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Abstract: Net radiation (Rn) is a key component of the Earth’s energy balance. With the rise of deep
learning technology, remote sensing technology has made significant progress in the acquisition of
large-scale surface parameters. However, the generally low spatial resolution of net radiation data and
the relative scarcity of surface flux site data at home and abroad limit the potential of deep learning
methods in constructing high spatial resolution net radiation models. To address this challenge,
this study proposes an innovative approach of a multi-scale transfer learning framework, which
assumes that composite models at different spatial scales are similar in structure and parameters, thus
enabling the training of accurate high-resolution models using fewer samples. In this study, the Heihe
River Basin was taken as the study area and the Rn products of the Global Land Surface Satellite
(GLASS) were selected as the target for coarse model training. Based on the dense convolutional
network (DenseNet) architecture, 25 deep learning models were constructed to learn the spatial and
temporal distribution patterns of GLASS Rn products by combining multi-source data, and a 5 km
coarse resolution net radiation model was trained. Subsequently, the parameters of the pre-trained
coarse-resolution model were fine-tuned with a small amount of measured ground station data to
achieve the transfer from the 5 km coarse-resolution model to the 1 km high-resolution model, and a
daily high-resolution net radiation model with 1 km resolution for the Heihe River Basin was finally
constructed. The results showed that the bias, R2, and RMSE of the high-resolution net radiation
model obtained by transfer learning were 0.184 W/m2, 0.924, and 24.29 W/m2, respectively, which
was better than those of the GLASS Rn products. The predicted values were highly correlated with
the measured values at the stations and the fitted curves were closer to the measured values at the
stations than those of the GLASS Rn products, which further demonstrated that the transfer learning
method could capture the soil moisture and temporal variation of net radiation. Finally, the model
was used to generate 1 km daily net radiation products for the Heihe River Basin in 2020. This study
provides new perspectives and methods for future large-scale and long-time-series estimations of
surface net radiation.

Keywords: net radiation; multi-scale transfer learning; deep learning; Heihe River Basin

1. Introduction

Net radiation (Rn) is a critical component of the Earth’s energy balance [1], representing
the net sum of incoming and outgoing shortwave and longwave radiation at the Earth’s
surface. It is essential for determining the energy balance of the Earth and maintaining the
stability of the climate system. Net radiation plays a significant role in regulating surface
temperatures and influencing climate patterns [2]. The formula for net radiation can be
expressed as follows [3,4]:

Rn = Rns + Rnl (1)
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s , R↓
l , and R↑

l are the surface net shortwave radiation (W/m2, where
downward is defined as positive), net longwave radiation (W/m2), downward shortwave
radiation (W/m2), upward shortwave radiation (W/m2), downward longwave radiation
(W/m2), and upward longwave radiation (W/m2). α is the surface broadband albedo.

In the realm of remote sensing, the precise measurement of net radiation holds sub-
stantial scientific significance for a comprehensive grasp of the surface energy balance,
the formulation of energy balance models, and the evaluation of the effects of climate
change on surface dynamics. Gao [5] examined the temporal and spatial patterns of net
radiation and its influence on the evapotranspiration process in the Tibetan Plateau by
combining satellite data with meteorological station observations. Their findings illumi-
nated the seasonality and geographic spread of surface net radiation, which was vital for
forecasting the trends and variations of evapotranspiration in the area. Moreover, Li [6]
employed MODIS data to conduct systematic global monitoring and estimation of surface
net radiation, uncovering its global distribution. This research not only offered essential
data support for a deeper comprehension of the Earth’s energy balance dynamics but also
established a robust foundation for further global climate change analysis. Additionally,
Meng [7] conducted numerical simulations to investigate the effects of urbanization on
surface net radiation. The findings indicated that urbanization results in an increase in
net surface radiation due to alterations in surface cover and albedo, which has substantial
adverse impacts on urban climate and environmental quality. These outcomes enhance our
understanding of the role of net surface radiation and offer a solid scientific foundation
for assessing the shifts in the Earth’s energy balance and climate system in the context of
urban development.

Traditional net radiation measurement techniques mainly consist of direct in situ
measurements and data collected by ground-based meteorological stations. However, the
use of ground-based net radiation measurements faces many limitations due to the short
observation duration and high maintenance costs [8]. Therefore, scholars have begun to
investigate alternative methods of obtaining net radiation data using reanalysis and satellite-
derived products, as shown in Table 1. Reanalysis merges existing observations with
meteorological models to provide comprehensive datasets with extensive time coverage [9].
These datasets have the advantage of extended time series, but typically have coarser spatial
resolution and are often less accurate than satellite data products [10]. This discrepancy may
stem from the inaccuracy of cloud data [11,12]. In addition, while there are net radiation
products derived from satellite observations, most lack the necessary spatial detail. The
highest spatial resolution product currently available is the Global Land Surface Satellite
(GLASS) [13], which has a resolution of only 0.05◦, which is insufficient to capture spatial
variations in the land surface. This limitation hinders the application of net radiation data
on regional scales. Therefore, there is still a great demand for net radiation products that
combine high accuracy and fine spatial and temporal granularity.

