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Abstract: Leveraging the open-world understanding capacity of large-scale visual-language pre-
trained models has become a hot spot in point cloud classification. Recent approaches rely on
transferable visual-language pre-trained models, classifying point clouds by projecting them into
2D images and evaluating consistency with textual prompts. These methods benefit from the
robust open-world understanding capabilities of visual-language pre-trained models and require
no additional training. However, they face several challenges summarized as prompt ambiguity,
image domain gap, view weight confusion, and feature deviation. In response to these challenges, we
propose PointBLIP, a zero-training point cloud classification network based on the recently introduced
BLIP-2 visual-language model. PointBLIP is adept at processing similarities between multi-images
and multi-prompts. We separately introduce a novel method for point cloud zero-shot and few-
shot classification, which involves comparing multiple features to achieve effective classification.
Simultaneously, we enhance the input data quality for both the image and text sides of PointBLIP. In
point cloud zero-shot classification tasks, we outperform state-of-the-art methods on three benchmark
datasets. For few-shot classification tasks, to the best of our knowledge, we present the first zero-
training few-shot point cloud method, surpassing previous works under the same conditions and
showcasing comparable performance to full-training methods.

Keywords: point cloud classification; zero-training; large-scale vision-and-language model; zero-shot
classification; few-shot classification

1. Introduction

Point cloud represents one of the most commonly used formats for 3D data, comprising
a set of points sampled from a scene. In various 3D computer vision applications, point
clouds serve as either the sole data source [1–7] or essential data [8,9] for understanding
3D scenes. Point cloud classification is a fundamental task in 3D scene understanding.
Simultaneously, classifying point clouds in an open-world scenario or for unknown new
categories is a hot spot issue [10,11]. Achieving this level of application requires a significant
amount of human-labor data annotations for deployed 3D systems. Despite the increasing
availability of point cloud data facilitated by the advancement of 3D scanning technologies,
the valid point cloud data volume remains significantly insufficient. In addition, annotating
point cloud data is notably more challenging compared to 2D image data due to its scattered
and unordered nature [10], posing difficulties in collecting point cloud datasets for deep
learning applications.

Visual-language pre-trained (VLP) models, learning from image–text pairs [12–14],
have revolutionized 2D computer vision recognition over the last few years. Benifiting from
existing large-scale pre-training data, these models exhibit exceptional understanding of the
open world at the 2D image level [11,13,14]. Inspired by this, many downstream recognition
tasks can be adapted by the VLP model, and this extension also applies to the domain of
point cloud classification. Some recent works have explored how to transfer knowledge
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structures to point cloud classification tasks [11,15,16]. Those transferred approaches
utilizing VLP models follow a common process: (1) Encoding the projected point cloud
images and textual prompt separately as a single feature. (2) Aligning image–text pair
features and determining the category that corresponds the most by cosine similarity.
Typically, the point cloud is projected into multi-view depth images and all image features
are aggregated into a single feature with predefined view weights.

We identify several limitations in those VLP-based methods: (1) Prompt Ambiguity:
The choice of textual prompts for each category may involve predefined templates or
generation from a large language model. However, the selection of specific textual prompts
for classification relies on human expertise. (2) Image Domain Gap: VLP-based methods
project point clouds as depth images. Nevertheless, depth images significantly differ from
the image domain of the VLP model training dataset. (3) View Weight Confusion: Point
clouds are often observed from multiple viewpoints during projection as images, and en-
coded image features are aggregated into a single feature through view weights. Predefined
view weights require manual fine-tuning rather than automatic adjustment, making it chal-
lenging to determine which viewpoint is more beneficial for classification without prior
knowledge. (4) Feature Deviation: Encoded features of objects with unique shapes may
deviate from common shapes in the same category, as a single image encoder may not
focus on their distinctive characteristics that distinguish them from other categories.

In this work, we introduce PointBLIP, a zero-training point cloud classification network.
PointBLIP is built upon the BLIP-2 visual-language pre-trained model [14], enabling it to
handle zero-shot and few-shot point cloud classification tasks. Unlike previous methods,
PointBLIP proposes novel and improved approaches in input data construction and feature
similarity comparison to address the aforementioned challenges.

To improve the quality of input data, we employ the ray tracing method to render
point clouds into simulated images instead of projecting them into depth maps, thereby
making the input images more closely aligned with the image domain of VLP models.
Simultaneously, we utilize a large language model to generate shape-specific and more
discriminative textual prompts. We treat multiple textual prompts for the same object
category as a semantic description set for textual input, collectively enriching the descriptive
features and eliminating the need for manual selection.

PointBLIP conducts comparisons between multiple image features and multiple text
features. The various image features are derived from multiple projection perspectives of
the point cloud and the encoding process of the BLIP-2 image encoder. Simultaneously,
the multiple text features originate from the semantic description set on the textual side.
Diverging from previous approaches that use predefined view weights to aggregate a single
feature, we directly compare the similarities between multiple image features and multiple
text features without any weight adjustments. We conceptualize the process of comparing
multiple features as occurring microscopically in a feature grid. In order to measure reliable
feature similarity from the feature grid, we employ distinct strategies tailored to zero-
shot and few-shot classification tasks. The selection between these strategies depends on
whether the object is compared with features that have an explicit semantic description.

