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Abstract: To assess the accuracy of satellite monitoring of anthropogenic CO2 emissions, inversions
of satellite data in SWIR are usually combined with the assimilation of the total CO2 column into a
Kalman filter that reconstructs the sources and sinks of atmospheric CO2. To provide error estimates
of the total CO2 column for multi-month assimilation experiments of simulated satellite data, we
parametrise these errors using linear regressions. These regression are obtained from a database
that links meteorological situations, albedos, and aerosols to the errors in the inversion of the total
CO2 column based on simulated satellite data for those conditions. The errors in this database
are explicitly computed using the Bayesian estimation formalism, and the linear regressions are
optimised by selecting appropriate predictors and predictants. For different levels of measurement
noise, error simulations are performed over a period of several months using the albedo and aerosol
data from MODIS.

Keywords: CO2 fluxes; Bayesian estimation; error parametrisation; noise sensitivity

1. Introduction

Estimating the concentration of carbon dioxide (CO2) in the atmosphere with a high
degree of accuracy and precision is an important objective for identifying and quantifying its
global sources and sinks as well as for monitoring international agreements aimed at limiting
its emissions. Because of the important role played by the increase in atmospheric CO2 in
global change, in addition to in situ measurements of CO2 at the surface, remote sensing data
are used from the ground—Total Carbon Column Observing Network (TCCON) [1] and COl-
laborative Carbon Column Observing Network (COCCON) [2]—and from satellites—JAXA’s
Greenhouse Gas Observation Satellites (GOSAT and GOSAT-2) [3], NASA’s Orbital Carbon
Observatories (OCO-2 and OCO-3) [4,5], CNSA’s TanSat mission [6–8], pending data from
AEMS [9], which was launched in 2022 and has on board an integrated path differential
absorption lidar, and future missions such as MicroCarb [10] from CNES and CO2M [11]
from ESA.

TRACE (TRAcking Carbon Emissions) is an initiative that aims to develop new tech-
nologies and methodologies for accurately quantifying and monitoring greenhouse gas
(GHG) emissions, both at the local scale for industrial sites using low-cost sensor net-
works and at the global scale using space-based instruments. In this context, a two-step
approach has been developed to link the instrument characteristics first to the accuracy
and precision of the carbon dioxide column and then to the estimation of CO2 fluxes. This
two-step approach aligns with operational practice, where satellite data processing centres
are separate from flux production centres. The former manages the spectral dimension
of the observations using a radiative transfer model to simulate the radiance spectra and
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their sensitivity to different parameters, and the latter manages the temporal dimension
using a Kalman filter [12]. This separation is made possible by the use of the averaging
kernel (AVK) to eliminate in step 2 the linear contribution of the prior used in step 1 [13,14].
Appendix A specifies the conditions under which the two-step procedure is equivalent to
the one-step procedure. Figure 1 provides a schematic comparison between one-step and
two-step procedure.

Figure 1. One-step and two-step procedures.

The purpose of this paper is to present an approach for the rapid estimation of errors
on XCO2 retrieved from satellite observations operating in the SWIR spectral region. To pro-
vide error maps (and AVK), instead of using a complete inversion system by implementing
an inverse method based on the Bayesian approach, we follow, as in Dogniaux et al. [15],
the parameterised approach developed by Buchwitz et al. [16] as part of the preparation of
the CarbonSat mission, which consists of performing these inversions only for a limited
number of cases (a few hundred) in order to build up a database and then generalising the
results by establishing linear regressions between the quantities of interest and the various
available parameters. In addition, to build up the database, we use the Bayesian estimation
formalism to determine the random errors without explicit inversion. Figure 2 presents the
flowchart of our approach and shows how N inversions (with N of the order of several
tens of thousands) are reduced to P simulations of spectra with their Jacobians (with P less
than 1000) plus some matrix computations and linear regressions.

Section 2 of this paper is divided into five subsections. The first outlines the instrument
concept provided by Thales Alenia Space (TAS), a leading European satellite manufacturer,
which is co-funding the TRACE initiative. The second revisits the formalism of inversion
by optimal estimation. The third presents the tools used to model direct and inverse
radiative transfer. The fourth describes the data used from the Moderate Resolution
Imaging Spectroradiometer (MODIS). The fifth presents the database of cases used to
generate the CO2 atmospheric error database. Section 3 then discusses the selection of
the predictors and predictants used in the linear regressions. Additionally, it reports on
the CO2 error maps computed from the MODIS data over several months. The final
section examines the relevance of working with a two-step approach, the limitations of the
approach to random errors and averaging kernels, and the results in terms of error maps.
Finally, conclusions and suggestions for future studies are presented.
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Figure 2. Flowchart for obtaining random error maps (and AVKs) on XCO2 retrieved from a satellite
mission: classical approach to inverting satellite data (red arrows), with improvements to limit the
number of inversions by linear adjustment of the errors (yellow–green arrows), and with direct use of
matrix computation to avoid full development of the inverse method (blue arrows). The grey arrows
represent the flow of information.

2. Materials and Methods
2.1. Instrumental Concept

The concept being studied, subsequently called the TRACE instrument, is proposed
by TAS as a complement to CO2M. It is modelled according to TAS specifications and has a
MODIS orbit but a swath reduced by approximately 250 km, and it has a resolution of 2 km.
Measurements are performed in three spectral bands identical to those of CO2M: two in
the shortwave infrared region and one in the near infrared, called SWIR1, SWIR2, and NIR,
respectively. Table 1 presents the specified characteristics of the measurements in the three
bands. The sampling resolution is set as for CO2M to three times finer than the full width
at half maximum (FWHM) of ISRF, resulting in 901 measurements in SWIR2, 851 in SWIR1,
and 651 in NIR.