Currently, large-scale studies on net radiation inversion predominantly utilize a com-
bination of satellite technology and terrestrial observational data. This field encompasses a
range of research methodologies and technical tools, such as energy balance models [14],
radiative transfer models [15], as well as machine learning [16] and deep learning algo-
rithms [17,18]. The essence of the energy balance model is the formulation of the surface
energy balance equation, which encapsulates the energy transfer processes between the
surface and the atmosphere. This includes elements like solar irradiance, atmospheric
radiation, thermal conduction, and convection. The model employs satellite data and
meteorological surface observations to ascertain the essential parameters. Despite its ro-
bust theoretical underpinnings, the energy balance model’s application is hindered by
the extensive requirement for ground observations and the complexity of the modeling
process [19]. Conversely, radiative transfer models leverage the principles of radiative
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transfer, in conjunction with satellite data, to simulate the radiation interactions between
the atmosphere and the Earth’s surface. These models are capable of estimating key param-
eters such as surface albedo and temperature and, subsequently, the net radiation at the
surface. In comparison to energy balance models, radiative transfer models exhibit greater
adaptability and applicability, particularly in responding to environmental variations across
diverse regions.

In recent years, the application of machine learning and deep learning techniques
has demonstrated significant promise in the domain of net radiation inversion. These
approaches analyze extensive datasets from both remote sensing and ground observations
to create nonlinear models that connect net radiation with satellite data. By doing so, they
adeptly capture intricate data patterns and trends, thereby enhancing the precision and
dependability of net radiation forecasts. Machine learning techniques not only bolster the
precision and efficiency of net radiation inversion through sophisticated data processing
and analytical methods but they also offer a novel, agile, and efficient avenue for net
radiation estimation, particularly within the context of big data environments. For instance,
Zeng [20] harnessed deep learning to gauge net radiation, elaborating on the benefits of
deep learning in integrating satellite and meteorological data and its potential for net
radiation estimation. Li [21] introduced a machine learning-based data fusion strategy
tailored to the Tibetan Plateau’s intricate topography and climate, showcasing the efficacy of
machine learning in estimating net radiation under such challenging conditions. Wang [22]
presented a deep learning model for terrestrial net radiation estimation and compared
its efficacy with conventional physical models, underscoring the deep learning model’s
superior generalization and accuracy. Liu [23] proposed a machine learning-based approach
for estimating surface net solar radiation, applying it to a water energy balance model
and discussing the model’s potential in net radiation estimation and its application in
water energy balance modeling. Zhang [24] put forth a deep learning-based method for
deriving surface net radiation from satellite data, discussing the method’s capacity to
manage large-scale satellite data and enhance the precision of net radiation estimation.

Although machine learning and deep learning techniques have shown great potential
in the field of surface net radiation inversion, improving estimation accuracy and enhancing
model adaptation, there are still challenges in practical applications, such as the uneven
distribution of surface flux observation stations, varying quality of ground data, and
limitations in the resolution of remotely sensed data. However, as the need for a refined
understanding of the surface energy balance and hydrological processes increases, so does
the requirement for the spatial and temporal resolution of net radiation data.

Net radiation is the center of surface energy balance studies, and downscaling to
improve its spatial and temporal resolution is crucial. In this context, the transfer learning
approach, as an innovative deep learning method, has been shown to be effective in
combining target data with field measurements to construct high-resolution models of
surface parameters. Hemmati [25] conducted an in-depth study of soil moisture at the
local scale by combining synthetic aperture radar (SAR) data with the transfer learning
technique. The study not only confirmed the effectiveness of transfer learning in inverting
soil moisture but also demonstrated its potential in modeling soil moisture with spatial
and temporal resolution. In addition, Zhu [26] used Sentinel-1 data combined with a
transfer learning model to successfully reduce the resolution of soil moisture data from
9 km to 0.1–1 km and verified the accuracy of transfer learning in inverting soil moisture in
sample-scarce areas. Together, these findings demonstrate the reliability and applicability
of the transfer learning approach in surface parameter inversion.

In this study, an innovative method is proposed to address the limitations of existing
net radiation inversion methods. The method is based on a transfer learning framework and
relies on a deep learning model of DenseNet, aiming to significantly improve the spatial–
temporal resolution and inversion accuracy of net surface radiation using limited ground
station measured data. This study established a 1 km high temporal and spatial resolution
model of net surface radiation and evaluated the accuracy of the model estimation by
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combining the station data and GLASS Rn products. The results of this study promote
the development of the surface net radiation inversion technique and provide valuable
experience and methodological guidance for subsequent related studies. In addition, the
method realizes the spatial downscaling of the net radiation data, which provides solid
technical support and a data basis for the in-depth study of the energy balance of the
surface, the hydrological cycle, and the fine monitoring of environmental changes at the
regional scale, among other applications.

Table 1. Table of available domestic and international net radiation products.