PointBLIP boosts baseline’s performance and even surpasses state-of-the-art models.
In zero-shot point cloud classification tasks, PointBLIP surpasses state-of-the-art methods
by 1% to 3% on three benchmark datasets, including synthetic dataset ModelNet and real
scanning dataset ScanObjectNN. In few-shot point cloud classification tasks, PointBLIP
shows an enhancement of approximately 20% compared to other VLP-based methods under
similar conditions. To our best knowledge, we propose the first zero-training few-shot point
cloud classification network. It is worth noting that as a zero-training model, PointBLIP
remains comparable to full-training few-shot classification models on two standard datasets,
ModelNet40-FS and ShapeNet70-FS.

Our contributions are summarized as follows:

• We introduce PointBLIP, a zero-training point cloud classification network based on a
visual-language pre-trained model.
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• We improve the input data quality for VLP-based method. By employing ray tracing
rendering, we address the gap between point cloud and image data. Additionally, we
introduce a shape-specific textual prompt-generation method.

• We employ distinct feature-measurement strategies tailored to zero-shot and few-shot
classification tasks. A Max-Max-Similarity strategy entails comparing the similarities
between images and prompts for zero-shot classification tasks, while a Max-Min-
Similarity strategy compares the similarities between point cloud images and example
images for few-shot classification tasks.

• Comprehensive experiments conducted on benchmark datasets demonstrate that Point-
BLIP surpasses state-of-the-art performances. PointBLIP surpasses previous work in
both zero-shot and few-shot classification tasks. Moreover, in the few-shot classification
task, PointBLIP remains comparable to full-training few-shot classification methods.

2. Related Work
2.1. Vision–Language Pre-Training

The surge in interest in vision–language pre-training (VLP) has given rise to various
model architectures specifically designed for multi-modal tasks. Diverse structures, such
as dual-encoder [12,17], fusion-encoder [18], and encoder-decoder [19], have emerged to
cater to various downstream objectives. Over time, pre-training objectives like image–
text contrastive learning [12,20,21], image–text matching [21,22], and masked language
modeling [13,23] have converged towards approaches trained on large-scale datasets. VLP
models typically undergo end-to-end pre-training on extensive image–text pair datasets,
with the “image-to-text” interface becoming a standardized input–output format. This
standardization facilitates task-agnostic architectures for zero-shot transfer, eliminating the
need for specialized outputs or dataset-specific customization. A widely adopted model,
CLIP [12], harnesses VLP for cross-modal knowledge transfer, enabling natural language
to comprehend visual concepts.

2.2. Zero-Shot Learning in Point Cloud

The objective of zero-shot learning is to identify objects not encountered during the
training phase. While extensive attention has been given to 2D classification in zero-shot
learning [24,25], few studies have explored its application in the 3D domain. Traditional
methods for 3D open-world learning still necessitate 3D training data as a pretraining stage.
Pioneering the exploration of zero-shot learning on point clouds, [26] partitions the 3D
dataset into “seen” and “unseen” samples. It employs PointNet [27] to train on the former
set and evaluates on the latter by measuring cosine similarities with category semantics.
Building upon this foundation, [28] addresses the hubness problem [29] stemming from low-
quality extracted 3D features, while [30] introduces a triplet loss for enhanced performance
in transductive settings. This series of works trains zero-shot classifiers on “seen” 3D
categories by maximizing inter-class divergence in the latent space, and subsequently tests
on “unseen” ones.

2.3. Few-Shot Learning in Point Cloud

Few-shot learning (FSL) holds great promise in the realm of deep learning due to
its ability to generalize well on new tasks despite having limited annotated data. In the
customary N-way K-shot Q-query few-shot learning setting [31], the aim of FSL algorithms
is to meta-train a predictor that can be generalized to new unlabeled query examples by
few labeled support examples. Typically, existing FSL algorithms adopt a meta-learning
framework and can be broadly categorized into metric-based and optimization-based
methods. Metric-based approaches [32–34] center around learning an embedding space
where similar sample pairs are brought closer together or involve designing a metric
function to assess the feature similarity between samples. Conversely, optimization-based
methods [35–37] treat meta-learning as an optimization process.
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Although most current FSL methods operate within the 2D image domain, their
application in 3D perception is an under-explored area [10,38]. Three-dimensional few-shot
learning poses greater challenges due to sparse information in point clouds and smaller-
scale annotated data. Additionally, the diverse architectures and learning algorithms
further complicate efficacy in the 3D domain. Recent efforts have combined 2D FSL with
3D backbone networks to benchmark few-shot point cloud classification. Refs. [10,38]
present adapted 3D FSL point cloud classification methods derived from typical 2D FSL
algorithms, implemented on various point cloud learning architectures.

2.4. VLP-Based Point Cloud Adapted Network

The use of VLP models for open-world point cloud recognition is an emerging research
area still in its early stages. Current approaches often adopt the strategy of aligning image–
text pair features and determining the category that corresponds the most, predominantly
relying on CLIP [12]. PointCLIP [15] pioneered this approach, aligning the depth maps of
projected point clouds with object template sentences to identify the most similar category.
However, the sparsely distributed points onto depth values result in scatter-style input
images, significantly deviating from real-world pre-training images in both appearance
and semantics. Moreover, object template sentences are insufficient for fully describing
3D shapes and negatively impact pre-trained language–image alignment. To address
the domain gap between 3D and images, CLIP2Point [16] enforces alignment between
depth features and visual CLIP features through an image-depth contrastive learning
method. Nevertheless, this process requires additional training and may risk overfitting
to the image style of a particular dataset. In contrast, PointCLIPv2 [11] generates CLIP-
preferred images through realistic projection, achieved by a series of enhanced operations,
ensuring time efficiency and eliminating the need for additional pre-training. Additionally,
PointCLIPv2 leverages a large-scale language model [39] to generate text with richer 3D
semantics, enhancing the input for the text encoder. However, even though PointCLIPv2
has effectively enhanced the projection quality of point clouds, the resulting images are
still evidently far away from the real-world image domain.

