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Abstract: Automated progress monitoring of construction sites using cameras has been proposed in
recent years. Although previous studies have tried to identify the most informative camera views
according to 4D BIM to optimize installation plans, video collection using fixed or pan-tilt-zoom
cameras is still limited by their inability to adapt to the dynamic construction environment. Therefore,
considerable attention has been paid to using camera-equipped unmanned aerial vehicles (CE-UAVs),
which provide mobility for the camera, allowing it to fit its field of view automatically to the important
parts of the construction site while avoiding occlusions. However, previous studies on optimizing
video collection with CE-UAV are limited to the scanning of static objects on construction sites. Given
the growing interest in construction activities, the existing methods are inadequate to meet the
requirements for the collection of high-quality videos. In this study, the following requirements for
and constraints on collecting construction-activity videos have been identified: (1) the FOV should
be optimized to cover the areas of interest with the minimum possible occlusion; (2) the path of the
UAV should be optimized to allow efficient data collection on multiple construction activities over
a large construction site, considering the locations of activities at specific times; and (3) the data
collection should consider the requirements for CV processes. Aiming to address these requirements
and constraints, a method has been proposed to perform simulation-based optimization of path
planning for CE-UAVs to allow automated and effective collection of videos of construction activities
based on a detailed 4D simulation that includes a micro-schedule and the corresponding workspaces.
This method can identify the most informative views of the workspaces and the optimal path for data
capture. A case study was developed to demonstrate the feasibility of the proposed method.

Keywords: construction activity; data collection; path planning; 4D BIM; UAV; simulation; optimization

1. Introduction

Construction projects generate a massive amount of data. Among the different sources
of construction data, videos collected from construction sites can have a great impact on
improving construction management [1]. With the emergence of advanced computer-vision
(CV) techniques, it is now possible to extract rich semantics and detailed information from
images, enabling the use of more comprehensive analysis in construction management [2].
Specifically, the advances in recognition of construction activity enable higher-level analysis
to generate meaningful knowledge to improve management [3]. Although cameras at
fixed locations have been used for video collection from construction sites for multiple
applications [4], fixing the camera locations may affect the coverage because some parts
of the site can be occluded even when 4D simulation is used to optimize the installation
plan [5,6]. To overcome these limitations, considerable attention has been paid to automated
video collection using camera-equipped unmanned aerial vehicles (CE-UAVs), which
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provide mobility to the camera, allowing it to fit its field of view (FOV) automatically to
the important parts of the construction site while avoiding occlusion [7–9]. The available
research related to path planning for the optimization of video collection by CE-UAV is
limited to the scanning of static objects on construction sites [10–12]. These methods aim to
optimize the path to meet the requirements of data processing for 3D reconstruction and
inspection. While some efforts have been made to incorporate the schedule into the path
optimization, the focus remains on static objects [10], disregarding the dynamic nature of
construction activities across different times and locations on the site. Given the growing
interest in construction-activity recognition within CV-based applications for analysis of
safety and productivity [4], the existing methods are inadequate for collecting high-quality
videos of construction activity. Therefore, there is a need for research on optimization of
the UAV path for video collection that can be used for construction-activity recognition.

This paper proposes a method to perform simulation-based optimization of path
planning for CE-UAVs that considers the time and location of construction activities. The
main contributions of this research are as follows: (1) identifying the top-ranking VPs of
CE-UAVs to capture videos of construction activities based on a detailed 4D simulation;
(2) optimizing the path of a CE-UAV to minimize the travel duration while avoiding colli-
sions; and (3) developing a prototype system that performs simulation-based optimization
of path planning for CE-UAVs to collect videos of construction activities according to the
micro-schedule. This paper is an extended version of our previous conference paper [13].

The rest of the paper is organized as follows. Section 2 reviews the related studies
about video collection on construction sites. In addition, it reviews the various constraints
and requirements associated with the application of computer vision (CV) to aerial videos.
Section 3 proposes the method to optimize the path of a CE-UAV to collect videos of
construction activities. Section 4 explains the development of the prototype system and
the case study used to validate the proposed method. The conclusions are described and
future work is discussed in Section 5.

2. Literature Review

This section reviews related studies about video collection on construction sites. In ad-
dition, it reviews the various constraints and requirements associated with the application
of CV to aerial videos.

2.1. Conventional Video Collection for Construction Monitoring

The collection of videos for construction monitoring has been carried out in previous
studies using either static or mobile cameras. Manual collection with handheld [14,15],
equipment-mounted or wearable cameras [16,17] has been tested. However, such collection
approaches usually suffer from low efficiency, leading to low added value [18]. On the
other hand, stationary cameras enable automated and continuous video collection from
construction sites. Many construction sites now use surveillance cameras for activity
monitoring [19], progress monitoring [20,21], health-and-safety monitoring [6,22], and
evidence collection for claims [23]. However, using fixed cameras to collect videos from
construction sites has its challenges. For example, construction activities can be occluded,
which negatively affects CV-based object detection and tracking [24–26]. Deploying cameras
at high positions is an economical solution that allows coverage of a large area of the site
while mitigating occlusion [27,28]. However, this approach may lead to far-field object
detection with low resolution, which results in low accuracy. Increasing the number of
cameras could help address this limitation [29] but is not practical in many construction
scenarios [4]. Optimizing the location of stationary cameras on construction sites is the most
common solution used to ensure coverage and quality while considering the feasibility and
cost of installation [4,6].

Previous studies have optimized the camera placement, as shown in Table 1. For
example, Albahri and Hammad [30] proposed a method that uses simulation based on
Building Information Modeling (BIM) and a Genetic Algorithm (GA) to optimize the
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placement of fixed cameras in a building, considering the cameras’ coverage and cost.
Kim et al. [31] and Yang et al. [32] applied multi-objective genetic algorithms (MOGAs) to
optimize camera placement on construction sites based on the 2D site layout, considering
the coverage of the job site, as limited by occlusion by the structure, and the cost of
installation. Zhang et al. [33] proposed a method to optimize camera placement in a
3D space based on the coverage of pan-tilt-zoom (PTZ) cameras for a deep excavation
area, considering occlusion. Other studies have attempted to optimize installation plans
based on the most informative camera views according to 4D simulations [5,6]. In these
studies, the site layout at different phases of the project is extracted from a BIM model
according to the schedule. Then, MOGA is applied to find the optimal solution that achieves
maximum coverage of the site layout in all phases. However, guaranteeing high-quality
videos that can be used for construction-activity recognition is challenging because of
potential occlusions.