Table 1. Specifications for the three frequency bands: band boundaries (in wavelength and wavenum-
ber), the width of the instrument spectral response function (ISRF), assumed to be super-Gaussian
with a parameter 2 [17], sampling step, and number of samples.

Band ISRF FWHM Sampling Step Number of Samples
(nm) (cm−1) (nm) (nm)

NIR 747–773 12,936–13,387 0.12 0.04 651
SWIR1 1590–1675 5970–6289 0.30 0.10 851
SWIR2 1990–2095 4773–5025 0.35 0.1166 901

Figure 3 shows the ISRFs for the three frequency bands as a function of wavelength.
When expressed in terms of wavenumber, the ISRFs vary for each spectral sample.
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Figure 3. The instrumental spectral response functions in the wavelength domain prescribed for each
frequency band: NIR (red line), SWIR1 (black line), and SWIR2 (blue line).

To represent the measurement uncertainty σo, the signal-to-noise ratio (SNR) is used. Lu-
minance refers to the flux of photons in a unit wavelength (to convert photons/s/cm2/sr/nm
to W/m2/sr/cm−1, we multiply by h c

ν(cm−1)
1013, where h is the Planck’s constant, c is the

speed of light, and ν = 1
λ ; the wavenumber is given in cm−1).

SNR =
Luminance

σo
=

A ∗ Luminance√
A ∗ Luminance + B

(1)

Coefficients A and B specify the instrumental noise level, with their values provided
by TAS for three different levels: “Threshold”, “Intermediate”, and “Goal” (see Table 2).

Table 2. A and B from Equation (1) for each band and for the three instrumental noise levels.

Luminance in SWIR2 SWIR1 NIR
Photons/s/cm2/sr/nm

Threshold A 11.010 × 10−8 9.24 × 10−8 1.84 × 10−8

B 146.78513 × 103 134.34701 × 103 7.04246 × 103

Intermediate A 16.3 × 10−8 13.70 × 10−8 2.96 × 10−8

B 146.78603 × 103 134.34702 × 103 10.56227 × 103

Goal A 23.7 × 10−8 19.50 × 10−8 3.72 × 10−8

B 307.04588 × 103 283.37915 × 103 15.33655 × 103

Table 3 compares the SNRs computed with these values with those specified for
CarbonSat in Buchwitz et al. [16] and for CO2M in ESA MRD [11].

Table 3. The SNR values for TRACE instrument are compared to those of CarbonSat and CO2M for
two reference levels of luminance in each frequency band. The first reference luminance is based on
those used in Buchwitz et al. [16], and the second one is based on ESA CO2M MRD Table 4.8 [11].

SNR SWIR2 SWIR1 NIR

@Reference Luminance in @1.0/@1.8 @4.1/@2.1 @20.0/@6.4
1012 Photons/s/cm2/sr/nm

Goal 321/498 768/492 854/473
Intermediate 293/442 673/443 763/424

Threshold 217/337 528/338 601/333
CarbonSat 205/—– 323/—– 334/—–

CO2M —–/400 —–/400 —–/330

Figure 4 provides a visual and comprehensive comparison of the noise levels of the
CarbonSat, CO2M and TRACE instruments in the SWIR1 and SWIR2 bands.
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Figure 4. The instrumental noise level (in W/m2/sr/cm−1) for the SWIR1 and SWIR2 bands as a
function of the flux received (in the same unit) for the three different options (“Threshold” (red),
“Intermediate” (orange), and “Goal” (green)) and for CarbonSat (black) and CO2M (blue).

The comparison confirms that the TRACE instrument is designed to perform at a
similar level to CO2M for the “Threshold” option and to exceed it for the other two options.

2.2. Bayesian Estimation

The unified notation for data assimilation and retrieval proposed by Ide et al. [18] is
followed. In order to retrieve a control vector x from a set of observations y0, it is necessary
to know the covariance matrix of the errors from the observations E as well as a prior
estimate of xb, for which the uncertainties are characterised by the covariance matrix B.
Furthermore, a non-linear relation HNL is required in order to compute the equivalent
of the observations y0 from the control vector x. The linear operator H is constructed on
the partial derivatives of HNL with respect to the different elements of the control vector
(Jacobian). The modelling error when using HNL is represented by the matrix F. Then,
the matrix R = E + F represents the total observation error. In this context, the Bayesian
estimation formalism, as presented in references [15,19,20], allows us to obtain not only
the best linear unbiased estimator (BLUE), which is represented by xa, but also its random
error, which is characterised by the covariance matrix A.

xa = xb + K(y0 − HNL(xb)) (2)

A = (B−1 + HT R−1H)−1 (3)

The averaging kernel (AVK) is the partial derivative of the estimated state xa with respect
to the actual state xt. The kernel is represented by KH, where K = AHT R−1:

KH = I − AB−1 (4)

The effective error ϵa is estimated by:

ϵa = xa − xt = (I − KH)ϵb + K(y0 − HNL(xa)) (5)

= (I − KH)ϵb + Kϵo − KϵNL(xa) (6)

with ϵNL(x) = HNL(x)− HNL(xt)− H(x − xt) (7)

In these expressions, it is necessary to compute the Jacobians at xa. However, it should be
noted that for moderately non-linear HNL relations, it is possible to use the Jacobian at xb.
The term ϵ0 refers to the observation error, while ϵb is the a priori error.