These VLP-based point cloud adapted networks follow the common strategy of com-
paring image–text pair features. They respectively encode all projected images of each
point cloud and textual prompt of each category into a single feature. Without prior
knowledge, this poses challenges in setting weights for projected viewpoints and selecting
textual prompts.

3. Method

In Section 3.1, we revisit Bootstrapping Language–Image Pre-training with frozen
unimodal models (BLIP-2) and present the essential components upon which PointBLIP
relies. In Section 3.2, we delineate the methods employed for enhancing input data quality.
In Section 3.3, we elucidate the procedures through which PointBLIP executes zero-shot
point cloud classification. Finally, in Section 3.4, we elaborate on the methods employed by
PointBLIP for conducting few-shot point cloud classification.

3.1. A Revisit of BLIP-2

BLIP-2 is a versatile and computationally efficient vision–language pre-training method
that leverages off-the-shelf pre-trained vision and language models [14]. It comprises two
stages: the vision-and-language representation stage and the vision-to-language generative
stage. The former aligns image and text representations, while the latter generates linguistic
interpretations for images. In this study, we primarily explore the cross-modal capabilities
of the vision-and-language representation stage, serving as a feature encoder.

We elucidate the feature-encoding process during inference in detail. For each single
image, a fixed number of encoded features are extracted from the BLIP-2 image encoder instead
of a single feature. The image encoder employs a set number of learnable query embeddings
as input, interacting with image features from the frozen CLIP [12] image encoder through
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cross-attention layers. Subsequently, the image encoder produces a set of learned queries as the
feature representation of an image. It is worth noting that, unlike traditional image encoders,
BLIP-2 encodes an image into multiple features, with each feature representing a semantic
aspect of the image. The image-encoding process can be formulated as

Fimage = fi(I) ∈ Rn×c, (1)

where I is an input image, n is query number, and c is the embedding dimension.
In contrast, the text encoder encodes all words into output embeddings but focuses

solely on the [CLS] token as a single classification feature. The text-encoding process can
be formulated as

Ftext = ft(T) ∈ R1×c, (2)

where T is a descriptive sentence for the corresponding image.
We construct the PointBLIP network using the image and text encoders in BLIP-2.

The fundamental distinction between PointBLIP and previous work lies in encoding one
image into multiple features, while previous work encodes one image into a single feature.
We adopt this approach for the following reasons:

(1) Enhancement in feature descriptive capabilities. Encoding into multiple features is
advantageous for extracting more extensive and comprehensive information from an
image. Multiple features imply that the encoder interprets the image from different
semantic perspectives.

(2) Advantageous for filtering out irrelevant information. Since the interpretations of
multiple features differ, there is an opportunity to independently extract the features of
interest while filtering out irrelevant ones. In contrast, the traditional image-encoding
process encodes all image information, including noise, into a single feature.

3.2. Prompting for Image and Text

To address the 3D model gap and generate meaningful textual prompts, we introduce
two novel approaches to constructing input images and textual prompts for our method.

3.2.1. Ray Tracing for Point Cloud

Despite the existence of methods to improve image quality [11], projecting point
clouds as depth maps still results in a model gap between point cloud and VLP model
training images. Since VLP model training data predominantly originate in the real world,
we contend that transforming point clouds into stereoscopic, clearly outlined 2D shapes
is necessary. Therefore, we introduce the ray tracing method to render point clouds into
simulated images.

In this process, each point in the point cloud is represented as a white sphere with
a radius of r, and the surface of the sphere undergoes diffuse reflection of rays. We use
parallel and inclined light sources to illuminate these spheres. To enhance the clarity of
the complete outline, rays undergo a finite number of diffuse reflections on the spheres.
For each point cloud object, we generate rendered images from four different perspectives
around the object to obtain a comprehensive view. A comparison between the projection
method and our rendering method is shown in Figure 1.

3.2.2. Comparative Textual Prompts

Taking inspiration from PointCLIPv2 [11], we utilize a large language model GPT-3 [39]
to generate 3D-specific text with category-wise shape characteristics as textual input. Since
original point clouds lack texture information, we argue that textual input should distin-
guish different categories based on shape. We introduce two rules in command to generate
distinctive descriptive sentences: (1) Specify all categories when providing commands to
GPT-3 as input. (2) Request GPT-3 to offer the most distinctive shape description.
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Sofa Night standBench Stool

Plant Range hood Piano Sink

Figure 1. Visualization results comparing projection and ray tracing on the ModelNet dataset.
The visualizations on the left, with white backgrounds, depict the outcomes obtained through
realistic projection in PointCLIPv2, whereas those on the right showcase our visualizations utilizing
ray tracing. The point cloud images generated through ray tracing exhibit a closer resemblance to the
visual style observed in the real-world scene.