Table 1. Studies related to placement of fixed and PTZ cameras.

Ref. Camera Type Environment Optimization
Method

Simulation
Platform

Schedule
Considered? Application

[30] Fixed camera Indoor PICEA 3D No General site
monitoring

[32] Fixed camera Outdoor NSGA-II 2D No General site
monitoring

[31] Fixed camera Outdoor Semantic-Cost
GA 2D No General site

monitoring

[33] PTZ
camera Outdoor Modified GA 3D No Safety

monitoring

[5] Fixed camera Indoor PMGA 2D Yes Activity
monitoring

[6] Fixed camera Outdoor NSGA-II 3D Yes Safety
monitoring

2.2. Data Collection Using UAV for Construction Monitoring

As explained in Section 1, to overcome the limitations of video capture using fixed
cameras, considerable attention has been paid to automated video collection using a CE-
UAV. The main previous studies of UAV path planning in the construction industry are
summarized in Table 2.

Waypoint generation and routing can be viewed as two sequential tasks in path plan-
ning [34]. Some studies have proposed generating collision-free UAV paths based on a BIM
model to facilitate visual inspection of buildings [35,36]. However, these methods focus
only on generating safe flight paths with minimum flight costs, and the waypoints are
selected manually. Other studies have proposed methods for sampling the viewpoints to
achieve full visual coverage of the structure while considering the sensor (i.e., camera or
laser scanner) specifications, such as FOV, focal length, and sensor size [37–39]. Then, rout-
ing algorithms are applied to generate the optimal path through the sampled viewpoints.
Another method of path planning for bridge inspection using Light Detection And Ranging
(LiDAR)-equipped UAV was suggested by Bolourian and Hammad [40] and was carried
out in two steps. First, the viewpoints were sampled based on coverage, overlapping rate,
and the criticality of the area. Then, a GA was used to generate the optimal path. In the
work of Zheng et al. [12], multiple waypoints were generated using ArcGIS and the Solve
Vehicle Routing Problem (SVRP) function was used to assign tasks to UAVs in the fleet
and optimize the route. On the other hand, some previous path-planning methods have
used a single-step approach. Chen et al. [41] proposed the use of the Opposition-Based
Learning Artificial Bee Colony (OABC) Algorithm to generate the optimized flight path
for 3D reconstruction. Ivić et al. [11] proposed a method developed based on the Heat
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Equation Driven Area Coverage (HEDAC) algorithm to generate optimized flight paths for
3D reconstruction. Ibrahim et al. [10] proposed a method of UAV path planning for progress
monitoring during the construction phase that considers the schedule using waypoints and
variable-length MOGA (VL-MOGA). Although the schedule was considered to identify a
specific progress level of the BIM model, construction activities during the flight time were
not considered. While most previous studies focused on constructed objects, Yu et al. [42]
proposed a method to optimize the UAV path to collect aerial images used in daily safety
inspection of construction sites (e.g., identifying unsafe stacking of materials, danger areas,
and safety signs). Waypoints are sampled based on the specifications of the CE-UAV and
the importance level and altitude of the areas of interest. An improved ACO algorithm was
proposed to optimize the shortest path.

As shown in Table 2, the main difference between the method proposed in this study
and the method described above is the focus on collecting videos with good visual coverage
of construction activities (vs. covering static objects in previous studies), as will be explained
in Section 3.

Table 2. Path planning of UAVs in construction industry.

Ref. Sensor
Type

Operation
Environment

Waypoints
Generation Method

Routing
Algorithm

Schedule
Considered Application Type of

Target

[35] Camera Outdoor Predefined A* No Inspection Constructed
objects

[36] n/a Indoor Predefined A* No Inspection Constructed
objects

[37] Camera Outdoor/
Indoor

Sampling based on
coverage

LKH and
RRT* No

3D recon-
struction and

inspection

Constructed
objects

[38] Camera Outdoor
Sampling based on

coverage, sensor spec.,
and overlapping rate

DPSO and A* No
3D recon-

struction and
inspection

Constructed
objects

[39] Camera Outdoor

Refining the
nun-occluded sampled

viewpoints to
minimize the number

of waypoints

A* No Inspection Constructed
objects

[40] Laser
scanner Outdoor

Sampling based on
coverage, sensor spec.,
overlapping rate, and

criticality levels of
different zones

GA and A* No Inspection Constructed
objects

[12] Camera Outdoor Sampling SVRP from
ArcGIS No 3D recon-

struction
Constructed

objects

[41] Camera Outdoor OABC Algorithm No 3D recon-
struction

Constructed
objects

[11] Camera Outdoor/
Indoor HEDAC No 3D recon-

struction
Constructed

objects

[10] Camera Outdoor Sampling based on 3D grid-based flight
plan template and VL-MOGA Yes

3D recon-
struction,
progress

monitoring

Constructed
objects

[42] Camera Outdoor Sampling waypoints
in the areas of interest

Improved
ACO

algorithm
No

Construction
safety

inspection

Safety risks on
construction

site
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Table 2. Cont.

Ref. Sensor
Type

Operation
Environment

Waypoints
Generation Method

Routing
Algorithm

Schedule
Considered Application Type of

Target

This
paper Camera Outdoor NSGA-II

A* and
random-key

GA
Yes Activity

monitoring
Construction

activities

2.3. Challenges in Applying Activity Recognition Techniques on Aerial Videos

With the emergence of advanced CV techniques, it is possible to use computers for
automatic recognition of construction activities [19,28]. However, the majority of existing
CV methods for activity recognition are based on stationary cameras, while CE-UAV-based
activity recognition is less explored [43,44]. As articulated in previous studies [45,46],
human-activity recognition from aerial imagery can be impeded by the small size of objects
within the aerial frame and motion blur. In addition, the angle of view, the resolution of
objects in the frame, occlusion, vibrations, illumination, shadows, and battery life are also
critical aspects to be considered when planning CE-UAVs for the collection of videos for
construction-activity recognition [47,48].