2.3. Direct and Inverse Radiative Transfer Modelling

In this study, the observation vector y0 corresponds to the radiances measured by the
instrument (i.e., the spectrum convolved by the ISRF). The spectra and Jacobian matrices
are computed using the 4A/OP (Automated Atmospheric Absorption Atlas/OPerational
version) radiative transfer model [21,22]. The resolution of the spectrum simulated before
convolution with the ISRF, shown in Figure 3, is 5 × 10−4 cm−1. The input data for the 4A/OP
code are the ground reflectance, atmospheric variables—surface pressure, temperature, water
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vapour, and other gas profiles—and the geometry of the measurement—SZA (solar zenith
angle) and VZA (viewing zenith angle). The 4A/OP code is based on atlases containing
tabulated optical thicknesses at different pressures and temperatures, which are precomputed
from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques)
database [23,24]. To handle scattering, the 4A/OP code is coupled to the LIDORT (LInearised
Discrete Ordinate Radiative Transfer) [25] software. In our simulations, even when we do
not use scattering particles, we keep the attenuation due to Rayleigh scattering. The optical
scattering properties—AOD or COD (aerosol or cloud optical depth), single scattering albedo,
and asymmetry coefficient—can be freely defined input variables or variables provided for
a fixed mixture of scattering particles from the OPAC (Optical Properties of Aerosols and
Clouds) [26] database. Atmospheric situations are taken from the Thermodynamic Initial
Guess Retrieval (TIGR) [27] database. The reflectance is assumed to be Lambertian. Only
two distinct fixed albedos are considered, one for SWIR and another for NIR.

The retrieval of XCO2 is achieved through the utilisation of the Adaptable 4A inversion
(5AI) system, as described in Dogniaux et al. [15] and applied in Dogniaux et al. [28] for the
retrieval of XCO2 and XCH4 from the Scarbo concept. The 5AI system is fully interfaced with
4A/OP. The integrated vertical column is the only variable considered in the results, even if a
complete profile of XCO2 is inverted.

Figure 5 shows the main dependencies of the radiance spectra for the three bands with
respect to solar incidence angles and scattering. The four curves represent simulations for
three different aerosol types and without scattering. The signal intensity depends primarily
on the zenith solar angle and albedo, followed by the competition between absorption and
scattering by the aerosols. The OPAC database indicates that the MITR single scattering albedo
is higher than that of WASO in NIR and smaller in SWIR. This explains why the red curve is
higher than the blue curve in the NIR and lower in the SWIR. The simple scattering albedo
for SOOT is much smaller than that of other aerosols. Consequently, the green curve is much
lower because soot diffusion is small relative to its absorption. This results in a reduction in the
radiances measured by the satellites in the presence of soot, whereas the other aerosols increase
the radiance as the impact of their scattering is stronger than the impact of their absorption.

Figure 5. Radiance spectra for the three bands SWIR2, SWIR1, and NIR. The top line corresponds to
SZA = 00°, while the bottom line corresponds to SZA=70°. The scene observed at the nadir is the
TIGR atmosphere representative of the air masses found in the temperate mid-latitudes. The albedo
is 0.02 in SWIR and 0.06 in NIR. The black curves correspond to the case without scattering, while the
coloured curves correspond to the cases with scattering (AOD = 0.05). The aerosol types are water
soluble (WASO) in red, mineral transported (MITR) in blue, and soot (SOOT) in green.
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Figure 6 shows the standard deviations of the observation error (σo) computed with
Equation (1). As expected, the “Threshold”, “Intermediate”, and “Goal” noise levels
correspond to decreasing σo, for which the variations follow those of the radiances (Figure 5).

Figure 6. The values of σo (in W/m2/sr/cm−1) as a function of the wavenumber (in cm−1) for
the same scene as in Figure 5 (case without scattering). Each curve corresponds to an instrument
noise level.

2.4. MODIS Data

The MODIS [29,30] data were used for two distinct purposes. Firstly, the range of
variation in albedo values for the SWIR and NIR bands as well as the aerosol content were
determined. In terms of albedo, we obtained a overall range of 0.06 to 0.3/0.5 for NIR
albedo values and a range of 0.02 to 0.15/0.3 for SWIR albedo values. It should be noted,
however, that in some regions, such as deserts, the value may be higher. Based on Figure 7,
and taking into account that high values will be reported in an operational system, we will
use an aerosol optical thickness between 0.05 and 0.15 for the AOD values at 1.064 µm.

Figure 7. Histogram of the frequency of aerosol optical depths at 0.55 µm over 30 days in 2020.

Secondly, the observed points of the database were prepared for use in Section 3.4.
These included, in particular, SZA, albedo, and aerosol optical thickness, which are shown
in Figure 8 for Europe for the months of March to May 2020. White areas are regions where
there is no clear MODIS data.
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Figure 8. Maps of sun zenith angle, albedo, and aerosol thickness for all the MODIS paths over Europe
during the period from March to May in 2020. The data have been averaged across 0.1° squares.

2.5. Definition of the Case Database

A database of 945 cases was generated using different atmospheric profiles, albedos,
solar zenith angles, and scattering conditions. It was not necessary to vary the greenhouse
gas concentrations, as this was not relevant to the study. As the atmospheric concentrations
of CO2 and CH4, in fact, vary very little, the uncertainties in the restitution of CO2 are
independent of these small variations, which we, nevertheless, try to determine. In addition,
the viewing zenith angle was fixed for this study.