An example of generating a textual prompt for the airplane category in the ModelNet
dataset is illustrated as follows:

Question: The following object categories: airplane, bathtub, bed... (list all category names in
ModelNet). Describe the shape differences between the airplane and other categories in one short sentence.

GPT-3 Answering: The airplane stands out with its elongated, winged structure and tail,
distinctly different from the predominantly static and boxy forms of the other categories.

In our work, we generate a set of descriptive sentences for each category as textual prompts
and all sentences will be used for the classification of a category. Use “CLASS” as the name for
a target category to be classified, we adopt the following three sentence-generation templates:

(1) CLASS.
(2) Answering from GPT-3: The following object categories: ... (list all category names). De-

scribe the shape differences between the CLASS and other categories in one short sentence.
(3) Answering from GPT-3: The following object categories: ... (list all category names).

Use one sentence to describe. In what aspects does CLASS look different from other
categories in terms of shape?

3.3. Zero-Shot Point Cloud Classification

The zero-shot point cloud classification process is illustrated in Figure 2. Following
the data-prompting methods detailed in Section 3.2, we generate simulated point cloud
images formed from V observation perspectives and textual prompts for L target categories.
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The BLIP-2 image encoder produces n learned queries for each perspective image, and the
image feature set {Fi}V

i=1 (where Fi ∈ Rn×c) is extracted from one point cloud, where c
is the embedding dimension. For the textual branch, assuming each category contains
q textual prompts, the text feature set {Wj}L

j=1 (where Wj ∈ Rq×c) is extracted from the
textual prompts for all categories. Our objective is to determine the most likely category for
the source point cloud.

Class 1

Chair

Text
Encoder

Image
Encoder

Pr
om

pt
 1

Pr
om

pt
 2

Pr
om

pt
 3

Feature grid
similarity = 0.04

Feature grid
similarity = 0.06

Feature grid
similarity = 0.92

Feature grid
similarity = 0.05

Feature grid
similarity = 0.86

Feature grid
similarity = 0.03

Class    

Figure 2. Overall architecture of PointBLIP for zero-shot classification. Each feature grid generates
a similarity score by comparing a perspective image with all textual prompts corresponding to a
specific category. The classification result is determined by selecting the category with the highest
similarity score. Both image and text encoders employed in this architecture are derived from BLIP-2.

Previous methods typically compare the cosine similarity between single and aggregated
features of images and text, e.g., PointCLIPv2 calculates the final zero-shot classification logits
by weighted summing multi-view image features to a single feature, formulated as

logits = (ωFo)WT
o ∈ R1×L, (3)

where Fo ∈ RV×c, Wo ∈ RL×c, and ω ∈ R1×V represents the view weights. However, our
approach contains an additional dimension for feature comparison. {Fi}V

i=1 and {Wj}L
j=1

cannot be directly used to calculate similarity following Equation (3), and ω may cause
view weight confusion without prior knowledge.

We take two steps to address this issue. Firstly, we establish a minimal unit called
feature grid between the image feature set {Fi}V

i=1 and the text feature set {Wj}L
j=1. For the

zero-shot classification task, we define feature grid as a similarity matrix comparing the
cosine similarity between image features from a certain perspective and all text features for
a specific category, formulated as

Gij = FiWT
j . (4)

The feature grid is represented as a cosine similarity matrix. For the L classification
task, each point cloud can generate V × L feature grids. We employ a strategy called
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Max-Max-Similarity to calculate similarity from each feature grid. The process of the
Max-Max-Similarity strategy is illustrated in Figure 3a. Max-Max-Similarity calculates
the maximum values for both rows and columns in the feature grid matrix, which will
be treated as the basis for the next classification step. The aim of Max-Max-Similarity is
to provide the maximum similarity level between a simulated point cloud image and a
specific category.

0.54 0.41 0.82 0.79 0.83 0.17

0.20 0.01 0.29 0.09 0.58 0.58

0.11 0.55 0.89 0.96 0.37 0.41

0.17 0.48 0.41 0.27 0.85 0.75

0.25 0.43 0.08 0.17 0.37 0.59
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0.08 0.63 0.58 0.85 0.46 0.36

0.94 0.38 0.64 0.59 0.84 0.20

0.08 0.57 0.70 0.28 0.62 0.18

0.58 0.15 0.07 0.73 0.89 0.50

0.25 0.24 0.51 0.63 0.86 0.42

Example image feature

Im
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e 
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at
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0.85

0.94
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0.70

Maximum value
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Minimum value
in the column

(a)

(b)

0.83

0.58

0.96

0.85

0.59

0.96

Maximum value
in the column

Figure 3. Different feature-measurement strategies in the feature grid. Each cube represents the cosine
similarity between two features. (a) Max-Max-Similarity strategy. The output similarity is the maximum
similarity for both rows and columns in the feature grid. (b) Max-Min-Similarity strategy. The output
similarity is the minimum value among the maximum similarities in each row of the feature grid.

Secondly, we form a larger similarity matrix G formed by similarity values from
feature grids to obtain the most relevant category, which can be formulated as

G = {ColMax(RowMax(Gij))} ∈ RV×L. (5)

We search the maximum value in matrix G and take the category corresponding to
this maximum value as the classification result, formulated as

PredIndex = SCM(G), (6)

where SCM(·) represents the function searching for the category index of the maximum
value in the matrix.