3. Proposed Method

In this section, the proposed method is described first in an overview, then in an
in-depth explanation of each module.

3.1. Method Overview

As explained in the previous section, the requirements for data collection on construc-
tion sites using CE-UAV are as follows: (1) the FOV should be optimized to cover the
areas of interest with the minimum possible occlusion; (2) the path of the UAV should be
optimized to allow efficient data collection on multiple construction activities over a large
construction site, considering the locations of activities at specific times; and (3) the data
collection should consider the requirements for CV processes. For example, the distance
from the camera to the objects should be less than a certain maximum value. Additionally,
it is essential to maintain a proper tilt angle (e.g., near 45◦) to clearly show the pose of
workers and equipment. Furthermore, a stable FOV is needed. It has been demonstrated
that aerial videos captured while the UAV is hovering offer distinct advantages, as they
enable the capture of finer scene details and intricacies [48]. Moreover, hovering time
should be sufficient for gathering essential data from the optimal viewpoints (VPs). In this
research, it is assumed that the CE-UAV will collect videos in both traveling and hovering
states. However, the focus is on spending more time collecting videos while hovering.

The proposed method considers the abovementioned requirements and optimizes the
path of a CE-UAV that will hover at the top-ranking VPs to collect videos about construction
activities of workers and equipment in different workspaces based on a micro-schedule.
The proposed method consists of three modules, as shown in Figure 1: (1) preparation of
the simulation platform; (2) VPs-optimization module; and (3) path-optimization module.
These modules will be detailed in the subsequent sections.

An example of a micro-schedule and the corresponding workspaces in the simula-
tion environment are shown in Figures 2a and 2b, respectively. In this example, three
workspaces (i.e., A, B, and C) are identified from the as-planned 4D simulation of the
project. A is the workspace for process PA, which is active during t1–t4; B is the workspace
for PB during t1–t3; and C is the workspace for PC during t2–t4. The search space for each
workspace is defined based on the solution variables, as will be explained in Section 3.2.
Then, cubic cells are generated within the workspaces to prepare the simulation environ-
ment to calculate the camera coverage of the workspaces. Importance values (IVs) are
assigned to the cells, considering the location (i.e., whether the cell is near the constructed
objects) and the importance level of the associated task. In the VPs-optimization module,
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considering the workspaces and search spaces in each period, the top-ranking VPs, which
are those in which the hovering camera has good coverage of the workspace while mini-
mizing the distance to the workspace, are selected using a MOGA. In the path-optimization
module, the Generalized Traveling Salesman Problem (GTSP) is solved by adapting a
random-key GA to find the minimum-duration path that will allow the CE-UAV to collect
videos from one of the top-ranking VPs in each workspace in a cyclic manner. The GTSP is
an NP-hard problem and a variation of TSP, which aims to find the optimal Hamiltonian
tour passing through one node from each cluster of nodes.
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Figure 2. Micro-schedule and corresponding workspaces. (a) Example of micro-schedule; (b) Corres-
ponding workspaces.

Figure 3 shows the UAV optimal cycle paths in different periods for the above example.
During t1 to t2, workspaces A and B are active. Multiple top-ranking VPs are identified in
their corresponding search spaces (e.g., ai for workspace A, bj for workspace B). TH

m refers
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to the hovering time at point m. TF
mn refers to the travel duration between point m and

point n. Then, using the GA to solve the GTSP, a∗1 and b∗3 are selected as the top-ranking
VPs to generate the path with the minimum travel duration. For the periods t2 to t3
and t3 to t4, similar steps are followed to select the top-ranking VPs and to generate the
optimal cycle paths. The cycle-path duration is determined by considering the desired
data-capturing frequency (i.e., the expected number of cycles) and the maximum operation
duration according to the UAV battery and payloads. Lastly, the hovering duration at each
VP in one cycle is calculated, considering the importance level of the process.
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3.2. Simulation-Environment-Preparation Module

Figure 4 shows the steps for preparing the simulation environment. In this module,
the workspaces are identified from a detailed 4D simulation [49]. The hierarchy of a
construction project used in this study is mainly adapted from [50], wherein five levels are
identified: project, activity, construction operation, construction process, and work task.
In practice, the project schedule is based on work packages representing activities and
operations, which will take weeks or days. In this study, a micro-schedule is considered for
workspace planning based on a sequence of processes, which will take hours or minutes.
A CE-UAV can be used to capture videos of the activities of workers and equipment
according to the micro-schedule, which will be used to extract detailed information about
atomic activities.
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Then, the solution variables for the VPs-optimization module are identified. As shown
in Figure 5, a CE-UAV has ten DoFs, six of which are related to the UAV’s pose (i.e., x,
y, z, pan, tilt, and roll) and the other four of which control the mounted camera (pan-c,
tilt-c, roll-c, and FOV). Incorporating the roll angle during image capture can increase the
complexity and computational cost of CV processing. Therefore, in the proposed method,
the sum of the rolls of the UAV and the camera is assumed to be zero. In addition, to
simplify the variables in the optimization problem, the tilt angle of the UAV is assumed to
be 0◦, and the pan angle of the camera is assumed to be 0◦ to avoid occlusion by the legs of
the UAV.
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Moreover, the FOV of the camera is fixed to the default value (e.g., a diagonal FOV of
94◦). Consequently, only the position of the UAV (x, y, z), the pan angle of the UAV (φ),
and the tilt angle of the camera (θ) will be considered in the optimization.

Figures 6a and 6b show the top view and cross-section of the search space, respectively.
Figure 6 also shows the solution variables (x, y, z, φ, and θ). In order to ensure good
coverage of the workspace and capture the most informative scenes, the camera focus
should be near the center of the workspace, where most of the construction activities
are expected to happen. Instead of the pan angle (φ) in the world coordinate system, the
deviation (φ′) from the vector connecting the camera and the center of the workspace is used
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in the optimization, as shown in Figure 6a. The range for φ’ is set according to Equation (1),
considering the trade-off between a larger search range and a faster optimization process.