Type Dataset Spatial
Resolution

Temporal
Resolution Time Span

Reanalysis Products

NCEP/CFSR [27] 38 km 6-hourly 1979–2010
NASA/MERRA [28] 0.5◦ × 2/3◦ hourly 1979–

ERA40 [29] 125 km 6-hourly 1957–2002
ERA-Interim [30] 80 km 3-hourly 1980–

JRA55 55 km 3-hourly 1958–
NVEP/NCAR RII 200 km 6-hourly 1979–

Remote Sensing Products
CERES-SYN [31] 1◦ 3-hourly 2000–
ISCCP-FD [32] 280 km 3-hourly 1983–2011

GLASS/Rn 0.05◦ daily 2000–2020

2. Materials and Methods
2.1. Data Sourcing and Preprocessing
2.1.1. In Situ Measurements

The in situ measurement data used in this study were obtained from the Heihe
integrated observatory network. The network is based on the Heihe River Basin Joint
Telemetry Experimental Research (HiWATER) [33,34], and the observatories cover a wide
range of surface types such as farmland, grassland, woodland, wetland, desert, bare ground,
and sandy land, in order to achieve the comprehensive monitoring of surface processes
under different surface cover conditions. The locations and detailed information of the
stations are shown in Figure 1 and Table 2.Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 23 
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Table 2. Table of locations and details of field measurement sites.

Station Longitude/◦E Latitude/◦N Elevation/m Type

A’ rou 100.4643 38.0473 3033 Grassland
Daman 100.3722 38.8555 1556 Cropland

Dashalong 98.9406 38.8399 3739 Grassland
Huazhaizi 100.3201 38.7659 1731 Desert

Desert 100.9872 42.1135 1054 Desert
Mixed forest 101.1335 41.9903 874 Mixed forest
Jingyangling 101.116 37.8384 3750 Grassland

Sidaoqiao 101.1374 42.0012 873 Shrubs
Yakou 100.2421 38.0142 4147 Grassland

Zhangye wetland 100.4464 38.9751 1460 Wetland

2.1.2. NDVI Remote Sensing Datasets

In this study, we used normalized difference vegetation index (NDVI) products from
Fengyun-3 satellites with a spatial resolution of 250 m and 1 km and a temporal resolu-
tion of 10 days and monthly, which enriched our understanding of surface vegetation
conditions. These data are distributed through the Feng Yun Satellite Remote Sensing
Data Service (https://satellite.nsmc.org.cn, accessed on 1 March 2024) and stored in HDF
format, covering global attribute information, scientific datasets, and virtual data. Twelve
data layers are contained under each HDF file, including 10 days of synthetic albedo and
bright temperature at a 1 km resolution (6 channels); 10 days of synthetic NDVI, zenith,
and azimuthal angle information from the Sun and satellites; and vegetation index quality
codes. This study provides accurate indicators for monitoring surface vegetation and
contributes to an in-depth analysis and understanding of vegetation changes and their
impact on net radiation.

2.1.3. GLASS Rn Datasets

This study used Global Land Surface Satellite (GLASS) remote sensing products pro-
vided by the University of Maryland (http://www.glass.umd.edu, accessed on
1 March 2024). This dataset provides a valuable data resource for the application of remote
sensing technology in environmental monitoring by integrating key surface parameters
such as downward shortwave radiation (DSR) and net radiation (Rn). The continuous
decades of time series data provided not only have high accuracy but also achieve global
coverage. In addition, a study by Jiang [35] further confirmed the accuracy of the GLASS
Rn product through a validation exercise conducted at 142 stations around the world. In
the validation study, the coefficient of determination (R2) of the GLASS Rn product reached
0.80 and the root mean square error (RMSE) was 51.35 W/m2, which is a result that fully
demonstrates the reliability and validity of the GLASS dataset in the construction of net
radiation models.

2.1.4. Meteorological Datasets

In this study, the “China Meteorological Administration Land Data Assimilation Sys-
tem (CLDAS-V2.0) real-time product dataset” (http://data.cma.cn, accessed on 1 March
2024) was adopted. The dataset covers the entire Asian region from 0◦ to 65◦ N latitude
and 60◦ to 160◦ E longitude, with a spatial resolution of 0.0625◦ × 0.0625◦ and temporal
resolution options of hourly and daily, and all the data are based on an isotropic lati-
tude/longitude grid for integration and analysis. In data processing and analysis, the
dataset adopts advanced techniques such as Multi-Grid Variational Assimilation (MGV)
and Optimal Interpolation (OI) to ensure high-quality and spatial–temporal resolution in
the China region.

The CLDAS dataset has been updated in real time since 2008 and integrates six key
elements of the atmospheric dynamical field, including air temperature and specific hu-
midity at 2 m altitude, wind speed at 10 m altitude, precipitation, shortwave radiation,

https://satellite.nsmc.org.cn
http://www.glass.umd.edu
http://data.cma.cn
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and surface air pressure. In addition, the dataset includes a rich set of products such
as ground temperature analysis, multilayer analysis of soil temperature and humidity,
detailed data on soil temperature (five layers of 5, 10, 40, 100, and 200 cm) and humidity
(five layers of 0–5, 0–10, 10–40, 40–100, and 100–200 cm), and soil relative humidity (three
layers of 0–10 cm, 0–20 cm, and 0–50 cm). The dataset is updated in real time with a delay
of 30 min for meteorological elements (temperature, barometric pressure, humidity, and
wind speed), 50 min for shortwave radiation, 1.5 h for precipitation data, and 2 days for
near-real-time products. This study paid special attention to the atmospheric dynamic
field data in the dataset, focusing on specific humidity (SHU), pressure (PRS), wind speed
(WIN), temperature (TEMP), and shortwave radiation (SSRA).