3.4. Few-Shot Point Cloud Classification

The process of few-shot point cloud classification is illustrated in Figure 4. In this
scenario, a limited number of point clouds from “unseen” categories are labeled as a
reference, and our method aims to recognize new, unlabeled query point clouds under
this few-shot condition. The labeled example point clouds constitute the support set
S = {Pi}N×K

i=1 , encompassing N classes with K examples for each class, where Pi represents
an example point cloud. Our objective is to identify unlabeled point clouds based on the
support set S .
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For an unlabeled query point cloud, we generate simulated images from V observation
perspectives of this point cloud and extract image features using the BLIP-2 image encoder
as {Fi}V

i=1 (where Fi ∈ Rn×c). Simultaneously, example images generated from the support
set S are encoded into {Zj}N×K×V

j=1 (where Zj ∈ Rn×c) following the same process. In the
traditional few-shot classification procedure, we need to calculate the feature similarity
between query images and example images for matching. However, the BLIP-2 image-
encoding process introduces a challenge. Since each query and example image produces n
features instead of a single feature, we need to measure a unique similarity among two sets
of image features. Some image features may potentially describe irrelevant information,
such as background and texture, which is not suitable for comparison. There is no explicit
way to determine which feature represents category-discriminative characteristics and is
beneficial for comparison.

Class 1
Chair

Image
Encoder

Image
Encoder

Feature grid
similarity = 0.82

Feature grid
similarity = 0.93

Feature grid
similarity = 0.41

Feature grid
similarity = 0.24

Feature grid
similarity = 0.03

Feature grid
similarity = 0.17

Feature grid
similarity = 0.51

Feature grid
similarity = 0.48

Feature grid
similarity = 0.32

Feature grid
similarity = 0.47

Feature grid
similarity = 0.37

Feature grid
similarity = 0.64

Class    

Figure 4. Overall architecture of PointBLIP for few-shot classification. Each feature grid contributes
to a similarity score through the comparison of a query image with an example image. The category
associated with the feature grid exhibiting the highest similarity is designated as the classification
result. Both the image and text encoders incorporated in this structure are derived from BLIP-2.

To address this issue, we also establish a feature grid to compare multiple image
features. In the few-shot classification task, the construction of the feature grid and mea-
surement strategy differ from the zero-shot method in Section 3.3. This process is based on
the following theory: if two objects belong to the same category, the similarity of their most
challenging-to-match feature will still be higher than for other categories.

Specifically, we define this feature grid as a similarity matrix comparing the cosine
similarity between query and example image features, formulated as

Gij = FiZT
j . (7)

For each query point cloud in the classification process, V × N × K × V feature grids
can be constructed. We calculate a similarity from each feature grid, representing the
matching degree between the query image and example image. We employ a Max-Min-
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Similarity strategy to calculate this similarity. The process of the Max-Min-Similarity
strategy is illustrated in Figure 3b. We calculate the maximum value for each row in
the feature grid, representing the maximum matching level between each query image
feature and example image features. Then, we compute the minimum value from this
collection of maximum values, representing the maximum similarity level of the most
challenging-to-match features. We treat this value as the similarity between the query
image and example image.

Next, we utilize the similarities from feature grids to form a matrix G reflecting the
similarities between all query images and all example images. The whole process can be
formulated as

G = {ColMin(RowMax(Gij))} ∈ RV×N×K×V . (8)

Finally, we search for the maximum value in matrix G and take the category correspond-
ing to this maximum value as the classification result, which can be formulated as

PredIndex = SCM(G), (9)

where SCM(·) represents the function searching for the category index of the maximum
value in G.

4. Results

In this section, we first illustrate the implementation details of PointBLIP in Section 4.1
and the evaluation dataset in Section 4.2. Then, we present the performance of PointBLIP
on zero-shot classification in Section 4.3 and few-shot classification in Section 4.4. Finally,
we conduct an ablation experiment in Section 4.5.

4.1. Implementation Details

We utilize Mitsuba 3 software [40] for rendering point clouds into simulated images.
Each point in the point cloud is represented as a sphere with a radius r, and the surface
of the sphere is set as a white and diffuse surface. The value of r is determined based
on the specific dataset. We render the point cloud from four views around an object,
creating images with a resolution of 224 × 224. A directional light source is added for
each perspective, and the light rays undergo three reflections on the surface of the sphere.
Figure 1 shows some instances from different categories.

4.2. Evaluation Dataset

We evaluate the performance of PointBLIP on several widely used benchmark datasets,
including synthetic and real scan datasets.

ModelNet dataset. ModelNet [41] is a large-scale 3D CAD dataset containing 12,311 CAD
models from 40 categories. ModelNet includes two subsets, ModelNet10 and Model-
Net40, for classification tasks. ModelNet10 contains 4899 CAD models from 10 categories,
with 3991 for training and 908 for testing. ModelNet40 contains 12,311 CAD models from
40 categories, with 9843 for training and 2468 for testing. We only apply its test set data
since PointBLIP is a zero-training network.

