radiometric and pigment data collected over the Netherlands
and Spain had the highest errors for PC levels lower than 50 ug/L. Another study that
used Sentinel-3 imagery suggested that the inclusion of datasets with the majority of PC
concentrations lower than 10 ug/L and Chl-a concentrations lower than 50 ug/L may have
influenced the models’ subpar performance [21]. Employing semi-empirical algorithms,
they achieved maximum R? of 0.136 and 0.163 for PC and Chl-a respectively.

In the study, we included 16 spectral bands as predictor variables for each of the four
proxies, aiming to analyze the efficacy of each band in explaining variability in the bloom
proxies. However, it’s important to note that when we analyzed the importance of these
16 spectral bands in predicting each proxy (Figure 6), we observed that a reduced number
of bands may be sufficient to achieve acceptable model performance. This finding could
have implications for data acquisition and processing in future application.

The importance of spectral bands, including Band 03 (442.5 nm), Band 04 (490 nm),
Band 11 (708.75 nm), Band 16 (778.75 nm), and Band 21 (1020 nm), in predicting Chl-a
can be attributed to the role of Chl-a as a major light-harvesting pigment involved in
photosynthesis for algal masses [17]. Band 04 is situated at the borderline of the blue and
green regions, Band 11 falls within red, and Band 16 and Band 21 belong to the infrared
region. This highlights the distinctive trait of Chl-a, which shows low reflectance in the blue-
green region and high absorption in the red and near-infrared region [52,75,76]. A recent
study [77] evaluating the satellite-based algorithm for detecting cyanobacteria blooms
found that PC absorption at 620 nm is two to three times lower than that of Chl-a. This
means it takes two to three times the concentration of PC to achieve the same sensitivity as
compared to Chl-a. In this study, low PC concentration likely led the model to prioritize
Band 03 and Band 04 over Band 07. In general, a high abundance of phytoplankton species
that outcompete the cyanobacteria could lead to a low PC concentration. In such situation,
there are less pigment molecules to absorb the incoming light and as a result, less light gets
absorbed by the sample causing lower signal in the spectral bands that correspond to the
absorption of PC [78].

The better modeling for MC and SD observed in this study could be linked to their
relationship with Chl-a, which has higher sensitivity to the spectral bands used. Prior
works suggest that MC does not exhibit a strong affinity for specific spectral bands within
the visible or near-infrared regions, unlike Chl-a and PC [29,58,77]. But we observed similar
results between MC and Chl-a in the scatter plot showing the model performance (Figure 4)
and the feature importance table (Figure 5). Therefore, it is plausible that a significant
portion of the spectral characteristics displayed by MCs is due to their interaction with
Chl-a. The relationship between these two proxies is discussed further in Section 5.2.

Spectral bands (i.e., Band 11, 12, 16, and 18) in red and NIR regions were found to
be important in explaining variability in SD. Blooms strongly absorb light in the red and
NIR regions [79], and SD typically has an inverse relationship with bloom biomass [62,80].
This implies that the deeper the SD, the lower the bloom and thus higher the reflectance in
the red and NIR bands. Based on this potential relationship between the bloom and SD,
prior works have used red and NIR bands of satellite images to estimate SD [81-83]. This
suggests that in the absence of proxies like Chl-a, PC, and MC, SD could also be employed
to estimate the spatial and temporal extent of algal blooms in water resources.

5.2. Temporal Association between the Parameters

HABs in the Lake Erie basin are normally expected to reach the peak bloom sometime
between July to October [84]. Therefore, the association between Chl-a with other proxies
(i.e.,, PC, MC, and SD) was examined for the peak bloom months of August and September
to shed light on the significance of combining multiple proxies to guide bloom monitoring.
A strong linear relationship between Chl-a and MC with R? of 0.83 observed in the study
(Figure 8a), suggests that a considerable portion of the Chl-a can explain the presence of
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HABs, as it is strongly associated with MC. While the information on Chl-a alone does not
suffice to explain the presence of HAB as Chl-a is present in many other phytoplankton
species, incorporating the information from different proxies elevates the applicability of
Chl-a in determining the presence of the bloom.

The closeness in the trend of Chl-a and PC in the monthly averages (Figure 7) demon-
strates the affinity between these two pigments. For some months, such as May, Chl-a
increased significantly but not PC, suggesting that the increase in Chl-a may have been
due to phytoplankton biomass rather than algal blooms. Despite their similar monthly
trends, the weak linkage between Chl-a and PC (Figure 8b) can be attributed to the low
mean concentration of PC (Section 5.1).