φ′
min ≤ φ′ ≤ φ′

max (1)
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In addition, it is essential to maintain a tilt angle of the camera (θmin, θmax) that can
clearly show the pose of workers and equipment according to Equation (2), as follows:

θmin ≤ θ ≤ θmax (2)

To define the range of (x, y, z), an assumption is made that φ′ and θ are set in a way
that the focus of the camera is on the center of the workspace, as mentioned above. It is
necessary to emphasize that this assumption applies only to the definition of the search
space. As shown in Figure 6, for each workspace, the search space can be generated by
considering the requirements explained in the previous section. The main constraints of the
search space are the maximum distance (Dmax) between the camera and the center of the
workspace, the safe operation distance (Ds), and the tilt angle range of the camera, subject
to Equations (2)–(4). D is the distance between the camera and the center of the workspace,
which should be smaller than Dmax to avoid far-object detection with low resolution. To
capture videos with an acceptable tilt angle, a limit is imposed on Zmax by considering
Dmax and θmax according to Equation (5), where h is the height of the workspace. On the
other hand, as shown in Equation (6), the value of Zmin is determined as the larger of two
values: the minimum height (Z1), as determined by θmin according to Equation (7), and
the sum of the workspace height and the safe operation distance, determined according
to Equation (8). For instance, in the example depicted in Figure 6, Z1 is smaller than Z2,
resulting in Zmin being equal to Z2. As a result of the above constraints, the search space is
shown in the grey area in Figure 6.

D ≤ Dmax (3)

Zmin ≤ z ≤ Zmax (4)

Zmax =
h
2
+ Dmax × Sin θmax (5)

Zmin = Max(Z1, Z2) (6)

Z1 =
h
2
+ Dmax × Sin θmin (7)

Z2 = h + DS (8)

The next step in preparing the simulation environment is generating cubic cells within
the workspaces to calculate the camera coverage of workspaces. A trade-off is necessary
between the accuracy of the coverage calculation and the computation time when defining
the size of cells. Then, importance values (IV) are calculated for these cells according to
Equation (9), where IV′ is the base importance value of the cell, which is assigned according
to the area in which the cell is located within the workspace. Specifically, the cells near the
constructed objects are assigned higher values of IV′. WWP represents the weight assigned
to the corresponding work process in the workspace, which indicates the complexity level
of the associated processes. The weight of a workspace should be defined based on the
project manager’s knowledge.

IV = WWP × IV′ (9)

3.3. VPs-Optimization Module

Figure 7 shows the VPs-optimization process. The optimization of VPs is based on
the camera’s visual coverage of the corresponding workspace and the distance from the
camera to the center of the workspace, which are calculated in the simulation environment.

In this module, NSGA-II is adapted to identify the top-ranking VPs for each of the
generated workspaces. NSGA-II was selected because of its remarkable computational
efficiency in searching near-optimal solutions and its robust capability in managing uncer-
tainty when compared with other metaheuristics algorithms (e.g., other GAs, Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO)) for solving multiple-objective
optimization problems [51]. Furthermore, NSGA-II’s simplicity and interpretability facil-
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itate easy modification and enhancement, making it well-suited for addressing complex
optimization problems [52], especially when additional conditions will be introduced to
the simulation problem in the future.
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It should be mentioned that some MOGA variants mentioned in Tables 1 and 2 are
not suitable for this purpose. Specifically, the Semantic-Cost GA [31] uses an inefficient
selection operator, which selects solutions based on the probability derived from the fitness
value. PMGA [5] and VL-MOGA [10] are specialized in other optimization aspects: PMGA
performs multi-objective optimization in parallel across different scenarios to find the
optimal VP for a fixed camera, considering various construction scenarios and stages.
VL-MOGA optimizes a sequence of sampled VPs to improve the video-capturing plan for
constructed buildings. However, neither of these methods can meet the requirements (as
explained in Section 3.1) for identifying the top-ranking hovering VPs to capture videos of
construction activities in a specific period according to the micro-schedule.

In each generation, a number I of VPs are randomly generated within the search
space. Then, the virtual CE-UAV is placed at each VP to calculate the visual coverage of the
workspace through simulation. This simulation process can be illustrated using Equations
(10) and (11). For the camera at VPi, the set of visible cells VCi is found using Equation (10),
where vci

j is a visible cell, J is the total number of visible cells when the camera is placed at

VPi, Ray
(

vci
j, VPi

)
is a ray-tracing function that generates a collision-free ray between vci

j
and the camera at VPi, and FOVi is the field of view of the camera at VPi. Based on the set
of visible cells, the module then calculates the visibility score (vsi), which is the summation
of the IVs of visible cells according to Equation (11), where IV() is a function that retrieves
the IV of a cell.

VCi =
{

vci
1, vci

2, . . . , vci
J |Ray

(
vci

j, VPi

)
∈ FOVi

}
(10)
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vsi =
J

∑
j=0

IV
(

vci
j

)
(11)

The first objective function of the optimization maximizes the camera’s visual coverage
(Cov) according to Equation (12), which is the visibility score divided by the sum of the IVs
of the N cells in the workspace. The second objective function minimizes the distance (D)
from the VPi to the center of the workspace, as shown in Equation (13), where Cws is the
position vector of the center of the workspace and Pi is the position vector of VPi. Using
MOGA enables the identification of solutions (i.e., VPs) in the Pareto front that optimize
the two objective functions. However, it is important to note that some of these solutions
compromise visibility to minimize the distance to the workspace, such that the FOV does
not cover the entire workspace. To avoid this issue, a constraint is imposed according to
Equation (14), stipulating that the camera’s FOV at VPi must encompass the entirety of the
workspace, where Ray′(cn, VPi) denotes the generation of a ray originating from any cell
within the workspace (cn) towards the VPi, regardless of occlusion. The multi-objective
problem is constrained by Equations (1)–(4) and Equation (14).