ScanObjectNN dataset. ScanObjectNN [42] is a real-world dataset containing
2902 samples of point cloud data from 15 categories. Unlike clean CAD models in Model-
Net, objects in ScanObjectNN are partially presented and attached with backgrounds. Thus,
it is more challenging than ModelNet. We test PointBLIP on ScanObjectNN under three
data splits: S-OBJ_ONLY includes only ground truth segmented objects extracted from
the scene; S-OBJ_BG includes objects attached with backgrounds; S-PB_T50_RS contains
rotation, scaling, perturbations, and shifting the bounding box as the hardest split.
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ModelNet40-FS dataset. ModelNet40-FS [38] is a new split of ModelNet40 [41],
containing 30 training classes with 9204 examples and 10 disjoint testing classes with
3104 examples. This splitting of the raw dataset according to categories is done for few-shot
classification evaluation.

ShapeNet70-FS dataset. ShapeNet70-FS [38] is adapted from ShapeNetCore and has a
larger number of data than ModelNet40-FS, totaling 30,073 examples, with 50 classes having
21,722 samples for training and 20 classes with 8351 samples for testing. ShapeNet70-FS is
a benchmark dataset for few-shot classification evaluation.

4.3. Zero-Shot Point Cloud Classification

We evaluate PointBLIP on three widely used benchmarks for zero-shot classifica-
tion: synthetic dataset ModelNet and real scanning dataset ScanObjectNN. Two splits
(ModelNet10, ModelNet40) in ModelNet and three splits (S-OBJ_ONLY, S-OBJ_BG, and S-
PB_T50_RS) in ScanObjectNN will be tested. Following the zero-shot principle, we directly
test the classification performance on the full test set without learning from the training set.
We render point clouds following the method in Section 3.2. In the ModelNet datasets, we
set the value of r as the average minimum distance between points. In the ScanObjectNN
dataset, we set the value of r as 2.5 times the average minimum distance between points.
This choice of r is determined by the characteristics of the data distribution. The point
distribution in ScanObjectNN is more sparse, while the point distribution in ModelNet is
more balanced. Additionally, we generate textual prompts for target categories following
the method outlined in Section 3.2. Each category includes three textual prompts.

We compare our method with several recent zero-shot point cloud classification meth-
ods, and the results are presented in Table 1. We use overall classification accuracy (%) as
the experimental metric. PointCLIPv2 is currently the state-of-the-art method. We outper-
form PointCLIPv2 by 0.88%, 2.03%, 1.03%, 3.01%, and 3.54% in classification accuracy on
ModelNet10, ModelNet40, S-OBJ_ONLY, S-OBJ_BG, and S-PB_T50_RS datasets, respectively.

Table 1. Zero-shot point cloud overall classification accuracy (%) for ModelNet and ScanObjectNN
benchmark datasets. ModelNet10 and ModelNet40 are two data splits in ModelNet, S-OBJ_ONLY,
S-OBJ_BG, and S-PB_T50_RS are three data splits in ScanObjectNN.

Method ModelNet10 ModelNet40 S-OBJ_ONLY S-OBJ_BG S-PB_T50_RS

CLIP2Point [16] 66.63 49.38 35.46 30.46 23.32
Cheraghian [30] 68.50 - - - -
PointCLIP [15] 30.23 23.78 21.34 19.28 15.38

PointCLIPv2 [11] 73.13 64.22 50.09 41.22 35.36
PointBLIP (Ours) 74.01 66.25 51.12 44.23 38.90

4.4. Few-Shot Point Cloud Classification
4.4.1. Comparison with Full-Training Work

We compare the zero-training PointBLIP with some full-training methods. The current
study on 3D data is relatively under-explored, but few-shot classification methods are
well-established and diverse in 2D image tasks [38]. Consequently, we assess the per-
formance of point cloud adaptations of the current state-of-the-art methods in 2D image
few-shot classification.

Following the experimental procedures outlined in [10], we substitute the backbone net-
works of these 2D few-shot classification methods with the mainstream DGCNN network [43]
designed for processing point clouds. Subsequently, we assess their classification performance
in comparison with PointBLIP on the ModelNet40-FS and ShapeNet70-FS datasets. We re-
spectively compare the performance of these methods under 5-way 1-shot and 5-way 5-shot
settings (5-way is 5 classes in both meta-training and meta-testing stages, 1-shot and 5-shot
mean the number of samples), and report the mean classification results of the 700 episodes
with 95% confidence intervals. The experimental results are shown in Table 2.
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As indicated in Table 2, our method consistently outperforms other approaches in the
5-way 1-shot setting on both the ModelNet40-FS and ShapeNet70-FS datasets. Notably,
PointBLIP is zero-training, while the other methods undergo full training. Despite this, we
consistently achieve superior performance compared to these fully trained methods. However,
in the 5-way 5-shot setting, although PointBLIP demonstrates improvement compared to the
5-way 1-shot setting, its performance is relatively weaker compared to other methods.

Table 2. Few-shot point cloud classification results with 95% confidence intervals on ModelNet40-FS and
ShapeNet70-FS. Prior methods are trained with DGCNN as a backbone, while PointBLIP is zero-training.