An exponential decline in SD with increasing Chl-a (Figure 8c) suggests the inverse
relationship between SD and Chl-a. It was observed that, at Chl-a concentrations below
50 ug/L, even a small change in Chl-a concentration resulted in substantial changes in SD.
For instance, increasing Chl-a concentration from 0 pug/L to 10 pug/L resulted in a total
decrease of 0.41 m in SD (from 1.97 m to 1.56 m). However, the change in SD became
less significant as the Chl-a concentration increased above 50 ug/L, where a change in
Chl-a concentration from 50 pg/L to 60 pug/L led to a total change in SD of just 0.09 m
(from 0.54 m to 0.45 m). These observed relationships between Chl-a and SD suggest that a
Chl-a concentration of 50 ug/L could serve as a threshold for using SD as a water quality
metric in bloom-affected areas. Conversely, SD is not an effective proxy of changes in algal
blooms in eutrophic waters with Chl-a values above 50 ug/L, where SD and Chl-a are
barely related to each other.

The findings from each of the proxies highlight the importance of incorporating
complementary measures, such as MC, PC, and SD as opposed to using only a common
proxy like Chl-a, to give a clear picture of the bloom. The analysis from this study could
offer a strong foundation that can be extended to future research using multiple proxies
in determining the existence of bloom. Additionally, incorporating hydrometeorological
conditions, such as temperature, precipitation, and wind, can enhance bloom monitoring
by accounting for their significant influence on bloom behavior.

Overall, interpretability obtained from RF algorithm offered valuable insights into the
relative importance of different predictor variables, supporting more informed decision-
making for bloom presence and thereby, water resource management. Our study demon-
strates the benefits of using advanced machine learning, specifically RF with Sentinel-3
OLCI satellite imagery, for efficient HAB monitoring, especially in situations where acquir-
ing real-time in-situ data across different spatial scales is immensely challenging. Future
research could enhance predictive capabilities by integrating more machine learning algo-
rithms and multispectral data sources.

6. Conclusions

This study leveraged high-frequency multispectral Sentinel-3 satellite imageries to
identify HAB proxies in response to their distinctive spectral characteristics. Based on the
performance of RF models curated for four proxies of algal bloom and the assessment of
spectral bands used in model development, proxies were found to be specifically more
sensitive to blue-green, red, and infrared regions. The RF model for Chl-a explained
variability in ground-truth data more strongly (R? = 0.55 and RMSE = 20.84 pug/L) as
compared to the RF models for MC (R? = 0.44 and RMSE = 3.39 ug/L), PC (R? = 0.46 and
RMSE =70.92 ug/L), and SD (R? = 0.47 and RMSE = 0.71 m). MC, which is hard to detect
using only spectral information, was found to closely imitate the behavior of Chl-a. The
link between Chl-a and MC, given that MC is the toxic component of the bloom, could help
identify the existence of toxic cyanobacterial blooms from the non-toxic blooms. Similarly,
the association of SD and Chl-a can help establish an ecological bloom threshold for the
use of SD as a metric of water quality in bloom-affected waters. However, due to PC’s low
concentration, it did not exhibit a strong relationship with Chl-a. With four proxies involved
in explaining the bloom phenomena, the correlation between them suggests that utilizing
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multiple proxies can offset the disadvantages of one proxy with the advantages of the other.
Overall, leveraging the satellite data alongside the available proxies indicating the bloom,
hold immense potential for generating valuable insights that can assist in the development
of effective mitigation measures against the nuisance caused by toxic algal bloom.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16132444 /s1, Figure S1. Raw Sentinel 3A OLCI image in the
background from June 22, 2021; Figure S2. Model performances (R2 and RMSE) for five random sets
of samples from the dataset.

Author Contributions: Conceptualization, S.K. and K.Z.; methodology, N.J., SK., K.Z. and ].P;
software, N.J.; validation, N.J., S.K., K.Z. and J.P.; formal analysis, N.J.; investigation, N.J.; resources,
S.K.; data curation, N.J. and A.L.; writing—N.].; writing—review and editing, S.K., K.Z. and J.P;
visualization, N.J.; supervision, S.K., K.Z. and J.P,; project administration, S.K.; funding acquisition,
S.K. and K.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by a Harmful Algal Bloom Research Initiative grant from
the Ohio Department of Higher Education (#GR119061) and the OSU Graduate School Fellowship
programs, including College Allocated and Environmental Fellowships.

Data Availability Statement: Sentinel-3 OLCI data can be downloaded from CODA (Copernicus
Online Data Access) Web Service (https://coda.eumetsat.int/, accessed on 1 August 2022) and
the data older than a year are stored in a rolling archive accessible in https://www.eumetsat.int/
website/home/Data/DataDelivery /EUMETSATDataCentre/index.html (accessed on 1 August 2022).
The ground-based water quality dataset can be downloaded from https://ohioseagrant.osu.edu/
research/live/water (accessed on 5 August 2022).

Conflicts of Interest: Neha Joshi is employed by Arcadis U.S., Inc. The authors declare no conflict
of interest.

References

1.

10.

11.

12.

Ho, ].C.; Michalak, A.M. Challenges in Tracking Harmful Algal Blooms: A Synthesis of Evidence from Lake Erie. ]. Great Lakes
Res. 2015, 41, 317-325. [CrossRef]

Nemes, J. Ohio EPA Declares Western Lake Erie Impaired. Environmental Law & Policy Center: Chicago, IL, USA, 2018. Available
online: https:/ /elpc.org/blog/ohio-epa-declares-western-lake-erie-impaired/ (accessed on 26 October 2022).