• CO2 concentration: 394.88 ppm and CH4 concentration: 1850 ppb;
• Viewing zenith angle: nadir.

We have limited ourselves to extending the clear sky cases by considering disturbances
due to relatively thin aerosol layers and semi-transparent cirrus clouds, but we have
not attempted to treat very opaque atmospheres. Figure 9 summarises the 34 scattering
situations added to the clear sky situation.

Figure 9. Different scattering situations: blue—cloud, yellow—MITR aerosol, violet—SOOT
aerosol, and orange—WASO aerosol of varying thickness. The y-axis represents the altitude of
the scattering layers.

• Cirrus: cases with no cirrus, cases with one cirrus layer in the [394.5; 438.0] hPa layer
with a cloud top height (CTH) of 8 km, and cases with one cirrus layer in the [247.87;
275.95] hPa layer with a CTH of 12 km (cir100 in OPAC model); The cloud optical
depth (COD) is 0.05 or 0.10 at 1.064 µm.
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• Aerosols: cases with an aerosol layer with an AOD of 0.05 or 0.15 at 1.064 µm ac-
cording to Figure 7, either according to the fine mode: OPAC MITR00 model (min-
eral transport—desert) in the layer [705.0; 783.0] hPa (at an altitude of about 3 km),
or according to the coarse mode: OPAC WASO70 (water soluble—continental) or
SOOT00 (soot) in the layer [848.69; 1013.25] hPa (at an altitude of about 1.5 km).

These 35 scattering patterns are used with 3 albedo sets and 3 SZAs, resulting in
315 cases.

• Albedo: 3 values per frequency bands: SWIR 0.02, 0.15, or 0.30 and NIR 0.06, 0.3, or
0.5 according to the global distribution observed by MODIS.

• Sun zenith angle: 0°, 50°, or 70.

We obtained the 945 cases (Figure 10) by applying these 315 cases to three typical
TIGR atmospheres.

• Atmospheric profiles (defined for 20 pressure levels), three from TIGR database:
Trop1—tropical, very hot and very humid; Trop3—tropical, hot and moderately humid;
and MidLat2—temperate, more or less hot and moderately humid.

Figure 10. Range of values for solar zenith angle (SZA), albedo (ALB), cloud top high (CTH), cloud
optical depth (COD), and aerosol optical depth (AOD) used in the simulations.

3. Results
3.1. Generation of XCO2 Errors

For the three levels of noise and the 945 cases of the database described above, we
compute the random error (σa) for the XCO2 for the atmospheric column, the corresponding
AVK, and the actual error ϵa. From Equation (3), which gives the error covariance matrix
for a CO2 profile, we obtain Equation (8) for the scalar random error on the column of CO2.
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Only the SWIR1 and SWIR2 bands contribute, as there is no dependence on CO2 in the NIR
band since there is no absorption due to CO2 in this band.

σ−2
CO2

= WT(B−1+HT
CO2

SWIR1
(ESWIR1 + FSWIR1)

−1H CO2
SWIR1

+HT
CO2

SWIR2
(ESWIR2 + FSWIR2)

−1H CO2
SWIR2

)W
(8)

where W defines how to compute the vertical average of the XCO2 profile. We use the
vector w(i) = ∆P(i)

Ps (where Ps is the surface pressure and ∆P(i) is the pressure thickness

of layer i) even if, in all rigour, we should use w(i) = (1−q(i))∆P(i)
sum(1−q(j))∆P(j) , with q(i) being the

specific humidity profile.
B is the background covariance matrix taken from Dogniaux et al. [28]. It gives the

correlation of the errors on XCO2 between the vertical levels (Figure 11).

Figure 11. Matrix B in (g/g)2 used to compute σXCO2 . Layer 19 represents the layer closest to the
surface. The white area means that the variance/covariance is zero.

H CO2
SWIR

is the vector, computed by 4A/OP, of the partial derivatives of the radiances in

SWIR with respect to the concentration of CO2. E is the observational error, and F is the
radiative transfer mode error. F should represent all sources of error in the direct non-linear
model (knowledge of spectroscopy, vertical discretisation, horizontal homogeneity, etc.).
As it is not possible to model all of them, F is usually estimated on real data, where the
observation error is assumed to be well known. However, the optimal estimation formalism
indicates that the errors in the control variables that are not correlated with the CO2 profile
or with each other must be considered as a matrix F = HxΣx HT

x , where Hx is the Jacobian
with respect to the variable x, and Σx is the matrix of errors for this variable.

For each case in the database, we also ran 5AI to get σa, which is the standard deviation
of the CO2 column concentration, CAVK= WTKH = WT − WT AB−1, which is the column
averaging kernel, and ϵa, which is the mean effective error. We assume accessing the mean
effective error by running 5AI with no error in the measurements but only differences
in the CO2 concentration or in the AODs between the actual value used to compute the
observations and the value used a priori induce an effective error. We check the results
obtained with analytical Equations (3), (4) and (6) against those obtained with the 5AI code.
For Equation (6), we proceed by iteration in the same way as for 5AI. In both cases, we
need to evaluate the full non-linear radiative transfer model, but not at the same points.
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3.2. Predictor and Predictant Selection for Random Error

Following the approach used for CarbonSat [16], we establish linear regressions to
compute the random error.