2.2. Model Design
2.2.1. Sample Production

The aim of this study was to achieve knowledge transfer from 5 km coarse-resolution
to 1 km high-resolution net radiation models. To this end, the process of preparing the
model training samples involved careful preprocessing work on the input variable x, and its
corresponding target truth value at 5 km and 1 km resolution y was carefully preprocessed.
The remote sensing dataset used in this study contained multiple variables that underwent
preprocessing steps including outlier removal, data interpolation, and resampling to ensure
that pixel-level-matched sample datasets were obtained.

Although the Eddy-Pro software executed preliminary processing of the observed
data from the monitoring stations [36,37], the actual net radiation output values from the
monitoring stations could contain missing data, usually expressed as −6999, due to factors
such as instrument failures and data quality control. In the process of constructing the net
radiation transfer learning model, these data needed to be further cleaned and processed
to filter out the daily average net radiation values with more complete data for model
construction, while excluding those records with more missing data. The recovery of
missing net radiation data through interpolation was necessary in the calculation of daily
averages, and records with more than one-sixth of the total number of days of missing
daily data needed to be excluded to minimize errors and ensure that only high-quality data
were used for the construction of the transfer learning model.

In order to balance the order-of-magnitude differences between the input variables, this
study introduced a normalization technique in the early stages of model construction. The
purpose of normalization was to enhance the model’s ability to capture the characteristics of
each variable and improve the efficiency of the underlying model training and simulation.
As shown in Table 3, all the sample data and their maximum and minimum values for
each variable were listed to ensure that the treatments covered all possible scenarios for
the region. In particular, for the variable date (DOY), whose periodicity feature was not
suitable to be directly represented by linear coding, a special normalization method was
adopted: firstly, DOY was normalized to the range of −π to π and then subsequently
converted to a range between 0 and 1 by the cosine transform, which enabled the model
to accurately capture the periodicity feature of date. With this normalization, the input
features of the model were further optimized, providing a solid foundation for efficient
and accurate transfer learning.

In this study, we aimed to achieve knowledge migration from a coarse model at 5 km
resolution to a highly refined model at 1 km resolution. For this purpose, we first selected
all image elements with a 5 km resolution from multi-source remote sensing datasets from
2017 to 2019. In the face of the large number of samples, we adopted a random sampling
method to select 1,000,000 samples, which constituted the base dataset for coarse model
training and were used to train the coarse model with 5 km spatial resolution. In addition,
a limited number of 6094 new samples with 1 km spatial resolution were generated using
data from ground-truthing stations. We hoped to fine-tune the parameters of the pre-trained
coarse model with the high-resolution samples in order to improve the spatial resolution of
the model while maintaining or improving the prediction accuracy.
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Table 3. Table of sample variables as well as standardized information.

Type Variable Name Minimum Maximum Unit Time Span

Time DOY 1 365

Locations
5 km grid longitude 97.1 101.95 D
5 km grid latitude 37.7 42.7 D

Vegetation
descriptors (FY-3) NDVI −1 1 2018–2020

Climate variables
(CLDAS 2.0)

PRS 0 113.15 kPa

2018–2020

SHU 0 0.03 kg/kg
SSRA −200 500 W/m2

WIN 0 20 m/s
TAVG 0 350 K
TMIN 0 350 K
TMAX 0 350 K

2.2.2. Dense Convolutional Network for Net Radiation

In this study, we adopted the dense convolutional network (DenseNet) model pro-
posed by Huang [38] in 2017, which optimized the network architecture through an in-
novative dense connectivity mechanism for the efficient transfer of information between
layers. This design greatly improves the mobility and reusability of features and effectively
mitigates the common gradient vanishing problem in deep learning. The architecture of
DenseNet allows each layer of the network to directly receive the feature maps of all layers
of the previous sequence, thus enhancing the model’s learning ability and feature propaga-
tion efficiency. In addition, DenseNet effectively reduces the risk of overfitting by reducing
the number of parameters and increasing the efficiency of parameter usage. The flexibility
of DenseNet lies in the tunability of its network depth and growth rate, which allows it
to be customized and configured according to the specific dataset and task requirements,
which is especially important for parsing complex radiometric data. Therefore, DenseNet
is considered ideal for capturing subtle patterns and complex relationships in radiation
data, promising to improve prediction accuracy and optimize model training efficiency.
Aljazaeri [39] verified that the DenseNet model has higher accuracy in linear regression;
Zhu [26] also used the DenseNet model to successfully predict soil moisture data, which
verified the superiority of the model in regression prediction.

In this study, a deep learning model based on the DenseNet architecture was con-
structed with the aim of inverting radiometric data at high spatial resolution using inverse
learning techniques, as shown in Figure 2. The input feature set of the model contained
multidimensional features such as meteorological data, NDVI, date, and locations, which
were appropriately preprocessed to fit the model. In the model structure, each dense block
consisted of three fully connected layers with batch-normalized and rectified linear unit
(ReLU) activation functions. To facilitate feature reuse and improve parameter efficiency,
this study introduced a shortcut connection mechanism that connected the input of each
dense block to its output. The outputs of these dense blocks were subsequently connected
to a fully connected layer containing 32 neurons and ultimately output the predicted value
of the net radiance value through a single neuron output layer. In the DenseNet model, the
number of neurons (w) and the number of dense blocks (d) were two key hyper-parameters
that determined the width and depth of the model, respectively.