Mohamed, M.N.; Wellen, C.; Parsons, C.T.; Taylor, W.D.; Arhonditsis, G.; Chomicki, K.M.; Boyd, D.; Weidman, P.; Mundle, 5.0.C.;
Van Cappellen, P; et al. Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities.
Freshw. Sci. 2019, 38, 675-691. [CrossRef]

Watson, S.B.; Miller, C.; Arhonditsis, G.; Boyer, G.L.; Carmichael, W.; Charlton, M.N.; Confesor, R.; Depew, D.C.; Ho0k, T.O;
Ludsin, S.A.; et al. The Re-Eutrophication Of Lake Erie: Harmful Algal Blooms and Hypoxia. Harmful Algae 2016, 56, 44—66.
[CrossRef] [PubMed]

Caballero, I.; Fernandez, R.; Escalante, O.M.; Maman, L.; Navarro, G. New Capabilities of Sentinel-2A /B Satellites Combined
with in Situ Data for Monitoring Small Harmful Algal Blooms in Complex Coastal Waters. Sci. Rep. 2020, 10, 8743. [CrossRef]
[PubMed]

Izadi, M.; Sultan, M.; Kadiri, R.E.; Ghannadi, A.; Abdelmohsen, K. A Remote Sensing and Machine Learning-Based Approach to
Forecast the Onset of Harmful Algal Bloom. Remote Sens. 2021, 13, 3863. [CrossRef]

Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and
Challenges. Remote Sens. 2022, 14, 1770. [CrossRef]

Douna, V.; Barraza, V.; Grings, F.; Huete, A.; Restrepo-Coupe, N.; Beringer, ]. Towards a Remote Sensing Data Based Evapo-
transpiration Estimation in Northern Australia Using a Simple Random Forest Approach. J. Arid Environ. 2021, 191, 104513.
[CrossRef]

Rubin, H].; Lutz, D.A; Steele, B.G.; Cottingham, K.L.; Weathers, K.C.; Ducey, M.].; Palace, M.; Johnson, K.M.; Chipman, J.W.
Remote Sensing of Lake Water Clarity: Performance and Transferability of Both Historical Algorithms and Machine Learning.
Remote Sens. 2021, 13, 1434. [CrossRef]

Wen, J.; Yang, J.; Li, Y.; Gao, L. Harmful Algal Bloom Warning Based on Machine Learning in Maritime Site Monitoring.
Knowl.-Based Syst. 2022, 245, 108569. [CrossRef]

Zhang, F.; Hu, C.; Shum, CK; Liang, S.; Lee, J. Satellite Remote Sensing of Drinking Water Intakes in Lake Erie for Cyanobacteria
Population Using Two MODIS-Based Indicators as a Potential Tool for Toxin Tracking. Front. Mar. Sci. 2017, 4, 124. [CrossRef]
Klemas, V. Remote Sensing of Algal Blooms: An Overview with Case Studies. J. Coast. Res. 2012, 28, 34-43. [CrossRef]


https://www.mdpi.com/article/10.3390/rs16132444/s1
https://www.mdpi.com/article/10.3390/rs16132444/s1
https://coda.eumetsat.int/
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
https://ohioseagrant.osu.edu/research/live/water
https://ohioseagrant.osu.edu/research/live/water
https://doi.org/10.1016/j.jglr.2015.01.001
https://elpc.org/blog/ohio-epa-declares-western-lake-erie-impaired/
https://doi.org/10.1086/705915
https://doi.org/10.1016/j.hal.2016.04.010
https://www.ncbi.nlm.nih.gov/pubmed/28073496
https://doi.org/10.1038/s41598-020-65600-1
https://www.ncbi.nlm.nih.gov/pubmed/32457388
https://doi.org/10.3390/rs13193863
https://doi.org/10.3390/rs14081770
https://doi.org/10.1016/j.jaridenv.2021.104513
https://doi.org/10.3390/rs13081434
https://doi.org/10.1016/j.knosys.2022.108569
https://doi.org/10.3389/fmars.2017.00124
https://doi.org/10.2112/JCOASTRES-D-11-00051.1

Remote Sens. 2024, 16, 2444 15 0f 17

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Shen, L.; Xu, H.; Guo, X. Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework.
Sensors 2012, 12, 7778-7803. [CrossRef]

Stumpf, R.P,; Culver, M.E,; Tester, P.A.; Tomlinson, M.; Kirkpatrick, G.J.; Pederson, B.A.; Truby, E.; Ransibrahmanakul, V.; Soracco,
M. Monitoring Karenia Brevis Blooms in the Gulf of Mexico Using Satellite Ocean Color Imagery and Other Data. Harmful Algae
2003, 2, 147-160. [CrossRef]