Max Cov =
vsi

∑N
n=0 IVn

(12)

Min D = ∥Cws − Pi∥ (13)

The solution is subject to Equations (1)–(4)

and Ray′(cn, VPi) ∈ FOVi for 1 ≤ n ≤ N (14)

Through the optimization, for each workspace, multiple top-ranking VPs will be iden-
tified. These VPs will then be ranked according to the fitness value, which should consider
both objective functions. Therefore, normalization is applied to convert the distance used
in Equation (13) into a percentage. Furthermore, since the other objective function is to
maximize the coverage, Equation (15) is used to calculate the normalized distance (DNorm)
while transferring the objective function from a minimization to a maximization function.
This is done by considering the distance from VPi to the outer boundary of the search space
along the vector from the center point of the workspace divided by the distance from the
closest possible VP to the outer boundary. The fitness value is calculated using Equation
(16), with weights wC and wD assigned to the visual coverage and normalized distance,
respectively. The sum of the two weights should be 1, with a greater weight attributed to
the visual coverage, reflecting its higher significance over a shorter distance. Finally, the
ranked VPs are passed to the third module for path optimization.

DNorm =
Dmax − D

Dmax −
(

Zmin − h
2

)
/Sinθmax

(15)

F =wC × Cov + wD × DNorm (16)

3.4. Path-Optimization Module

Figure 8 shows the process of path optimization with the top-ranking VPs identified
from the VPs-optimization module. This module solves the GTSP for the selection of the
path with the shortest travel duration to collect videos from one of the top-ranking VPs
for each workspace. For simplification, a simple UAV kinematic model is used without
considering acceleration or turning constraints. It is considered that the CE-UAV will take
off from the base station and travel to the first VP to start the monitoring for multiple cycle
paths. After the last cycle is finished, the CE-UAV will return to the base station. The total
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duration of one cycle path TCP is equal to the total flight time between the VPs (TF
total) and

the total hovering time at each of them
(
TH

total
)

as shown in Equation (17).

TCP = TF
total + TH

total (17)
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Assuming that the maximum operation time of the fully charged battery is Tbattery,
then the sum of Ttake−o f f , Tlanding, and nTCP should be equal to the adjusted maximum
operation time according to Equation (18), as follows:

α × Tbattery = n×TCP + Ttake−o f f + Tlanding (18)

where α is a safety factor, n is the number of cycles, Ttake−o f f is the time needed for taking
off and traveling from the base station to the first VP, and Tlanding is the time needed to
return to the base station. The proposed method aims to find the optimal path of one
cycle by minimizing TF

total according to Equation (19). Then, the number of cycles n, the
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hovering time at each VP, and the first VP on the path connecting to the base station will be
considered to generate the flight plan.

Min TF
total (19)

To find the optimal cycle path with the minimum TF
total , two variables are identified as

necessary in this optimization problem: the ID of the VP to be selected in each workspace
and the sequence in which the selected VPs are visited. The random-key GA [53] is adapted
to solve this GTSP. The selection of this GA over alternative optimization techniques
(e.g., PSO, ACO) is substantiated by its ability to find near-optimal solutions with short
convergence time. In addition, while compared with other studies that applied simple
GA for solving GTSP (e.g., [40] as shown in Table 2), the random-key GA is more robust
regarding scalability and global search capability due to its lightweight encoding plan.

In this GA, the number of genes in the chromosome is determined based on the
number of active workspaces K that will be visited during a given period. For example,
during t2–t3 in Figure 3b, the number of genes is three because there are three workspaces.
The genes in the chromosome are in the order of the workspaces. A random float number
between zero and the number of top-ranking VPs of the workspace k is assigned to the
kth gene. For decoding, each gene in the chromosome is divided into two components: an
integer part and a fractional part. The integer part represents the index of the VP to be
selected from the corresponding list of top-ranking VPs in workspace k, where 0 denotes
the first VP. Meanwhile, the fractional part corresponds to a random key. By sorting these
random keys in ascending order, the sequence of workspaces to be visited can be obtained.
For example, Table 3 shows an example of decoding a chromosome {3.83, 3.25, 1.77} for the
case in Figure 3b. In workspace A, the integer part corresponds to 3, indicating the selection
of the fourth VP in the list (a4). The same decoding process is applied to workspaces B and
C to select the VPs to be visited. After the VPs have been sorted by their random keys in
ascending order, the resulting sequence for visiting is b4 – c2 – a4.

Table 3. Example of decoding a chromosome.

Workspace Number of
VPs

Range of
Gene Value

Example
Gene

Selected
VP

Random
Key

Visiting
Order

A 4 [0, 4) 3.83 a4 0.83 3

B 5 [0, 5) 3.25 b4 0.25 1

C 3 [0, 3) 1.77 c2 0.77 2

To complete the path to visit each VP generated by the GA, the first step entails
identifying potential collisions between two consecutive VPs. If there is no obstacle on the
path between them, a direct trajectory is generated. When the flight duration along this
trajectory is computed, it should be noted that the UAV’s velocity constraints change when
it moves vertically or horizontally. For example, in the case of DJI Matrice 100, the UAV
ascends at a maximum speed of 5 m/s, descends at a maximum speed of 4 m/s, and reaches
a maximum speed of 17 m/s when moving horizontally in GPS mode [54]. To address this,
a weighted approach is employed to calculate the UAV’s velocity on the direct trajectory
from one VP to another according to Equation (20), where Vhor is the maximum horizontal
velocity, Vver is the maximum vertical velocity in the corresponding move direction, and l
and h are the horizontal distance and vertical distance between the two VPs, respectively.