During the model training process, we adopted the Adam optimization algorithm
with mean square error (MSE) as the loss function to guide the updating and optimization
of model weights. In order to fully utilize the pre-training samples, we first pre-trained the
model on a large-scale dataset (5 km) based on GLASS Rn data as the target data to learn
a generic feature representation and then fine-tuned the model for a small-scale dataset
(1 km) with in situ measured net radiation data as the new target data. In addition, in
order to improve the prediction accuracy and generalization ability of the model, this study
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employed an integration learning strategy, which enhanced the robustness of the model
by integrating the prediction results from multiple independent models and reducing the
uncertainty and variance of the predictions. For performance evaluation, we divided the
data into an 80% training set and a 20% test set. The training set contained pre-trained
samples, while the test set was specialized for radiometric data at 1 km resolution. By
calculating key metrics such as the deviation between the predicted and actual values of
the model for the test set, correlation coefficients, and root mean square errors, we are able
to comprehensively evaluate the model’s prediction performance on the 1 km samples.
These evaluation results not only demonstrated the generalization ability of the model but
also reflected its accuracy and robustness in dealing with high-spatial-resolution data.
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2.2.3. Ensemble Transfer Learning Framework

As shown in Figure 3, this study was based on a transfer learning approach, the
core idea of which was to build models for high-resolution net radiation data based on
the DenseNet model architecture. The starting point was the assumption that effective
knowledge transfer could be established between deep neural networks trained for 5 km
coarse resolution and 1 km high-resolution net radiation models by sharing similar model
architectures and training parameters. To this end, we first pre-trained a 5 km coarse-
resolution base model using GLASS net radiation data and used this to build a 5 km
resolution regional net radiation model of the Heihe River Basin as a starting point for the
transfer learning process. Through this approach, we aimed to achieve accurate prediction
from low- to high-resolution data, thus improving the generalization ability of the model at
different spatial scales.

Considering that the available 5 km data provided a sufficient sample size, this opened
up the possibility of training depth and breadth models, which is in line with the findings
of Eldan [40] and Wu [41] that an increase in the depth and breadth of a model contributes
to improved model performance. However, such high-performance low-resolution models
are not guaranteed to maintain the same level of accuracy when migrating to high-resolution
targets, especially in high-resolution scenes where samples are scarce. To address this challenge,
instead of directly pursuing the optimal model width (w), depth (d), or other hyper-parameters,
this study chose to train a series of DenseNet models with different widths and depths at a
resolution of 5 km, with the widths w set to 8, 16, 32, 64, and 128 and the depths d set from 1 to 5.
This produced a total of 25 DenseNet models with different trainable parameter configurations.
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This resulted in a total of 25 DenseNet models with different trainable parameter configurations,
ranging from the simplest DenseSM-1-8 model to the most complex DenseSM-5-128 model.
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number of neurons, respectively.

During the training of the coarse resolution models, 80% of the data was used as the
training set and the remaining 20% was used for validation. The models were trained using
the root mean square error (RMSE) as the loss function and the Adam optimizer, with
parameters set to β1 = 0.9, β2 = 0.999, and ϵ = 10−8. In order to balance the accuracy and
efficiency of the training, we set up 128 batches and set the learning rate to 0.01. Each model
was trained for 100 cycles, of which the last 10 cycles of the model states were averaged to
form a so-called model snapshot set. This strategy helped to build more stable and reliable
predictive models. With this integrated approach of model complexity and training strategy,
this study aimed to achieve an effective transfer from low- to high-resolution data, which,
in turn, improved the prediction performance of the models at different spatial scales.

In the transfer process to higher resolutions, we performed fine-tuning of 25 fully
trained low-resolution models for the prediction task of high-resolution net radiation data.
The fine-tuning process was designed to allow the models to adapt to new tasks that
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were different from the original training tasks by using fewer samples and reducing the
learning rate. In this process, we used a smaller learning rate of 1 × 10−5 and trained each
low-resolution model for an additional 1000 cycles to optimize its prediction performance
on high-resolution data. Notably, during the fine-tuning process, we kept the other training
settings consistent, including the model snapshot ensemble strategy for the last 10 cycles,
which helped ensure model stability and convergence during training. With this approach,
we were able to efficiently estimate the net radiance data at high resolution. With this
combined fine-tuning and integrated learning strategy, this study aimed to achieve an
effective transfer from low- to high-resolution data, which, in turn, improved the prediction
performance and reliability of the model at different spatial scales.