Rodriguez-Benito, C.V.; Navarro, G.; Caballero, I. Using Copernicus Sentinel-2 and Sentinel-3 Data to Monitor Harmful Algal
Blooms in Southern Chile during the COVID-19 Lockdown. Mar. Pollut. Bull. 2020, 161, 111722. [CrossRef]

Urquhart, E.A.; Schaeffer, B.A. Envisat MERIS and Sentinel-3 OLCI Satellite Lake Biophysical Water Quality Flag Dataset for the
Contiguous United States. Data Br. 2020, 28, 104826. [CrossRef]

Ali, K.; Witter, D.; Ortiz, ]. Application of Empirical and Semi-Analytical Algorithms to MERIS Data for Estimating Chlorophyll a
in Case 2 Waters of Lake Erie. Environ. Earth Sci. 2014, 71, 4209-4220. [CrossRef]

Matthews, M.W,; Bernard, S.; Winter, K. Remote Sensing of Cyanobacteria-Dominant Algal Blooms and Water Quality Parameters
in Zeekoevlei, a Small Hypertrophic Lake, Using MERIS. Remote Sens. Environ. 2010, 114, 2070-2087. [CrossRef]

Seegers, B.N.; Werdell, PJ.; Vandermeulen, R.A.; Salls, W.; Stumpf, R.P; Schaeffer, B.A.; Owens, T.].; Bailey, S.W.; Scott, ].P.,; Loftin,
K.A. Satellites for Long-Term Monitoring of Inland U.S. Lakes: The MERIS Time Series and Application for Chlorophyll-A. Remote
Sens. Environ. 2021, 266, 112685. [CrossRef]

Cherif, E.K.; Mozeti¢, P; Francé, J.; Flander-Putrle, V.; Faganeli-Pucer, J.; Vodopivec, M. Comparison of In-Situ Chlorophyll-a
Time Series and Sentinel-3 Ocean and Land Color Instrument Data in Slovenian National Waters (Gulf of Trieste, Adriatic Sea).
Water 2021, 13, 1903. [CrossRef]

Ogashawara, I. The Use of Sentinel-3 Imagery to Monitor Cyanobacterial Blooms. Environments 2019, 6, 60. [CrossRef]
Pirasteh, S.; Mollaee, S.; Narges Fatholahi, S.; Li, J. Estimation of Phytoplankton Chlorophyll-a Concentrations in the Western
Basin of Lake Erie Using Sentinel-2 and Sentinel-3 Data. Can. |. Remote Sens. 2020, 46, 585-602. [CrossRef]

Binding, C.E.; Greenberg, T.A.; McCullough, G.; Watson, S.B.; Page, E. An Analysis of Satellite-Derived Chlorophyll and Algal
Bloom Indices on Lake Winnipeg. J. Great Lakes Res. 2018, 44, 436—446. [CrossRef]

Papenfus, M.; Schaeffer, B.; Pollard, A.L; Loftin, K. Exploring the Potential Value of Satellite Remote Sensing to Monitor
Chlorophyll-a for US Lakes and Reservoirs. Environ. Monit. Assess. 2020, 192, 1-22. [CrossRef]

Khan, R.M,; Salehi, B.; Mahdianpari, M.; Mohammadimanesh, F.; Mountrakis, G.; Quackenbush, L.]. A Meta-Analysis on Harmful
Algal Bloom (Hab) Detection and Monitoring: A Remote Sensing Perspective. Remote Sens. 2021, 13, 4347. [CrossRef]

Beck, R.; Xu, M,; Zhan, S.; Johansen, R.; Liu, H.; Tong, S.; Yang, B.; Shu, S.; Wu, Q.; Wang, S.; et al. Comparison of Satellite Re-
flectance Algorithms for Estimating Turbidity and Cyanobacterial Concentrations in Productive Freshwaters Using Hyperspectral
Aircraft Imagery and Dense Coincident Surface Observations EPA Public Access. J. Great Lakes Res. 2019, 45, 413-433. [CrossRef]
Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.;
et al. Performance of Landsat-8 and Sentinel-2 Surface Reflectance Products for River Remote Sensing Retrievals of Chlorophyll-a
and Turbidity. Remote Sens. Environ. 2019, 224, 104-118. [CrossRef]

Liu, Q.; Rowe, M.D.; Anderson, E.J.; Stow, C.A.; Stumpf, R.P; Johengen, T.H. Probabilistic Forecast of Microcystin Toxin Using
Satellite Remote Sensing, in Situ Observations and Numerical Modeling. Environ. Model. Softw. 2020, 128, 104705. [CrossRef]
Francy, D.S.; Brady, A.M.G.; Stelzer, E.A.; Cicale, ].R.; Hackney, C.; Dalby, H.D,; Struffolino, P.; Dwyer, D.E. Predicting Microcystin
Concentration Action-Level Exceedances Resulting from Cyanobacterial Blooms in Selected Lake Sites in Ohio. Environ. Monit.
Assess. 2020, 192, 1-27. [CrossRef] [PubMed]