V =
Vhor × l + Vver × h

l + h
(20)

On the other hand, if a potential collision is detected, the A* search algorithm is used
to find the collision-free UAV trajectory between two consecutive VPs. The A* algorithm
was selected due to its robust overall performance in efficiently and accurately finding
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collision-free optimal paths within various 3D maps [55]. Additionally, its simplicity in
application within the simulation environment of this study was a significant factor. The
3D space is discretized into a 3D cubic grid. The A* algorithm searches the trajectory based
on the time G(n) needed for the UAV to travel from the given starting node to the nth node
Pn (xn, yn, zn) while avoiding collision and the estimated remaining time H(n) for the UAV
to travel from Pn to the goal position GP(xGP, yGP, zGP). G(n) can be calculated according
to Equation (21), where C(Pn−1, Pn) is the travel time needed for the UAV to travel from
Pn−1 to Pn. Meanwhile, H(n) is calculated according to Equation (22), where T(Pn, GP)
is the heuristic function used to estimate the travel time from Pn to the GP regardless of
collision. The sum of these two times will be used to determine whether the trajectory
should go through node Pn, according to Equation (23).

G(n) =

{
C(Pn−1, Pn) + G(n − 1), n > 0

0 , n = 0
(21)

H(n) = T(Pn, GP) (22)

f (n) = G(n) + H(n) (23)

with the optimal cycle path, it is possible to select the first VP on the path that is closest
to the base station and to calculate Ttake−o f f and Tlanding. The next step is to calculate the
hovering duration at each VP and the number of cycles n that the CE-UAV can complete in
one flight with a fully charged battery. Based on Equations (17) and (18), the equation for
determining TH

total can be derived as shown in Equation (24). To determine TH
total , a trade-off

is needed between frequent monitoring (i.e., the value of n) and longer hovering duration
in each cycle. In other words, a shorter cycle-path time with more cycles in one operation
results in less time spent hovering at each VP and relatively longer travel time between VPs.
On the other hand, a longer cycle-path time may lead to missing some events at certain VPs
because the CE-UAV is hovering at other VPs and the frequency of visits to all VPs is lower.

TH
total =

α × Tbattery − Ttake−o f f − Tlanding

n
− TF

total (24)

The distribution of TH
total at different VPs should prioritize the coverage achievable

at each VP and the importance level of the task. Therefore, the hovering time at each
VPk is calculated based on the coverage (Cov k) of the corresponding workspace k and the
importance level of the task, according to Equation (25), where wk

WP is the assigned weight
for workspace k, as explained in Section 3.2.

TH
k =

Covk × wk
WP

∑K
1 Covk × wk

WP

× TH
total (25)

4. Implementation and Case Study

In this section, the implementation of the proposed method is introduced and a case
study is conducted to validate the performance of the proposed method.

4.1. Implementation

A prototype system was developed using the Unity3D game engine (v.2022.3.27f1,
San Francisco, CA, USA) [56] and Python programming language (v.3.10.12) [57]. The
BIM model of the case-study project was imported into Unity3D to create a simulation
platform for calculating visibility scores using the Raycast function to detect potential
occlusion between the VPs and the generated cells of the workspace. NSGA-II was applied
for the optimization of VPs using the open-source Pymoo library [58] (East Lansing, MI,
USA) in Python. In addition, the path-optimization module customized the random-key
GA based on Pymoo to solve the GTSP. A collider was generated in the game engine



Remote Sens. 2024, 16, 2445 16 of 25

based on the positions of the two VPs in the path to detect potential collision risks while
considering the safe operation distance. If any potential collision was detected, A* 3D
pathfinding function [59] in Unity3D was used to determine the optimal path between
them. The communication between Unity3D (client) and Python (server) was established
using the Transmission Control Protocol/Internet Protocol (TCP/IP). The prototype system
was tested on a computer with Intel i7-6800k CPU (Santa Clara, CA, USA), 64 GB of
random-access memory (RAM) and two Nvidia GTX 1070 GPUs (Santa Clara, CA, USA).

4.2. Case Study

A case study was conducted to validate the applicability of the proposed method and
the developed prototype system. The case study was developed based on activities during
one day on the construction site of an electric substation. Figure 9 shows the workspaces
on the construction site and the schedule of the corresponding processes. The process
of welding and steel-element preparation were carried out in WS1. The processes of steel
elements installation were split into two separate workspaces due to the crane’s relocation.
The process of steel-element installation 1 was carried out in WS2 during t1–t3. During
t3–t4, the crane was relocated to WS3 to finish the process of steel-element installation 2.
In addition, one excavator was doing earthwork in WS4 during t2–t4. Near the middle
of the construction site, a cylindric volume with a radius of 10 m and a height of 20 m
was reserved for an idling crane as a danger zone for the UAV. Due to the higher level
of complexity associated with the processes of steel-element installation compared to the
other two processes, a higher weight (WWP) of 1.5 was assigned to WS2 and WS3, given
that the WWP of the regular processes (in WS1 and WS4) had a value of 1.
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By combining the 3D BIM and the schedule, 4D simulation was generated and used as
the input for generating the workspace model in Unity3D. The safe operation distance (Ds)
was set to 5 m, and the maximum distance (Dmax) was set to 30 m. The search space was
then generated according to the steps explained in Section 3.2. Table 4 lists the location of
each workspace and the range of attribute values of the corresponding search space. As
an example, Figure 10 shows the top view of the search spaces for the three workspaces
during t2–t3. Then, cells were generated with the dimensions 1 m × 1 m × 1 m, and the
base importance value IV′ of each cell was set to 1 for simplification.

Table 4. Search-space dimensions.

ID

Center Point Coordinates and Height of
Workspace Range of Attribute Values of Each Search Space

x (m) y (m) h (m) X (m) Y (m) Z (m) φ’ (◦) θ (◦)

WS1 67.0 26.0 5.0 [38.0, 96.0] [−3.0, 55.0] [10.3, 28.5] [−45, 45] [15, 60]

WS2 1.0 66.0 12.0 [−26.9, 28.9] [38.1, 93.9] [17.0, 31.0] [−45, 45] [15, 60]

WS3 1.0 40.0 12.0 [−26.9, 28.9] [12.1, 67.9] [17.0, 31.0] [−45, 45] [15, 60]

WS4 57.0 −29.0 8.0 [28.4, 85.6] [−57.6, −0.4] [13.0, 30.0] [−45, 45] [15, 60]
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The UAV considered in the case study is a DJI Matrice 100 (Shenzhen, China) equipped
with a DJI TB48D battery, which can ascend at a maximum speed of 5 m/s, descend at a
maximum speed of 4 m/s, and reach a top speed of 17 m/s in GPS mode. Therefore, the
time the UAV takes to travel between two points at different heights will vary, as explained
in Section 3.4. The only payload carried by the UAV is assumed to be the DJI Zenmuse X3
4K camera (Shenzhen, China), which has a diagonal FOV of 94◦ (vertical FOV of about 62◦

and horizontal FOV of about 84◦). This payload allows for an approximate flight time of
24 min [40]. The safety factor α for the maximum operation duration was set to 0.9.