First, a set of six predictors derived from Buchwitz et al. [16] is selected: solar zenith
angle (SZA), shortwave infrared albedo (ALB), cirrus optical depth (COD), cirrus top height
(CTH), aerosol optical depth (AOD), and a sixth predictor for which the original form was
retained. This results in the following regression equation:

σCO2 = C0 + C1 SZA + C2 ALB + C3 AOD + C4 COD + C5 CTH
+C6 AOD cos(84◦)

cos(SZA+9◦)
SZA
75◦

(
1.01

ALB+0.01 − 1
)

0.01
(9)

Then, for a better description of random error variability, we attempted to develop a
rational approach to the definition of predictors by trying to express the variance of the
estimate of XCO2 analytically and simplifying it with limited developments. However, we
were unable to obtain a set of predictors that could be justified by this approach. But an
empirical approach guided by this research gives good results, so we did not pursue our
investigations further. We define a second set of five predictors that lead to the following
regression equation, with µ = cos(SZA):

σCO2 = A0
+A1 ∗ ALB ∗ ALB(1 + µ)(1 + µ)
+A2 ∗ ALB(1 + µ)(1 + µ) ∗ µ
+A3 ∗ ALB(1 + µ)(1 + µ)
+A4 ∗ (AOD + COD)(1 − ALB)ALB(1 + µ)2µ
+A5 ∗ (AOD + COD)(1 − ALB)(1 + µ)2

(10)

We do not include a dependence on CTH in this second set because we did not find an
expression with this variable that significantly improved the results.

We also examine the effect on the adjustment of the use of a power of the standard
deviation as a predictant. Indeed, it is natural to ask whether the linear regression should be
on the standard deviation or on the variance of the random error. In addition, considering
linear regression for negative powers of the standard deviation of the random error gives
more weight to deviations for small values, which are more meaningful for later use, than
to large values, which mainly indicate that the data are of poor quality. Instead of fitting the
standard deviation of XCO2 (σ), we assume that A−1 or σ−2 should be more predictable.
Also, in the two-step assimilation scheme, it is preferable to have a good evaluation of
small σ values than of large ones corresponding to poor-quality data. Since we could easily
test values other than 1 or −2 for the exponent, we studied the sensitivity of the regression
parameters to this exponent i. We observe that the result with set 1 can be improved by
changing for the predictant the standard deviation exponent from i = 1 to i = −0.5 and that
our empirical set gives better results for almost all exponents i.

For each of the three noise levels considered in Table 2, we fit the linear regression
coefficients to the 975 values of the database using as predictants different powers of the
standard deviation of the random error. To compare the results, we use the following score
computed on the database:

score = 1 − ∑
database

(σtrue − σsim)
2

σ2
true

(11)

This score is always less than one, and the quality of the fit to the database is measured by
how close it is to one, regardless of the predictant chosen.

Figure 12 shows how the score varies with the i-value for the three noise levels. Set 1
gives the best score (0.879) for i close to −0.5. The best score for set 2 (0.91) is obtained with
i close to −1.7. As i varies, the score varies less for this second set.
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Figure 12. For each of the three noise levels and the two sets of predictors, the score measuring the
quality of the fit is plotted on the y-axis against the values of i on the x-axis.

Figure 13 displays three curves: the grey curve represents σtrue
CO2

, the red curve rep-
resents σsim

CO2
computed with set 2, and the black curve is an average of the grey one

and represents the variability accessible by the simulated standard deviation. The linear
regression used to generate the red curve cannot capture variations in standard devia-
tion for different atmospheres, aerosol types, or cirrus altitudes because it does not use
that information. It is evident that the red curve is closer to the black curve than to the
grey curve.

Figure 13. For a given set of atmospheric conditions, presented in Figure 10, the standard deviation
of the random errors using the optimal predictor for set 2 of predictors (in red), the actual values
(in grey), and the average of the actual values for the parameters not conditioned in the regression
(in black).



Remote Sens. 2024, 16, 2452 13 of 21

The most relevant coefficients are A1, A3, and A4 (which are associated, respectively,
with the terms ALB2(1 + µ)2, ALB µ(1 + µ)2, and (AOD + COD) (1-ALB) ALB µ(1 + µ)2

dependencies, respectively). These coefficients exhibit the most significant values, varying
slowly and regularly with i (see Figure 14). The variations are stronger for extreme values of i
(the last red points) and are associated with a rapid decrease in the score illustrated in Figure 12.

Figure 14. Values of the five coefficients of set 2 obtained by linear regression with different values of
i for the predictant.

Table 4 presents the five coefficients of set 2 obtained by linear regression with i = −1.7
for each noise level. These coefficients are used to estimate the random error on the CO2
column in the multi-month simulations.

Table 4. Coefficients A0 to A5 computed when the predictant is (σCO2)
−1.7.

Noise Level
Linear Regression Coefficients

A0 A1 A2 A3 A4 A5

Threshold −7.3399 × 10−3 −2.8210 1.3141 6.6354 −5.3900 0.57202
Intermediate −5.0150 × 10−2 −6.6441 1.1260 10.720 −6.7136 0.91118

Goal −1.4309 × 10−1 −7.4981 1.8386 12.284 −7.4414 0.95628

3.3. Averaging Kernel

In order to compare the gas columns obtained from different remote sensing instru-
ments, we need to know the column averaging kernels (CAVK) that define how the vertical
average is computed. These averaging kernels are also necessary for proper assimilation of
the columns (to eliminate the influence of the a priori information used in the inversion).