McHau, G.J.; Makule, E.; Machunda, R.; Gong, Y.Y.; Kimanya, M. Phycocyanin as a Proxy for Algal Blooms in Surface Waters:
Case Study of Ukerewe Island, Tanzania. Water Pract. Technol. 2019, 14, 229-239. [CrossRef]

Zolfaghari, K.; Pahlevan, N.; Binding, C.; Gurlin, D.; Simis, S.G.H.; Verdu, A.R.; Li, L.; Crawford, C.J.; Vanderwoude, A.; Errera,
R.; et al. Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 1-20. [CrossRef]

Chang, K.W,; Shen, Y.; Chen, P.C. Predicting Algal Bloom in the Techi Reservoir Using Landsat TM Data. Int. ]. Remote Sens. 2010,
25,3411-3422. [CrossRef]

Camdevyren, H.; Demyr, N.; Kanik, A.; Keskyn, S. Use of Principal Component Scores in Multiple Linear Regression Models for
Prediction of Chlorophyll-a in Reservoirs. Ecol. Modell. 2005, 181, 581-589. [CrossRef]

Yu, P; Gao, R.; Zhang, D.; Liu, Z.P. Predicting Coastal Algal Blooms with Environmental Factors by Machine Learning Methods.
Ecol. Indic. 2021, 123, 107334. [CrossRef]

Ly, Q.V,; Nguyen, X.C.; L&, N.C.; Truong, T.D.; Hoang, TH.T.; Park, T.J.; Magbool, T.; Pyo, J.C.; Cho, K.H.; Lee, K.S,; et al.
Application of Machine Learning for Eutrophication Analysis and Algal Bloom Prediction in an Urban River: A 10-Year Study of
the Han River, South Korea. Sci. Total Environ. 2021, 797, 149040. [CrossRef] [PubMed]

Prasad, S.; Saluja, R.; Garg, J.K. International Journal of Remote Sensing Assessing the Efficacy of Landsat-8 OLI Imagery Derived
Models for Remotely Estimating Chlorophyll-a Concentration in the Upper Ganga River, India Assessing the Efficacy of Landsat-8
OLI Imagery Derived Models for R. Int. J. Remote Sens. 2020, 41, 2439-2456. [CrossRef]

Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A Machine Learning Approach to Estimate Chlorophyll-a
from Landsat-8 Measurements in Inland Lakes. Remote Sens. Environ. 2020, 248, 111974. [CrossRef]


https://doi.org/10.3390/s120607778
https://doi.org/10.1016/S1568-9883(02)00083-5
https://doi.org/10.1016/j.marpolbul.2020.111722
https://doi.org/10.1016/j.dib.2019.104826
https://doi.org/10.1007/s12665-013-2814-0
https://doi.org/10.1016/j.rse.2010.04.013
https://doi.org/10.1016/J.RSE.2021.112685
https://doi.org/10.3390/w13141903
https://doi.org/10.3390/environments6060060
https://doi.org/10.1080/07038992.2020.1823825
https://doi.org/10.1016/j.jglr.2018.04.001
https://doi.org/10.1007/s10661-020-08631-5
https://doi.org/10.3390/rs13214347
https://doi.org/10.1016/j.jglr.2018.09.001
https://doi.org/10.1016/j.rse.2019.01.023
https://doi.org/10.1016/j.envsoft.2020.104705
https://doi.org/10.1007/s10661-020-08407-x
https://www.ncbi.nlm.nih.gov/pubmed/32666330
https://doi.org/10.2166/wpt.2019.005
https://doi.org/10.1109/TGRS.2021.3114635
https://doi.org/10.1080/01431160310001620786
https://doi.org/10.1016/j.ecolmodel.2004.06.043
https://doi.org/10.1016/j.ecolind.2020.107334
https://doi.org/10.1016/j.scitotenv.2021.149040
https://www.ncbi.nlm.nih.gov/pubmed/34311376
https://doi.org/10.1080/01431161.2019.1688888
https://doi.org/10.1016/j.rse.2020.111974

Remote Sens. 2024, 16, 2444 16 of 17

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.

Park, Y.; Cho, K.H.; Park, J.; Cha, S.M.; Kim, ].H. Development of Early-Warning Protocol for Predicting Chlorophyll-a Con-
centration Using Machine Learning Models in Freshwater and Estuarine Reservoirs, Korea. Sci. Total Environ. 2015, 502, 31-41.
[CrossRef] [PubMed]

Topp, S.N.; Pavelsky, T.M.; Stanley, E.H.; Yang, X.; Griffin, C.G.; Ross, M.R.V. Multi-Decadal Improvement in US Lake Water
Clarity. Environ. Res. Lett. 2021, 16, 055025. [CrossRef]

Tamvakis, A.; Tsirtsis, G.; Karydis, M.; Patsidis, K.; Kokkoris, G.D. Drivers of Harmful Algal Blooms in Coastal Areas of Eastern
Mediterranean: A Machine Learning Methodological Approach. Math. Biosci. Eng. 2021, 18, 6484—6505. [CrossRef]

Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A Remote Sensing Approach to Mapping Fire Severity in South-Eastern Australia
Using Sentinel 2 and Random Forest. Remote Sens. Environ. 2020, 240, 111702. [CrossRef]

Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf
Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [CrossRef]

Nelson, N.G.; Muii Oz-Carpena, R.; Phlips, E.J.; Kaplan, D.; Sucsy, P.; Hendrickson, J. Revealing Biotic and Abiotic Controls of
Harmful Algal Blooms in a Shallow Subtropical Lake through Statistical Machine Learning. Environ. Sci. Technol 2018, 52, 53.
[CrossRef]

Bartish, T. A Review of Exchange Processes among the Three Basins of Lake Erie. J. Great Lakes Res. 1987, 13, 607-618. [CrossRef]
Chaffin, J.; Bratton, J.F.; Verhamme, E.M.; Bair, H.B.; Beecher, A.A.; Binding, C.E.; Birbeck, J.A.; Bridgeman, T.B.; Chang, X;
Crossman, J.; et al. The Lake Erie HABs Grab: A Binational Collaboration to Characterize the Western Basin Cyanobacterial
Harmful Algal Blooms at an Unprecedented High-Resolution Spatial Scale. Harmful Algae 2021, 108, 102080. [CrossRef]
Cousino, L.K.; Becker, R.H.; Zmijewski, K.A. Modeling the Effects of Climate Change on Water, Sediment, and Nutrient Yields
from the Maumee River Watershed. . Hydrol. Reg. Stud. 2015, 4, 762-775. [CrossRef]

ESA Ocean Processing—Sentinel Online, European Space Agency—ESA. 2021. Available online: https:/ /sentinels.copernicus.eu/
web /sentinel/technical-guides/sentinel-3-olci/level-2 /ocean-processing (accessed on 18 August 2022).

Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.;
et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission. Remote Sens. Environ. 2012, 120, 37-57.
[CrossRef]

EUMETSAT. Sentinel-3 Instrumentation. EUMETSAT: Darmstadt, Germany. Available online: https://training.eumetsat.int/
mod /book/tool/print/index.php?id=13025 (accessed on 17 August 2022).

Kyryliuk, D.; Kratzer, S. Evaluation of Sentinel-3A OLCI Products Derived Using the Case-2 Regional CoastColour Processor
over the Baltic Sea. Sensors 2019, 19, 3609. [CrossRef] [PubMed]

EUMETSAT. Sentinel 3 Marine Copernicus Data Access User Manual; EUMETSAT: Darmstadt, Germany, 2018. Available online:
https:/ /coda.eumetsat.int/manual /CODA-user-manual.pdf (accessed on 18 August 2022).

EUMETSAT. Sentinel-3 OLCI Marine User Handbook; EUMETSAT: Darmstadt, Germany, 2021. Available online: http://www.
eumetsat.int (accessed on 19 August 2022).

Cooperative Institute for Great Lakes Research, University of Michigan; NOAA Great Lakes Environmental Research Laboratory.
Physical, Chemical, and Biological Water Quality Monitoring Data to Support Detection of Harmful Algal Blooms (HABs) in Western Lake
Erie, Collected by the Great Lakes Environmental Research Laboratory and the Cooperative Institute for Great Lakes Research since 2012;
NOAA National Centers for Environmental Information: Asheville, NC, USA, 2019. [CrossRef]

Chaffin, J. Stone Lab Algal and Water Quality Laboratory. Ohio Sea Grant: Columbus, OH, USA, 2018. Available online:
https://ohioseagrant.osu.edu/research/live/water (accessed on 18 August 2022).

Dev, PJ.; Sukenik, A.; Mishra, D.R.; Ostrovsky, I. Cyanobacterial Pigment Concentrations in Inland Waters: Novel Semi-Analytical
Algorithms for Multi- and Hyperspectral Remote Sensing Data. Sci. Total Environ. 2022, 805, 150423. [CrossRef]

Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baures, E.; Thomas, O. State of Knowledge and Concerns on Cyanobacterial Blooms
and Cyanotoxins. Environ. Int. 2013, 59, 303-327. [CrossRef] [PubMed]

Ogashawara, I. Determination of Phycocyanin from Space-A Bibliometric Analysis. Remote Sens. 2020, 12, 567. [CrossRef]
Stumpf, R.P.; Davis, TW.; Wynne, T.T.; Graham, J.L.; Loftin, K.A.; Johengen, T.H.; Gossiaux, D.; Palladino, D.; Burtner, A.
Challenges for Mapping Cyanotoxin Patterns from Remote Sensing of Cyanobacteria. Harmful Algae 2016, 54, 160-173. [CrossRef]
[PubMed]

Pip, E.; Bowman, L. Microcystin and Algal Chlorophyll in Relation to Nearshore Nutrient Concentrations in Lake Winnipeg,
Canada. Environ. Pollut. 2014, 3, 36-47. [CrossRef]