In the NSGA-II, which was used to identify the top-ranking VPs, the number of
generations was set at 70, with a population size of 300. The algorithm employs a two-
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point crossover with a probability of 80% and a polynomial mutation with a mutation
probability (Pm) that can be calculated according to Equation (26) [60]. Pm is determined
by the number of variables. In this case study, with five variables in the VPs optimization
(x, y, z, φ’, and θ), Pm was 20%. In addition, the distribution index for mutation (ηm) was
set to 30, noting that a lower ηm leads to a wider spread of the mutated value. Moreover, to
rank the VPs generated by the VPs-optimization module, wC and wD (Equation (16)) were
set to 0.8 and 0.2, respectively.

Pm =
1

Number of variables
(26)

The GA for GTSP used 100 generations but a smaller population size of 200 due to the
smaller search space. It employed a single-point crossover with a probability of 80% and
random mutation with a probability of 5%.

4.3. Pilot Test for Evaluating the VPs-Optimization Module

A pilot test was conducted to evaluate the performance of the VPs optimization
module under various hypothetical conditions with artificial walls, ranging from highly
confined workspaces to open environments. Three distinct scenarios were generated, as
shown in Figure 11, focusing on WS2. In the first scenario (Figure 11a), the workspace was
positioned in an open space with minimal nearby structures serving as potential obstacles.
Figure 11b depicts the second scenario, where the workspace was surrounded by 12-m-high
walls acting as primary obstacles. Gaps were intentionally left between the walls to enable
the CE-UAV to observe the workspace from the outside. The third scenario, as illustrated in
Figure 11c, presented an extreme condition in which the workspace was surrounded by tall
walls 20 m in height. The views of cameras form the optimal VP in each scenario are also
shown correspondingly. In this figure, the cells that are completely or partially invisible to
the camera are highlighted in red. It is important to note that some invisible cells may still
appear within the cameras’ views because these cells are only partially occluded.
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The VPs-optimization module identified multiple top-ranking VPs for each scenario,
as listed in Table 5. The optimal VPs with the highest fitness value in each scenario are
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marked in the table. In general, the optimization module successfully identified VPs that
provided optimal coverage with a short distance to the workspace in different scenarios.
Even when faced with artificial obstacles, the module could still find the VPs that covered
over 95% of the workspace. However, extreme conditions can introduce constraints on the
positions of the identified VPs, leading to increased distances between the VPs and the
workspace. In particular, the taller walls in Scenario 3 resulted in greater distances between
the VPs and the workspace.

Table 5. Optimized VPs in different scenarios.

VP ID X (m) Y (m) Z (m) θ (◦) φ’ (◦) Coverage
(%)

Distance
(m)

Fitness
Value (%)

Sc
en

ar
io

1

1 14 59 31 54 −12 96.64 28.81 78.69

2 14 59 30 56 −4 96.61 27.95 79.66

3 14 59 29 56 −22 96.44 27.09 80.51

4 14 59 25 56 −7 96.28 23.79 84.20

5 14 59 24 51 0 96.25 23.00 85.09

6 14 59 23 52 1 96.14 22.23 85.90

7 14 59 22 51 −6 96.06 21.47 86.71

8 * 14 59 21 50 −6 95.72 20.74 87.29

9 −11 59 22 46 5 94.94 20.88 86.50

10 −11 73 20 44 −7 92.50 20.10 85.45

11 14 72 20 39 0 92.00 20.35 84.76

12 14 75 17 37 4 90.78 19.75 84.48

Sc
en

ar
io

2

13 −7 66 31 60 −6 95.94 26.27 81.07

14 −7 66 29 60 −1 95.78 24.37 83.13

15 −7 66 28 60 −3 95.69 23.43 84.15

16 9 66 27 60 1 95.53 22.49 85.10

17 * 9 65 26 59 −2 94.97 21.54 85.76

18 −7 66 25 60 0 93.39 20.64 85.53

19 9 79 18 37 2 84.06 20.10 78.69

Sc
en

ar
io

3

20 −6 52 31 59 9 95.25 29.03 77.32

21 −6 52 30 59 7 94.81 28.18 77.95

22 8 52 30 59 −10 94.81 28.18 77.95

23 8 52 29 59 −4 94.72 27.33 78.86

24 * 8 52 28 59 −19 94.64 26.50 79.76

25 −6 52 27 59 −17 91.72 25.67 78.38

26 −5 51 26 56 −9 91.31 25.14 78.67

27 2 51 26 58 4 89.02 24.43 77.65

28 8 79 18 41 9 80.44 19.72 76.23

* Optimal VP with the highest fitness score.

4.4. Results of the Case Study

In the VPs-optimization module, multiple top-ranking VPs for each workspace can be
identified, as shown in Figure 12. To save processing time in the path-optimization module,
only the best three VPs are retained. As a result, Table 6 lists the VPs that were passed to
the path-optimization module, along with their position, orientation, coverage, distance



Remote Sens. 2024, 16, 2445 20 of 25

to the center of the workspace, and fitness value. For WS2 and WS3, the overall coverage
at each of the top-ranking VPs exceeded 90%. For WS1 and WS4, where there were no
obstacles, the visual coverage was 100%. These results demonstrate the effectiveness of the
selected VPs in providing high coverage of the workspaces while minimizing the distance
to the workspace.
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Table 6. Selected VPs.