2.2.4. Methodology

The workflow of this study is shown in Figure 4 and included the following steps:
firstly, pre-processing of the raw data, including filtering, interpolation, and outlier rejec-
tion, was performed to ensure the temporal and spatial integrity of the data, and second,
image element resampling was performed to achieve inter-image consistency, the GLASS
Rn product was used to generate the original training samples(1,000,000) with 5 km res-
olution, and a new training sample with 1 km resolution was generated by combining
training samples with the limited ground-truthing data (6094). The sample data were
then partitioned at 80% (training) and 20% (validation) to support model training and
validation. Further, based on the DenseNet architecture, 25 deep learning models were
constructed to integrate multi-source data to learn the spatio-temporal distribution features
of the GLASS Rn products, and a net radiation model with a 5 km resolution was trained.
Then, the pre-trained models were fine-tuned using a small amount of ground truth data
to achieve the model conversion from 5 km to 1 km resolution, and a 1 km resolution
daily net radiation model was constructed for the Heihe River Basin. Finally, the daily
high-resolution net radiation model obtained by migration learning was evaluated and a
1 km spatial resolution net radiation product for the Heihe River Basin was generated,
which was compared with the original GLASS Rn data to validate the accuracy of the
model and initially applied to the product generation.
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2.3. Model Evaluation Metrics

In this study, in order to comprehensively evaluate the performance of model training,
we used four key statistical metrics: mean bias (bias), coefficient of determination (R2),
root mean square error (RMSE), and unbiased RMSE (ubRMSE). Each of these metrics
provided a different perspective on the predictive accuracy and reliability of the model, as
defined below:

bias =
1
n ∑ n

i=1
(
Yi − Ŷi

)
(4)

R2 = 1 − ∑n
i=1−1

(
Yi − Ŷi

)2

∑n
i=1−1

(
Yi − Yi

)2 (5)

RMSE =

√
1
n ∑ n

i=1

(
Yi − Ŷi

)2 (6)

ubRMSE =

√
RMSE2 − bias2 (7)

where Yi, Ŷi, and Yi represent the ith observation, model prediction, and mean of the
observations, respectively, and n represents the number of observations.

3. Results
3.1. Evaluation of Pre-Trained Coarse-Resolution Net Radiation Models

In this study, to construct a coarse-resolution net radiation model, we designed a series
of models with different depths d and widths w for a total of 25 models. The training results
of these models are shown in Figure 4, from which it is found that all the coarse-resolution
models exhibited small deviations in the training and validation phases, and the deviation
values were distributed in the range of 0 to 1. In addition, the predictions of the 25 coarse-
resolution models had high accuracy, which indicated that the coarse models were trained
properly without over-fitting or under-fitting. As expected, both training and validation
accuracies improved when w and d were increased, confirming that larger models were
more powerful when sufficient training samples were available.

In this study, 25 coarse-resolution network radiation prediction models were con-
structed, of which the lowest performance was that of the DenseNet-1-8 model, which
was particularly exceptional due to its shallower network structure and narrower network
width. During the training phase, this model had a bias value of 0.46, clearly indicating a
significant difference between the predicted values and the true observations. Despite the
weak performance, the correlation coefficient R2 reached 0.873, indicating that even a poorly
performing model can reveal to some extent the correlation between input data and net
radiance output. In addition, the RMSE and ubRMSE were 27.637 W/m2 and 27.677 W/m2,
respectively, which were basically the same, indicating that the model prediction errors
were mainly caused by random errors rather than systematic biases. With the increase
of the model depth and width, the performance was obviously improved, especially for
the DenseNet-4-128 model, where the bias was sharply reduced to 0.1, which was close to
zero, indicating that the predicted values were very close to the real values. The correlation
coefficient R2 of the model was improved to 0.977, showing an extremely high prediction
consistency, which further validated the effectiveness of the model in the field of net radia-
tion estimation. Both the RMSE and ubRMSE were reduced to 12.004 W/m2, reflecting a
significant improvement in the model prediction accuracy and a substantial reduction in
the error. However, it is worth noting that although DenseNet-4-128 performed the best in
this study, the performance improvement was not significant as the model depth and width
were further increased, suggesting that the performance reached a saturation point where
further increases in model complexity no longer improved the performance significantly
but only increased the computational resource consumption.

In this study, the robustness of coarse-resolution net radiation models in resolving the
complex interactions between 5 km resolution meteorological data, key input parameters
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such as vegetation indices, and GLASS Rn net radiation products was verified through
metrics assessment. These models not only accurately captured the spatial and temporal
distribution characteristics of the GLASS products but also demonstrated their potential
application in simulating these distributions. Although the training accuracy of the current
models was limited by the upper accuracy limit of the GLASS net radiation products and
failed to exceed their learning objectives, the models accumulated a great deal of valuable
knowledge about net radiation estimation in the process. In particular, by analyzing the
GLASS net radiation data, the model gained the ability to resolve complex links between
meteorological data and key input parameters such as vegetation indices.

3.2. Evaluation of High-Resolution Net Radiation Models for Fine-Tuning Transfer Learning

A group of coarse-resolution net radiation models were constructed based on a dense
connectivity network, combining the idea of transfer learning by inputting 1 km input
data and in situ measured data into the pre-trained coarse model, achieving the purpose of
transfer learning by fine-tuning the model parameters. Finally, the daily net radiation data
at 1 km resolution for the Heihe River Basin were generated.