Hollister, ].W.; Kreakie, B.J.; Wilson, A.E.; Marion, ].W. Associations between Chlorophyll a and Various Microcystin Health
Advisory Concentrations. F1000Research 2016, 5, 151. [CrossRef] [PubMed]

Simpson, J.; Carlson, R. A Coordinator’s Guide to Volunteer Lake Monitoring Methods. N. Am. Lake Manag. Soc. 1996, 96, 305.
Lee, G.F; Jones-Lee, A.; Rast, W.; Macero, A. El Secchi Depth as a Water Quality Parameter. Environ. Sci. 1995. publication pending.
Fuller, L.M.; Minnerick, R.J. Predicting Water Quality by Relating Secchi-Disk Transparency and Chlorophyll a Measurements
to Landsat Satellite Imagery for Michigan Inland Lakes, 2001-2006. U.S. Geological Survey: Reston, VA, USA, 2007; pp. 1-4.
Available online: http://pubs.usgs.gov/fs/2007 /3022 /pdf/FS2007-3022.pdf (accessed on 5 September 2022).

Brezonik, P.L.; Bouchard, R.W.; Finlay, J.C.; Griffin, C.G.; Olmanson, L.G.; Anderson, J.P.; Arnold, W.A.; Hozalski, R. Color,
Chlorophyll a, and Suspended Solids Effects on Secchi Depth in Lakes: Implications for Trophic State Assessment. Ecol. Appl.
2019, 29, e01871. [CrossRef] [PubMed]


https://doi.org/10.1016/j.scitotenv.2014.09.005
https://www.ncbi.nlm.nih.gov/pubmed/25241206
https://doi.org/10.1088/1748-9326/abf002
https://doi.org/10.3934/mbe.2021322
https://doi.org/10.1016/j.rse.2020.111702
https://doi.org/10.3390/rs11080920
https://doi.org/10.1021/acs.est.7b05884
https://doi.org/10.1016/S0380-1330(87)71676-1
https://doi.org/10.1016/j.hal.2021.102080
https://doi.org/10.1016/j.ejrh.2015.06.017
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci/level-2/ocean-processing
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci/level-2/ocean-processing
https://doi.org/10.1016/j.rse.2011.07.024
https://training.eumetsat.int/mod/book/tool/print/index.php?id=13025
https://training.eumetsat.int/mod/book/tool/print/index.php?id=13025
https://doi.org/10.3390/s19163609
https://www.ncbi.nlm.nih.gov/pubmed/31430993
https://coda.eumetsat.int/manual/CODA-user-manual.pdf
http://www.eumetsat.int
http://www.eumetsat.int
https://doi.org/10.25921/11da-3x54
https://ohioseagrant.osu.edu/research/live/water
https://doi.org/10.1016/j.scitotenv.2021.150423
https://doi.org/10.1016/j.envint.2013.06.013
https://www.ncbi.nlm.nih.gov/pubmed/23892224
https://doi.org/10.3390/rs12030567
https://doi.org/10.1016/j.hal.2016.01.005
https://www.ncbi.nlm.nih.gov/pubmed/28073474
https://doi.org/10.5539/ep.v3n2p36
https://doi.org/10.12688/f1000research.7955.2
https://www.ncbi.nlm.nih.gov/pubmed/27127617
http://pubs.usgs.gov/fs/2007/3022/pdf/FS2007-3022.pdf
https://doi.org/10.1002/eap.1871
https://www.ncbi.nlm.nih.gov/pubmed/30739365

Remote Sens. 2024, 16, 2444 17 of 17

65.
66.
67.
68.
69.
70.
71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Wang, Q.; Wang, L.; Zhu, X,; Ge, Y.; Tong, X.; Atkinson, PM. Remote Sensing Image Gap Filling Based on Spatial-Spectral Random
Forests. Sci. Remote Sens. 2022, 5, 100048. [CrossRef]

Biau, G. Analysis of a Random Forests Model. J. Mach. Learn. Res. 2012, 13, 1063—-1095.

Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Schonlau, M.; Zou, R.Y. The Random Forest Algorithm for Statistical Learning. State J. 2020, 20, 3-29. [CrossRef]

Sprugel, D.G. Correcting for Bias in Log-Transformed Allometric Equations. Ecology 1983, 64, 209-210. [CrossRef]

Strimbu, B. Correction for Bias of Models with Lognormal Distributed Variables in Absence of Original Data. Ann. For. Res. 2012,
55, 66.