Workspace VP ID X (m) Y (m) Z (m) θ (◦) φ’ (◦) Coverage (%) Distance (m) F (%)

WS1

VP1 51 39 11 30 −1 100.00 22.30 87.34

VP2 53 12 13 39 12 100.00 22.41 87.23

VP3 53 30 20 57 2 100.00 22.77 86.89

WS2

VP4 14 59 21 50 −6 95.72 20.74 87.29

VP5 −11 59 22 46 5 94.94 20.88 86.50

VP6 −11 73 20 44 −7 92.50 20.10 85.45

WS3

VP7 −12 41 23 48 1 90.41 21.49 82.16

VP8 15 35 22 48 0 90.40 21.63 82.00

VP9 15 41 25 47 −1 92.01 23.69 80.91

WS4

VP10 46 −1 13 37 2 100.00 21.40 88.77

VP11 68 −13 14 39 −4 100.00 21.84 88.32

VP12 53 −14 20 50 0 100.00 22.29 87.86

With the top-ranking VPs, the path-optimization module generated the optimized path
for each time period. The optimal paths and their corresponding durations are shown in
Table 7. During t1–t2, VP1-VP4-VP1 was the optimal path. VP1, which was the closest VP to
the UAV base station, near the construction-site office, was selected as the first destination.
As a result of the differing ascent and descent speeds, the take-off time from the base station
to VP1 was 4.15 s and the landing time was 4.66 s. The total flight duration between the VPs
within one cycle was 5.93 s. In the period t2–t3, the optimal path was VP3-VP12-VP4-VP3,
with VP3 as the first destination. The take-off time was 5.04 s, and the landing time was
5.58 s. The total flight duration between the VPs in one cycle was 10.97 s. During t3–t4, the
optimal path was VP3-VP12-VP8-VP3, where VP3 remained the first destination. The total
flight duration between VPs within one cycle was 9.37 s.

t1–t2t2–t3t3–t4 Then, the total hovering times were calculated according to Section 3.4.
As mentioned in Section 4.2, the flight time was 24 min. With a safety factor of 0.9, the
maximum operation duration was 1296 s. Designating more cycles within one operation
led to more frequent visits by the VPs but shorter hovering times and relatively more
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time spent in transit. Figure 13 shows the relationship between the number of cycles and
the ratio TH

total/TF
total . As explained in Section 3.4, there is a trade-off between TH

total and n.
Therefore, in this case study, n was set to 11, resulting in a TCP of less than 2 min for all
durations, as shown in Table 7.

Table 7. Optimal paths and path durations in different periods.

Time Period Path Ttake−off(s) Tlanding(s) TF
total (s) TH

total (s) TCP (s)

t1–t2 VP1 –VP4 –VP1 4.15 4.66 5.93 111.09 117.02

t2–t3 VP3 –VP12 –VP4 –VP3 5.04 5.58 10.97 105.88 116.85

t3–t4 VP3 –VP12 –VP8 –VP3 5.04 5.58 9.37 107.48 116.85
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The distributions of the hovering times for each of the VPs were calculated according
to Equation (25), as shown in Figure 14. Figure 15 shows the optimal path during t3–t4.
Figure 16 shows the simulated views of the camera hovering at the three VPs for the
optimal path.
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5. Conclusions and Future Work

In this paper, a method is proposed for optimizing the path of a CE-UAV to collect
videos showing the construction activities of workers and equipment. The proposed method
includes a simulation-based VPs optimization using a MOGA that identifies the top-ranking
VPs for various workspaces. Subsequently, a GA algorithm is applied to minimize the travel
duration by solving the GTSP based on the identified VPs, which generates an optimal
path. As explained in Section 2.2, this method focuses on collecting videos with good visual
coverage of dynamic construction activities, while previous studies focused on the scanning
of the constructed objects. To evaluate the proposed method, a case study was conducted
using a prototype system developed using the Unity3D game engine and Python. The
results of the pilot test show that the VPs-optimization module can find the optimal VPs
with excellent workspace coverage while minimizing the distance to the workspaces in
different scenarios with different occlusions. In addition, the case-study results demonstrate
that the method can effectively optimize the VPs for different workspaces and generate
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optimal paths with the shortest travel durations to collect videos of construction activities
according to the micro-schedule.

The main contributions of this research are as follows: (1) developing a method to
identify the top-ranking VPs of CE-UAVs to capture videos of construction activities based
on a detailed 4D simulation; (2) developing a method for planning the optimal path of a
CE-UAV to minimize travel time while avoiding collisions; and (3) developing a prototype
system based on the proposed method that validated the feasibility and applicability in a
simulated environment.

There are several limitations in this research: (1) the proposed method generates the
optimal paths based on the information available in the 4D simulation without considering
other potential unexpected temporary obstacles, such as equipment passing by; (2) the case
study presented in this research is based on a medium-scale construction site situated in an
open space, where the likelihood of occlusion is relatively low; (3) the optimized path has
been validated only in a simulation environment. It is necessary to deploy path optimization
on actual construction sites using autonomous UAVs to further verify the effectiveness of the
proposed method; (4) the optimization and pathfinding algorithms were selected for their
robustness in solving the specific problems described in Sections 3.3 and 3.4. However, these
algorithms may have limitations, particularly when additional conditions and constraints
are introduced to the optimization problem; and (5) the continuous collection of video of
construction activities is limited by the operation time of the UAV, which is relatively short
due to the battery capacity.

When considering the application of the research, the abovementioned limitations have
to be addressed in future work, as follows: (1) more efforts should be made in the future
to apply real-time obstacle detection and avoidance; (2) a more comprehensive case study
should be conducted to test the effectiveness of the proposed method in diverse construction
environments, such as indoor environments with more potential occlusions; (3) further
field tests should be conducted to deploy path optimization on real construction sites
using autonomous UAVs, providing practical validation of the method beyond simulation
environments; (4) future work should compare the selected optimization and pathfinding
algorithms with their competent alternatives, aiming to refine the methodology regarding
accuracy and efficiency; and (5) future research should explore new solutions to mitigate
the challenge of the short operation time, such as utilizing multiple UAVs or tethered UAVs.
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