Using Equation (4) and W from Equation (8), we compute the CAVKs as:

CAVK = WTKH = WT(I − A−1B) (12)

Figure 15 shows these CAVKs for different sets of albedos and SZAs and for scattering cases
with only one layer of scatterers. When there are multiple layers of scatterers, the CAVKs
are more or less identical to the combined curves for each scatterer taken separately. As
already mentioned, we have checked that, apart from a few details (which can be explained
by the fact that the H Jacobians are not computed at exactly the same point in the two
approaches), the CAVKs computed in this way and those obtained using 5AI are identical.
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Figure 15. The 9 images correspond to different albedos (0.3 in column 1, 0.15 in column 2,
and 0.02 in column 3) and different angles of solar incidence (zenith in row 1, 50° in row 2, and
70° in row 3). In each image, there are 11 curves corresponding to the clear case and the first
10 scattering cases in Figure 9 (cyan is the clear sky case, green are the cirrus cases, blue are the
MITR cases, red are the WASO cases, and black are the soot cases).

It is clear that with sufficient albedo, the inversion results in a uniform average over
the whole vertical column up to the stratosphere. The weight of the layers only decreases
above 200 hPa. On the other hand, as the albedo approaches 0, the weight of the layers,
on average, decreases almost linearly with the pressure from the ground. In the presence
of a scattering layer, the importance of the CO2 concentration immediately above it is
significantly increased, with a corresponding decrease in the importance of the lower
layers. This is particularly evident when modelling cirrus clouds with low albedo (the
right column in Figure 15) and low or high SZA (the top or bottom row in Figure 15). If the
vertical distribution of the scatterers is not homogeneous, this will significantly affect the
estimate of the total CO2 column. It is not possible to approximate the shape of CAVKs in
the vertical by parabolic functions when the albedo is small.

We perform linear regressions at each level with the same predictors as previously
defined for the σCO2 fit. The results (Figure 16) obtained with predictor sets 1 and 2 are
comparable. The vertical variability of the CAVK is systematically reduced. Set 2 does not
show the same advantage observed in the standard deviation simulation, as it has not been
empirically tuned to represent the CAVK. Due to the low albedo cases, the level-by-level
fits are not as effective as the random error fit and are often less than 0.5 (for an optimal
value of 1).
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Figure 16. Averaging kernels: red dots represent the CAVK values, and blue dots are the predicted
values using the linear regression. For each level, a green dot is added as the mean of the CAVK
values, and a black star is added as the mean of the predicted values. The magenta line represents the
score (Equation (11)), which measures the quality of the fit.

3.4. Mapping of the CO2 Errors Using MODIS Data

In order to obtain random error maps, linear regressions were applied to the MODIS data
from March to May 2020. Over 6.6 million points were processed for each level of noise. The
results of the linear regressions, which were established with the second set of predictors and
the predictant (σXCO2)

−1.7, are shown in Figure 17 for the three instrument noise levels.

Figure 17. Maps of the standard deviation of XCO2 simulated for all paths over Europe during the
period from March to May in 2020 for the three instrumental noise levels. Each point corresponds to
a mean over the period on a square of 0.1°, and its colour is a function of the level of the standard
deviation of the expected random error for the estimation of the CO2 column for the sun zenith angle,
reflectance, and aerosol conditions of that location on that day. White areas are regions where there is
no clear MODIS data to provide the information for the computations.
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4. Discussion
4.1. Two-Step Procedure Relevance

As shown in Appendix A, the two-step procedure is equivalent to the one-step proce-
dure if care is taken to use the same error estimates for all sources of information or to make
the appropriate corrections. There is no loss of information associated with the operational
practice of separating data extraction and flux determination. However, at the level of the
retrieved XCO2, there is often a loss of information due to the transition from profiles to
integrated content.

4.2. Random Error and CAVK Versus Effective Error

It should be noted that the random error and the CAVK are necessary to estimate the
contribution of a satellite instrument. However, the actual error is not. The actual error of
XCO2 results from the effective errors of the various radiative transfer parameters and is not
a property of the observing system. However, estimating this error is a way of describing
the effects of systematic errors for other parameters. For example, if we are working
without diffusion, we may want to estimate the average bias due to undetected aerosols.

Without performing an inversion, it is possible to compute the random error and the
CAVK using Equations (3) and (4) just by directly simulating the spectra and Jacobians.
In contrast, the actual error and even the systematic error due to bias in the background
estimate depend on a correction term that can only be computed by iterations if the
difference between the background and the true state exceeds the linearity limit of HNL.
In other words, it is not possible to predict the actual error or even its average value for a
large number of measurements without using an iterative scheme that invokes the non-
linear model. Nevertheless, in the absence of a full inversion procedure, the bias on XCO2
resulting from the bias on some radiative transfer inputs can be estimated by a simple
fixed-point scheme (Equation (6)).

4.3. Random Error Maps

The main visible feature is the contrast between land and sea, which is due to the low
albedo values of the sea. Secondly, the error decreases with orography, which may indicate
that the relative error in the CO2 concentration remains constant. But we also notice that
the albedo used is very high for snow-covered mountains. Regarding the variation of
uncertainties with noise level, the features remain consistent across all maps, with only
the intensity changing. In detail, the errors for XCO2 with the TRACE instrument over
land are around 0.4 ppm for the “Threshold” noise, around 0.35 ppm for the “Intermediate”
noise, and around 0.30 ppm for the “Goal” noise. As a usual user requirement is about
1 ppm, these values appear optimistic, being 3 to 4 times better than those for the CarbonSat
instrument. However, they are consistent with the level of noise prescribed for the TRACE
instrument (refer to Figure 4), and, moreover, the radiative transfer modelling errors were
not taken into account even for the aerosol properties. As our primary motivation was
the development and validation of tools, we have focused our attention on the conceptual
aspects of the project rather than spending time on the numerical results. For an effective
performance evaluation, it would be essential to question and re-examine the various
input data.