Stumpf, R.P,; Wynne, T.T.; Baker, D.B.; Fahnenstiel, G.L. Interannual Variability of Cyanobacterial Blooms in Lake Erie. PLoS ONE
2012, 7, e42444. [CrossRef] [PubMed]

Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, ]. A Simple Semi-Analytical
Model for Remote Estimation of Chlorophyll-a in Turbid Waters: Validation. Remote Sens. Environ. 2008, 112, 3582-3593.
[CrossRef]

Van Nguyen, M.; Lin, C.H.; Chu, H.J; Jaelani, L.M.; Syariz, M.A. Spectral Feature Selection Optimization for Water Quality
Estimation. Int. J. Environ. Res. Public Health 2020, 17, 272. [CrossRef]

Ruiz-Verdu, A.; Simis, S.G.H.; de Hoyos, C.; Gons, H.J.; Pefia-Martinez, R. An Evaluation of Algorithms for the Remote Sensing
of Cyanobacterial Biomass. Remote Sens. Environ. 2008, 112, 3996-4008. [CrossRef]

Ha, N.T.T; Thao, N.T.P,; Koike, K.; Nhuan, M.T. Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a
Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam). ISPRS Int. |. Geo-Inf.
2017, 6, 290. [CrossRef]

Simis, 5.G.H.; Ruiz-Verdd, A.; Dominguez-Gomez, ].A.; Pena-Martinez, R.; Peters, S W.M.; Gons, H.J. Influence of Phytoplankton
Pigment Composition on Remote Sensing of Cyanobacterial Biomass. Remote Sens. Environ. 2007, 106, 414-427. [CrossRef]
Mishra, S.; Stumpf, R.P; Schaeffer, B.; Werdell, PJ.; Loftin, K.A.; Meredith, A. Evaluation of a Satellite-Based Cyanobacteria Bloom
Detection Algorithm Using Field-Measured Microcystin Data. Sci. Total Environ. 2021, 774, 145462. [CrossRef]

Yacobi, Y.Z.; Kohler, J.; Leunert, F,; Gitelson, A. Phycocyanin-Specific Absorption Coefficient: Eliminating the Effect of Chloro-
phylls Absorption. Limnol. Oceanogr. Methods 2015, 13, 157-168. [CrossRef]

Zhao, Y.; Liu, D.; Wei, X. Monitoring Cyanobacterial Harmful Algal Blooms at High Spatiotemporal Resolution by Fusing Landsat
and MODIS Imagery. Environ. Adv. 2020, 2, 100008. [CrossRef]

Harvey, E.T.; Walve, J.; Andersson, A.; Karlson, B.; Kratzer, S. The Effect of Optical Properties on Secchi Depth and Implications
for Eutrophication Management. Front. Mar. Sci. 2019, 5, 496. [CrossRef]

Wu, M.; Zhang, W.; Wang, X.; Luo, D. Application of MODIS Satellite Data in Monitoring Water Quality Parameters of Chaohu
Lake in China. Environ. Monit. Assess. 2009, 148, 255-264. [CrossRef] [PubMed]

Yip, H.D.; Johansson, J.; Hudson, J.J. A 29-Year Assessment of the Water Clarity and Chlorophyll-a Concentration of a Large
Reservoir: Investigating Spatial and Temporal Changes Using Landsat Imagery. . Great Lakes Res. 2015, 41, 34—44. [CrossRef]
Moses, W.J.; Gitelson, A.A_; Berdnikov, S.; Povazhnyy, V. Satellite Estimation of Chlorophyll-a Concentration Using the Red and
NIR Bands of MERISThe Azov Sea Case Study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845-849. [CrossRef]

Tewari, M.; Kishtawal, C.M.; Moriarty, V.W.; Ray, P; Singh, T.; Zhang, L.; Treinish, L.; Tewari, K. Improved Seasonal Prediction of
Harmful Algal Blooms in Lake Erie Using Large-Scale Climate Indices. Commun. Earth Environ. 2022, 3, 195. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.srs.2022.100048
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1177/1536867X20909688
https://doi.org/10.2307/1937343
https://doi.org/10.1371/journal.pone.0042444
https://www.ncbi.nlm.nih.gov/pubmed/22870327
https://doi.org/10.1016/j.rse.2008.04.015
https://doi.org/10.3390/ijerph17010272
https://doi.org/10.1016/j.rse.2007.11.019
https://doi.org/10.3390/ijgi6090290
https://doi.org/10.1016/j.rse.2006.09.008
https://doi.org/10.1016/j.scitotenv.2021.145462
https://doi.org/10.1002/lom3.10015
https://doi.org/10.1016/j.envadv.2020.100008
https://doi.org/10.3389/fmars.2018.00496
https://doi.org/10.1007/s10661-008-0156-2
https://www.ncbi.nlm.nih.gov/pubmed/18231871
https://doi.org/10.1016/j.jglr.2014.11.022
https://doi.org/10.1109/LGRS.2009.2026657
https://doi.org/10.1038/s43247-022-00510-w

	Introduction 
	Study Area and Datasets 
	Study Area 
	Datasets 
	Sentinel-3A OLCI Level-2 Dataset 
	Ground-Based Station Datasets 

	Cyanobacteria Proxies 
	Data Quality Control 
	Spatial Matchups 

	Methods 
	Overview of the Algorithm: Random Forest 
	Model Performance Assessment 

	Results 
	Model Prediction and Feature Importance 
	Association of MC, PC, and SD with Chl-a 

	Discussion 
	Model Prediction and Feature Importance 
	Temporal Association between the Parameters 

	Conclusions 
	References