Method
ModelNet40-FS ShapeNet70-FS

5-Way 1-Shot 5-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot

ProtoNet [32] 69.95 ± 0.67 85.51 ± 0.52 69.03 ± 0.84 82.08 ± 0.72
Relation Net [44] 68.57 ± 0.73 82.01 ± 0.53 67.87 ± 0.86 77.99 ± 0.70

FSLGNN [45] 61.96 ± 0.76 80.22 ± 0.55 66.25 ± 0.88 76.20 ± 0.77
Meta-learner [37] 59.08 ± 0.86 76.99 ± 0.67 64.53 ± 0.83 74.61 ± 0.72

MAML [46] 62.57 ± 0.88 77.41± 0.73 64.39 ± 0.76 74.11 ± 0.68
MetaOptNet [46] 67.05 ± 0.78 85.05 ± 0.59 68.27 ± 0.93 81.06 ± 0.76

S2M2 [47] 69.73 ± 0.64 83.25 ± 0.43 68.53 ± 0.73 79.71 ± 0.73
Meta-Baseline [48] 71.33 ± 0.34 85.27 ± 0.23 70.16 ± 0.41 81.08 ± 0.33
SimpleTrans [49] 71.44 ± 0.33 86.78 ± 0.22 69.19 ± 0.40 83.37 ± 0.32
Sharma et al. [50] 64.89 ± 0.82 79.59 ± 0.73 65.76 ± 0.72 79.19 ± 0.71

LSSB (SimpleShot + SB) [51] 63.33 ± 0.75 76.41 ± 0.68 64.45 ± 0.83 73.77 ± 0.73
Point-BERT [52] 69.41 ± 3.16 86.83 ± 2.03 73.92 ± 3.60 82.86 ± 2.92
Feng et al. [53] 61.36 ± 0.41 73.20 ± 0.31 65.09 ± 0.44 75.89 ± 0.29

PointBLIP (Ours) 72.20 ± 1.00 78.16 ± 1.05 74.33 ± 1.05 80.01 ± 0.97

4.4.2. Comparison with Proximity Work

To the best of our knowledge, we are pioneers in introducing a zero-training point cloud
few-shot classification network. Given the absence of similar work to serve as a reference,
we conduct a comparative analysis with the most relevant methods, PointCLIP [15] and
PointCLIPv2 [11], under identical conditions. PointCLIP and PointCLIPv2 tackle few-shot
classification challenges by incorporating a trainable inter-view adapter, aiming to fine-tune
the original output features after pre-training. To ensure a fair comparison, we eliminate the
inter-view adapter module, ensuring that all methods are evaluated in an untrained state.

Following the experimental procedures outlined in PointCLIP and PointCLIPv2, we
assess the K-shot classification performance on the ModelNet40 and ScanObjectNN (S-
PB_T50_RS) datasets, where K ∈ {1, 2, 4, 8, 16}. For K-shot scenarios, we randomly sample
K point clouds from each category in the training set, employing these point clouds as
examples for classification in the testing set. The comparison results with PointCLIP and
PointCLIPv2 under different K values are illustrated in Figure 5.
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Figure 5. Comparison of zero-training few-shot classification performance between PointBLIP, PointCLIP,
PointCLIPv2 on benchmark datasets ModelNet40 (left) and ScanObjectNN (right). The trainable inter-
view adapter modules in PointCLIP and PointCLIPv2 were excluded for a fair evaluation.
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As shown, PointBLIP outperforms PointCLIP and PointCLIPv2 under zero-training
conditions, demonstrating a significantly superior performance. On the ModelNet40
dataset, PointBLIP achieves an average increase of over 15% in classification accuracy for
different values of K. On the real scan dataset ScanObjectNN, where the data are more
complex than synthetic data, PointBLIP exhibits a decrease in performance compared to
ModelNet40. However, it still maintains an average classification accuracy advantage of
nearly 10% over PointCLIP and PointCLIPv2.

4.5. Ablation Study
4.5.1. Input Data Prompting

To assess the impact of our prompting approach on data quality, we perform an
ablation study focusing on the prompting process of image and text generation. In the case
of image input, we substitute our ray tracing rendering process with the realistic projection
method used in PointCLIPv2 [11] as a reference. The realistic projection method involves
additional processes, such as densification and smoothing, during point cloud projection,
resulting in depth maps from ten perspectives that already capture the object’s outline.
For text input, we replace our method with only category names.

We first conduct ablation experiments on zero-shot classification, involving both image
and text generation. The evaluations are conducted on the ModelNet40 dataset, and the
experimental results are presented in Table 3.

Table 3. Ablation study on ModelNet40 zero-shot classification (%) with variations in ray tracing rendering
and textual prompts. “×” indicates the substitution with the realistic projection for image generation or
the use of category names for textual prompts. “✓” signifies the inclusion of our data prompting.

Ray Tracing Textual Prompts Acc

× × 52.84
× ✓ 52.76
✓ × 56.97
✓ ✓ 66.25

As presented in Table 3, the concurrent application of our data-prompting method
results in an increase in classification accuracy from 52.84% to 66.25%, indicating an im-
provement of 13.41%. However, when employing the prompting method solely on the
image side, the accuracy experiences a modest increase of 4.13%. Similarly, deploying
only the prompting method on the text side maintains the accuracy at the same level,
but a notable increase of almost 10% in accuracy is observed after incorporating image
data prompting.

Next, we conduct ablation experiments on few-shot classification, which only involves
image generation. We evaluate the ModelNet40-FS dataset under the 5-ways 1-shot setting,
and the corresponding experimental results are presented in Table 4. Our image-prompting
method can improve by nearly 2.5% in few-shot classification.

Table 4. Ablation study of image-generation methods on ModelNet40-FS 5-way 1-shot classification (%).