5. Conclusions and Perspectives

This article is primarily methodological, since the instrumental concept studied is not
planned to fly. Three results are of particular interest.

First, to estimate the contribution of a satellite instrument on the basis of its noise level
and spatial coverage, a two-step approach can be used, in line with operational practice.
This consists of separating the inversion of the satellite data to obtain an atmospheric CO2
profile from the assimilation of the latter in a Kalman filter to retrieve the carbon sources
and sinks. This approach is not only effective, but it also provides the best linear unbiased
estimate (BLUE) when rigorously implemented.
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Second, random error maps of CO2 content and maps of CAVK can be produced using
the Bayesian formalism without implementing any inversion scheme. All that is required is
a radiative transfer code that provides the sensitivity of the measurements to be simulated
to CO2 concentrations and certain other quantities (aerosol and cloud optical depth in this
article). This can be used to evaluate a priori instrument performance without building an
inversion system.

Third, linear regressions can be fitted to reproduce the variability of random errors
and averaging kernels over hundreds of cases. These regressions can easily be used to
produce random error maps over several months.

The perspectives arising from this work are to quantify the impact on the carbon fluxes
of various simplifications during the step corresponding to the Kalman filter: not updating
the covariance matrix error on the a priori contribution of the XCO2 profile, using only
the CO2 column instead of the full profile, or defining super-observations to reduce the
number of assimilated observations in a geographical box at a given time. Improving the
description of CAVKs by identifying a different set of predictors from those used for σa is
also a development axis for the future.

It would also be of interest to test the results presented in Appendix A on real data:
namely, that when a Kalman filter utilises data from a previous inversion, the value of
the inverted columns and their uncertainties should be modified in accordance with the
background covariance matrix at time t.
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Abbreviations
The following abbreviations are used in this manuscript:

AEMS Atmospheric Environment Monitoring Satellite
ALB ALBedo
ANR Agence Nationale pour la Recherche
AOD Aerosol Optical Depth
AVK AVeraging Kernel
BLUE Best Linear Unbiased Estimator
CAVK Column AVeraging Kernel
CNES Centre National d’Etudes Spatiales
CNSA Chinese National Space Administration
COD Cirrus Optical Depth
CO2M Copernicus Carbon Dioxide Monitoring Mission
CTH Cirrus Top Height
ESA European Space Agency
ISRF Instrumental Spectral Response Function
JAXA Japanese Aerospace eXploration Agency
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FWHM Full Width at Half Maximum
GEISA Gestion et Etudes des Informations Spectroscopiques Atmosphériques
GHG GreenHouse Gas
GOSAT Greenhouse gas Observation SATellite
IPDA Integrated Path Differential Absorption
LIDORT LInearised Discrete Ordinate Radiative Transfer
LMD Laboratoire de Météorologie Dynamique
LSCE Laboratoire des Sciences du Climat et de l’Environnement
MITR MIneral TRansported
MODIS Moderate Resolution Imaging Spectroradiometer
MRD Mission Requirements Document
NASA National Aeronautics and Space Administration
NIR Near InfraRed
OCO Orbital Carbon Observatory
SNR Signal-to-Noise ratio
SWIR Short-Wave InfraRed
SZA Sun Zenith Angle
TAS Thales Alenia Space
TCCON Total Carbon Column Observing Network
TIGR Thermodynamic Initial Guess Retrieval
TRACE TRAcking Carbon Emission
VZA Viewing Zenith Angle
WASO WAter SOluble
4A/OP Automated Atmospheric Absorption Atlas/OPerational version
5AI Adaptable 4A Inversion

Appendix A. Prerequisites for an Optimal Two-Step Procedure

Previous studies [31] have asserted that specific conditions must be met in order to
ensure equivalence between the two-step procedure and the direct assimilation of satellite
data into the flux model. In fact, the two procedures only differ, as we shall see, because of
the limitation of the inversion of satellite data to the integrated column.

Subsequently, the variables x are marked x̃ in the one-step procedure and x̌ for step 1
and x̂ for step 2 in the two-step procedure. Using Equations (2)–(4), we obtain for the
two-step procedure:

Step 1: The retrieval of the CO2 concentration profile or column, denoted by x̌a,
is carried out using an a priori value x̌b and its error covariance matrix, denoted by B̌,
together with the observed radiances y0 and their error covariance matrix, denoted by Ě.
This is achieved through the use of a radiative transfer model, denoted by ȞNL, and its
linearisation, denoted by Ȟ, with F̌ denoting the radiative transfer modelling error. To
address the scenario for which only a portion of a profile is retrieved, we introduce the
GNL operator. This operator can be the identity operator, and its linearisation is denoted G.
Its purpose is to reconstruct a complete profile, as required by radiative transfer, from the
quantities to be retrieved, i.e., x̌.

x̌a = x̌b + Ǩ
[
yo − ȞNLGNL(x̌b)

]
(A1)

with Ǩ = B̌GT ȞT(Ě + F̌ + ȞGB̌GT ȞT)−1 (A2)

Step 2: In a flux model, data assimilation provides an estimated value of the sources
and sinks of CO2 (denoted by x̂a) derived from a priori x̂b with its error covariance matrix B̂
and from x̌a, which are the retrieved parameters obtained in step 1 (profiles or columns),
with their error covariance matrix Ê. The transport model used to link CO2 sources and
sinks to CO2 concentrations is denoted by ĤNL; its linearisation is by Ĥ, while the transport
modelling error is quantified by F̂. The operator ZNL transforms the variables accessible in
the transport model into the variables retrieved in step 1, and its linearisation is denoted Z.