According to Figure 5, the transfer learning model demonstrated substantial advan-
tages in the accuracy of net radiation estimation. The RMSE and ubRMSE of the transfer
learning model were 24.293 W/m2 and 24.292 W/m2, respectively, which showed a sub-
stantial reduction compared to the RMSE of the directly validated pre-trained coarse model
of 42.94 W/m2 as well as the RMSE of the GLASS Rn product of 35.741 W/m2. This result
directly proved the effectiveness of the transfer learning model in improving prediction
accuracy. The correlation coefficient (R2) of the transfer learning model was as high as
0.924, which not only exceeded the value of 0.758 for the pre-trained model but was also
higher than the value of 0.839 for the GLASS Rn product. These data further confirmed the
advantage of the transfer learning model in terms of its generalization ability, indicating
that the model could better adapt to different datasets and environmental conditions. The
fitting line of the transfer learning model was closer to the ideal 1:1 line, which indicated
that there was less discrepancy between the model’s predicted values and the actual ob-
served values, thus validating the accuracy of the model prediction. In addition, the bias
value of the transfer learning model was 0.184 W/m2, which was much lower than the
bias values of the pre-trained models (3.656 W/m2 and −8.166 W/m2), which showed the
strong capability of the transfer learning model in reducing systematic bias.

As shown in Figure 6, the time-series plot combines the time-series curves between the
net radiation data from GLASS, the net radiation data from the transfer learning inversion,
and the net radiation data from the in situ measurements at different sites. It shows that the
transfer learning was able to provide accurate estimates of net radiation for various land
cover types, and the predictions were highly consistent with the trend of field observations,
proving its accuracy and providing stable estimates under different environmental and
climatic conditions, showing its robustness. In addition, the transfer learning model showed
higher predictive performance compared to the multi-site GLASS Rn product, especially in
capturing local variations and details of net radiation.
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Figure 5. Training accuracy of 25 coarse resolution models, with based d(1, 2, 3, 4, 5) and w(8, 16, 32, 64,
128) being the number of dense blocks and the width of each dense layer. (a) DenseNet−1−8;
(b) DenseNet−1−16; (c) DenseNet−1−32; (d) DenseNet−1−64; (e) DenseNet−1−128;
(f) DenseNet−2−8; (g) DenseNet−2−16; (h) DenseNet−2−32; (i) DenseNet−2−64; (j) DenseNet−2−128;
(k) DenseNet−3−8; (l) DenseNet−3−16; (m) DenseNet−3−32; (n) DenseNet−3−64;
(o) DenseNet−3−128; (p) DenseNet−4−8; (q) DenseNet−4−16; (r) DenseNet−4−32;
(s) DenseNet−4−64; (t) DenseNet−4−128; (u) DenseNet−5−8; (v) DenseNet−8−16;
(w) DenseNet−5−32; (x) DenseNet−5−64; (y) DenseNet−5−128. The different color lines repre-
sent different meanings, there are 1:1 lines, and fitting lines, through the two lines, you can determine the
effectiveness and accuracy of the model training.

As shown in Figures 7 and 8, comparing the 5 km resolution GLASS Rn product with
the 1 km resolution Rn product based on transfer learning, the transfer learning model
showed obvious advantages in improving the spatial resolution. The 1 km resolution data
not only enhanced the ability to capture the heterogeneity of the ground surface but also
revealed smaller spatial features, which is particularly important for regions with complex
terrain and diverse ecosystems. This high-resolution output not only enhances the ability
to identify changes in surface cover and topography but is also essential for modeling
hydrological cycles, energy flows, and ecosystem dynamics.
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Figure 7. Time series plot of Rn with GLASS using in situ measurements at sites and based
on fine-tuning transfer learning approach. (a) A’rou station (Grassland); (b) Daman (Cropland);
(c) Dashalong station (Grassland); (d) Huazhaizi station (Desert); (e) Desert station (Desert); (f) Mixed
forest station (Mixed forest); (g) Jingyangling station (Grassland); (h) Sidaoqiao station (Shrubs);
(i) Yakou station (Grassland); (j) Zhangye wetland station (Wetland).
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3.3. Relative Importance of Features

Figures 9 and 10 illustrates the 2020 feature replacement importance analysis for transfer
learning models based on validation data. Compared to traditional impurity-based approaches,
replacement importance assessment avoids preference for rare features, provides a more objec-
tive measure of feature contribution, and can be dynamically calculated based on the validation
dataset [42]. The feature importance assessments involved in this study were executed at a
spatial resolution of 1 km to ensure consistency and the horizontal comparability of results.
Shortwave radiation (SSRA) was the most critical variable in the constructed net radiation
model [43,44]. Shortwave radiation is directly related to the amount of solar radiation received
at the surface and is the main driver affecting the surface energy balance and net radiation
calculations. Since shortwave radiation plays a central role in the energy exchange between
the surface and the atmosphere, it occupies a pivotal position in net radiation estimation.
When further analyzed, interactions between shortwave radiation and other meteorological
elements, including maximum temperature (TMAX), average temperature (TAVG), minimum
temperature (TMIN), and precipitation (PRS), may have a compounding effect on net radiation
estimation [45]. For example, precipitation may indirectly affect the reception of shortwave
radiation by changing cloud conditions and atmospheric transmittance. In addition, surface
albedo and vegetation cover may also affect net radiation by regulating the absorption and
reflection of solar radiation from the surface [46,47].Remote Sens. 2024, 16, x FOR PEER REVIEW 19 of 23 
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4. Discussion