Image-Generation Method 95% Confidence Intervals

Realistic projection 69.69 ± 1.01
Ray tracing 72.20 ± 1.00

4.5.2. Measurement Strategy

To evaluate the impact of the feature grid-measurement strategy, we conduct an
ablation study on both zero-shot and few-shot classification. As a reference, we replace
the original strategy with one that calculates the average value in the feature grid as
the final similarity. We conduct separate evaluations to assess the effects of the Max-
Max-Similarity strategy in zero-shot classification and the Max-Min-Similarity strategy in
few-shot classification.
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We conduct additional zero-shot classification tests on all benchmark datasets men-
tioned in Section 4.3, and the corresponding experimental results are outlined in Table 5.
Notably, Max-Max-Similarity consistently outperforms average similarity across all bench-
mark datasets, resulting in an improvement of 3% to 6% in classification accuracy in the
zero-shot classification task.

Table 5. Comparison of average similarity and Max-Max-Similarity strategy on various benchmark
datasets for zero-shot classification (%).

Dataset Average Similarity Max-Max-Similarity

ModelNet10 70.15 74.01
ModelNet40 63.01 66.25
S-OBJ_ONLY 45.27 51.12

S-OBJ_BG 39.41 44.23
S-PB_T50_RS 35.36 38.90

We further validate few-shot classification on the benchmark datasets discussed in
Section 4.4. The evaluations were performed under the 5-way 5-shot setting, and the
results, along with 95% confidence intervals, are presented in Table 6. It is evident that
Max-Min-Similarity surpasses average similarity in the context of few-shot classification,
exhibiting a more pronounced enhancement, particularly on the ShapeNet70-FS dataset.

Table 6. Comparison of average similarity and Max-Min-Similarity strategy on various benchmark
datasets for few-shot classification under 5-way 5-shot setting (95% confidence intervals).

Dataset Average Similarity Max-Min-Similarity

ModelNet40-FS 77.57 ± 1.06 78.16 ± 1.05
ShapeNet70-FS 78.37 ± 0.96 80.01 ± 0.97

5. Discussion

The experimental results on benchmarks presented in Section 4 demonstrate that
our approach achieves state-of-the-art performance in point cloud classification. Despite
surpassing prior work, several issues merit discussion.

5.1. Backbone Network Differences

In comparison to closely related VLP-based methods, our backbone VLP network
differs. Most current relevant works employ CLIP [12] as the backbone network, while
we utilize BLIP-2 [14]. This raises the question of whether the improved performance of
PointBLIP is attributable to a stronger feature-learning capability of the VLP backbone
model. To investigate this, we refer to experiments in Table 3. In the scenario presented in
the second row of Table 3, we use the realistic projection method for image generation and
generate textual prompts using GPT-3, similar to PointCLIPv2 [11] except for differences in
the backbone network and feature-measurement strategy. However, PointBLIP achieves
a zero-shot classification accuracy of 52.76%, while PointCLIPv2 achieves a higher classi-
fication accuracy of 64.22%. In this scenario, the feature-extraction capability of the base
model is a determining factor for classification performance, but BLIP-2 performs worse
than CLIP. We argue that the performance improvement of PointBLIP does not rely on the
feature-extraction capability of the base VLP model.

5.2. Feature Grid Measurement

In both zero-shot and few-shot classification tasks, we establish a feature grid to measure
feature similarity. The measurement strategies for the feature grid in different tasks are config-
ured based on comparison targets. In zero-shot classification, we compare point cloud images
with textual prompts. Due to a textual prompt explicitly describing object characteristics
and being encoded as a single feature, we use Max-Max-Similarity to find the most straight-
forward feature similarity between image and textual prompts. In few-shot classification,
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where example images are encoded as multiple features, some image features may potentially
describe irrelevant information. To exclude noise interference, we use Max-Min-Similarity
to find the similarity level between the most challenging-to-match features. From Tables 5
and 6, it can be observed that, compared to a simple averaging, the similarity reflected by our
strategy in the feature grid is more advantageous for distinguishing.

5.3. Viewpoint Weights

Another advantage of PointBLIP is the absence of manually setting weights for different
viewpoints. We opt to search for the category with the maximum similarity from the feature
grid, which is advantageous for identifying the most likely similar category. We posit that
simulated point cloud images from some perspectives may not perfectly align with the textual
prompts or example images, introducing noise perturbations during the weighting process.
The strategy of searching for the maximum similarity captures the maximum similarity
characteristic, thereby avoiding interference from other viewpoints on the overall confidence.
Furthermore, it eliminates the need for manually setting viewpoint weights.

6. Conclusions

We introduce PointBLIP, a zero-training and powerful point cloud classification net-
work that achieves state-of-the-art performance in both zero-shot and few-shot classification
tasks. Built upon the vision–language pre-training model BLIP-2 as a backbone network,
PointBLIP directly compares similarity between multiple image features or multiple text
features without the need for pre-setting weights for observed viewpoints. We estab-
lish a minimal feature-comparison unit called feature grid and employ different feature-
measurement strategies for zero-shot and few-shot classification tasks. Additionally, we
enhance the input data quality by generating images through ray tracing and utilizing
GPT-3 to generate comparative textual prompts. The innovations in PointBLIP address
challenges such as prompt ambiguity, image domain gap, view weight confusion, and fea-
ture deviation observed in previous VLP-based classification methods, resulting in higher
classification accuracy on benchmark datasets.
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