To eliminate the linear impact of the a priori information used in step 1, the assimilated
observations are ŷo = x̌a − (I − ǨȞG)x̌b = Ǩ

(
yo − ȞNLGNL(x̌b) + ȞGx̌b

)
. This trick is the
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reason why the AVK (ǨȞG) and the a priori (x̌b) have to be delivered together with x̌a. The
observation error covariance matrix becomes Ê = Ǩ(Ě + F̌)ǨT , the observation operator
becomes HNL

new = ǨȞGZNLĤNL, and the operator ǨȞGZ carries into the observation space
the model errors for the variables of the transport model represented by the matrix F̂.

x̂a = x̂b + K̂
[
ŷo −HNL

new(x̂b)
]
= x̂b + K̂

[
ŷo − ǨȞGZNLĤNL(x̂b)

]
(A3)

with K̂= B̂Hnew(Ê + ǨȞGZF̂ZTGT ȞTǨT + HnewBHT
new)

−1 (A4)

K̂ = B̂ĤTZTGT ȞTǨT
(

Ê + ǨȞGZ(F̂ + ĤB̂ĤT)ZTGT ȞTǨT
)−1

(A5)

which can be written

x̂a = x̂b + K̂Ǩ
[
yo − ȞGZNLĤNL(x̂b)

]
(A6)

with K̂Ǩ = B̂ĤTZTGT ȞTǨT
[
Ǩ
(

Ě + F̌ + ȞGZ(F̂ + ĤB̂ĤT)ZTGT ȞT
)

ǨT
]−1

Ǩ (A7)

For the one-step procedure with the same Bayesian formalism and the same notations, the
estimates correspond to:

x̃a = x̂b + K̃
[
yo − ȞNLGNLZNLĤNL(x̂b)

]
(A8)

with K̃ = B̂ĤTZTGT ȞT(Ě + F̌ + ȞGZF̂ZTGT ȞT + ȞGZĤB̂ĤTZTGT ȞT)−1 (A9)

where GNLZNL represents the path from the variables available in the transport model to
the variables needed for radiative transfer modelling via the subset of variables retrieved
in step 1. It is possible that the operator GNLZNL may result in the loss of information,
particularly in relation to the decision to assimilate only a portion of the data available in
step 1 in step 2. However, this loss of information is not inherent in the difference between
the one-step procedure and the two-step procedure.

The quantity x̃a is, by construction, the BLUE. To ensure the two-step procedure gives
the same result of x̂a = x̃a, it is enough to have K̂Ǩ = K̃. If we assume:

ȞGZB̌ZTGT ȞT = ȞGZ(ĤB̂Ĥ + F̂)ZTGT ȞT (A10)

K̂Ǩ = K̃ becomes:

ĤTZTGT ȞTǨT
[
Ǩ
(

ȞGZB̌ZTGT ȞT + Ř
)

ǨT
]−1

Ǩ = ĤTZTGT ȞT
(

ȞGZB̌ZTGT ȞT + Ř
)−1

(A11)

but Ǩ = B̌GT ȞT(ȞGB̌GT ȞT + Ř
)−1

= ǍGT ȞT Ř−1, so it is enough that:

GT ȞT Ř−1ȞGǍ
[

B̌GT ȞT
(

ȞGB̌GT ȞT + Ř
)−1

ȞGB̌
]−1

B̌GT ȞT = GT ȞT (A12)

which can be rewritten with Ǎ−1 − B̌−1 = GT ȞT Ř−1ȞG as

(Ǎ−1 − B̌−1)Ǎ
[

Ǎ(Ǎ−1 − B̌−1)B̌
]−1

B̌ = I (A13)

that is,

(I − B̌−1 Ǎ)
[

I − B̌−1 Ǎ
]−1

= I (A14)

which is obviously always true.
Given the condition of Equation (A10), the two-step procedure is optimal. Information

loss only occurs if the inversion of satellite data is limited to a subset of variables in
step 1, which requires the reconstruction of all parameters necessary for radiative transfer
with G. Equation (A10) is mandatory because it expresses that the background errors in the
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radiance space used in step 1 are indeed those that should be used in a direct assimilation
of radiances in the flux model.

In addition, if the first step was performed with B̌ = B̌1 instead of B̌ = B̌2 (the value
required by Equation (A10)), to obtain the optimal result, it is sufficient to replace the
variables x̌a and Ǎ in the second step with:

x′ = A∗
[

Ǎ−1 x̌a − B̌−1
1 x̌b

]
= A∗ Ǎ−1[x̌a − (Ix − ǨȞ)x̌b

]
(A15)

A′ = A∗
(

Ǎ−1 − B̌−1
1

)
Ǎ = A∗ Ǎ−1ǨȞǍ (A16)

with A−1
∗ = B̌−1

2 − B̌−1
1 + Ǎ−1 (A17)
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