This study proposes a framework for constructing high-temporal- and spatial-resolution
net radiation models by transfer learning. Machine learning or deep learning can be directly
used to invert net radiation. For example, Xu [48] used a deep learning approach combined
with a statistical method to invert sea surface longwave radiation and verified the accuracy of
the product. However, direct inversion requires a large amount of ground truth data to train
the model to ensure the accuracy of the model [49]. However, the small and spatially uneven
distribution of currently available in situ measurements and the high cost of establishing in
situ measurement stations make it difficult to construct high-resolution net radiation models
based directly on in situ measurements while ensuring the accuracy of the models. In contrast,
transfer learning is an efficient machine learning technique that improves learning efficiency
and model performance by applying knowledge learned from one task to another reconnected
task. The advantages of this approach are improved data utilization efficiency, an accelerated
learning process, enhanced model generalization capability, reduced computational costs,
reduced dependence on large amounts of training data, improved stability of the training
process, and enhanced model adaptability and immunity to new data distributions [50–52].

Therefore, in this study, a robust pre-trained model with 25 coarse resolutions (5 km)
was constructed based on the transfer learning framework of the DenseNet model to learn
the distribution pattern of GLASS Rn products in time and space. The training results are
shown in Figure 5. However, despite the high training accuracy of the coarse model, the
model was unable to outperform the product itself [53], and inherited the uncertainty of
the GLASS Rn product. Therefore, in this study, the coarse-resolution model parameters
were fine-tuned using the measured data from the stations, and the construction of a high-
temporal- and spatial-resolution surface net radiation model was realized by migrating
knowledge from the coarse-resolution model to the high-resolution model, and the upper
bias, R2, and RMSE of the simulation accuracies of the high-resolution net radiation model
obtained by migratory learning were 0.184 W/m2, 0.924, and 24.29 W/m2.

The GLASS Rn product was selected as the target data source for the coarse model in
this study due to the fact that it provides accurate net radiation estimates for both low and
high mid-latitudes through the fusion of the two algorithms [54]. The GLASS Rn product
exhibits a root mean square error (RMSE) of 51.24 W/m2, which is a higher accuracy
compared to the 54.96 W/m2 of CERES [13,48]. In addition, the GLASS Rn product has
a spatial resolution of up to 0.05◦, which can provide continuous long-term net surface
radiation data, which is essential for climate change studies and surface energy balance
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analysis. Guo [55] further verified the advantage of the GLASS Rn product over MERRA2
Rn in terms of accuracy.

Finally, this study provided an in-depth analysis of the importance of transfer learning
inversion factors, especially verifying the key role of shortwave radiation factors in net
radiation inversion. Although the generally coarse spatial resolution of currently available
meteorological data limited the further refinement of the model, the findings of this study
provide directions for future improvements. Specifically, the accuracy and reliability of
net radiation inversion can be further improved by improving the meteorological input
parameters, optimizing the algorithm, and upgrading the station data.

5. Conclusions

In this study, 25 coarse-resolution (5 km) net radiation models were constructed based
on the GLASS Rn product using a transfer learning framework combined with a DenseNet
model. By fine-tuning the coarse-resolution model parameters using a small amount of
regional surface flux site data, the transfer of the coarse-resolution model of net radiation
to the high-resolution (1 km) model was realized. Further, a high-temporal- and spatial-
resolution 1 km day-by-day net radiation model was constructed for the Heihe River Basin,
which significantly improved the spatial resolution and inversion performance of the net
radiation products. The main research results are as follows:

(1) Twenty-five deep-learning net radiation models were pre-trained using the DenseNet
model to successfully capture the temporal variations and spatial distribution trends of
GLASS net radiation products. The validation accuracies of the optimal net radiation
model predictions were achieved with R2, bias, and root mean square errors of 0.977,
0.1 W/m2, and 12.004 W/m2.

(2) The transfer of the coarse-resolution model to the high-resolution model was achieved
by parameter fine-tuning using only a small amount of measured flux site net radiation
data. The model validation results show that the accurate R2 and RMSE of the net
radiation values predicted by the transfer learning model were improved from 0.839
and 35.741 W/m2 to 0.924 and 24.292 W/m2, respectively, compared with the GLASS
Rn data.

(3) Among all the covariates, net surface shortwave radiation (SSRA) was considered the
most important feature, surface specific humidity (SHU) had the next highest importance,
while pressure (PRS), temperature (TEMP), normalized vegetation index (NDVI), and
wind speed (WIN) had a relatively small effect on the net radiation prediction.

In this study, a high-spatial-resolution net radiation model based on transfer learning
was successfully developed to generate day-by-day net radiation data with 1 km resolution
for the Heihe River Basin. The model not only improved the spatial resolution and accuracy
of the net radiation data but also significantly reduced the need for ground truth data.
This innovative method provides effective technical support for large-scale net radiation
inversion, which is of great scientific significance and application value for surface energy
balance studies and climate modeling.
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