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Abstract: This study aims to provide analyses of the levels of airborne particulate matter (PM) using
a two-pronged approach that combines data from in situ Internet of Things (IoT) sensor networks
with remotely sensed aerosol optical depth (AOD). Our approach involved setting up a network of
custom-designed PM sensors that could be powered by the electrical grid or solar panels. These
sensors were strategically placed throughout the densely populated areas of North Texas to collect
data on PM levels, weather conditions, and other gases from September 2021 to June 2023. The
collected data were then used to create models that predict PM concentrations in different size
categories, demonstrating high accuracy with correlation coefficients greater than 0.9. This highlights
the importance of collecting hyperlocal data with precise geographic and temporal alignment for PM
analysis. Furthermore, we expanded our analysis to a national scale by developing machine learning
models that estimate hourly PM2.5 levels throughout the continental United States. These models
used high-resolution data from the Geostationary Operational Environmental Satellites (GOES-16)
Aerosol Optical Depth (AOD) dataset, along with meteorological data from the European Center
for Medium-Range Weather Forecasting (ECMWF), AOD reanalysis, and air pollutant information
from the MERRA-2 database, covering the period from January 2020 to June 2023. Our models were
refined using ground truth data from our IoT sensor network, the OpenAQ network, and the National
Environmental Protection Agency (EPA) network, enhancing the accuracy of our remote sensing
PM estimates. The findings demonstrate that the combination of AOD data with meteorological
analyses and additional datasets can effectively model PM2.5 concentrations, achieving a significant
correlation coefficient of 0.849. The reconstructed PM2.5 surfaces created in this study are invaluable
for monitoring pollution events and performing detailed PM2.5 analyses. These results were further
validated through real-world observations from two in situ MINTS sensors located in Joppa (South
Dallas) and Austin, confirming the effectiveness of our comprehensive approach to PM analysis.
The US Environmental Protection Agency (EPA) recently updated the national standard for PM2.5

to 9 µg/m3, a move aimed at significantly reducing air pollution and protecting public health by
lowering the allowable concentration of harmful fine particles in the air. Using our analysis approach
to reconstruct the fine-time resolution PM2.5 distribution across the entire United States for our study
period, we found that the entire nation encountered PM2.5 levels that exceeded 9 µg/m3 for more than
20% of the time of our analysis period, with the eastern United States and California experiencing
concentrations exceeding 9 µg/m3 for over 50% of the time, highlighting the importance of regulatory
efforts to maintain annual PM2.5 concentrations below 9 µg/m3.
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1. Introduction

Airborne particulate matter (PM) consists of tiny solid or liquid particles that float
in the air [1]. These particles are typically classified by their aerodynamic diameter into
several key sizes: PM1 (particles smaller than 1 µm), PM2.5 (particles smaller than 2.5 µm),
and PM10 (particles smaller than 10 µm). These particles pose considerable health risks,
including lung cancer, stroke, asthma, and cardiovascular disease. Studies have particularly
highlighted that PM2.5, due to its ability to penetrate deeply into the lungs and enter the
bloodstream, poses the most significant health hazard [2–4].

Beyond health implications, PM also plays a critical role in climate dynamics by
modifying the atmospheric balance of incoming and outgoing electromagnetic radiation.
This modification affects various atmospheric conditions, including temperature, wind
patterns, and precipitation. The presence of particulate matter can lead to the formation of
fog and acid rain and contributes to the greenhouse effect, as discussed in [5–11].

Given the strong link between various health problems and PM, which exhibits signif-
icant variations over time and in different locations, it is crucial to conduct comprehensive
studies to better understand the distribution of PM with high temporal and spatial preci-
sion [3,11]. Although ground-based monitoring stations are vital, their sparse and uneven
distribution across regions makes it difficult to achieve continuous nationwide coverage.
To overcome these limitations, numerous studies have explored the use of remote sensing
techniques and the expansion of ground observation networks. Consequently, contempo-
rary aerosol detection technologies are mainly categorized into remote sensing and in situ
observation systems [12].

A significant hurdle in expanding the reach of precise ground-based monitoring
networks is the associated expense. Consequently, a focus has been on creating calibration
techniques for affordable airborne particulate sensors. These methods leverage machine
learning to improve the accuracy of sensors in measuring particulate matter [13]. These
enhanced sensors offer a way to complement the data collected by the environmental agency
monitoring networks [14]. Part of our ongoing research involves the development and
implementation of an environmental sensing system. This initiative aims to fill geographical
gaps in data collection by establishing observation stations on the ground. These stations
are designed to provide high-temporal-resolution data, specifically in the Dallas area, thus
augmenting existing environmental monitoring efforts.

Research indicates that useful information on surface-level PM2.5 concentrations can
be gleaned using satellite-derived aerosol optical depth (AOD) data in conjunction with
multivariate nonlinear machine learning. This allows us to take into account a variety of
contextual factors such as weather conditions and other specific geographical contextual in-
formation. As a result, incorporating seasonal information and additional data can uncover
temporal patterns and spatial characteristics. These insights enable the identification of
changes in the relationship between AOD values and PM2.5 concentrations [3,15].

Lary et al. [3] developed a machine learning model to provide daily distributions of
PM2.5 by utilizing a combination of remote sensing and meteorological datasets, along
with ground-based particulate matter measurements spanning from 1997 to 2014. Their
research outlines the methodology used and presents global average results for this period,
showing that the newly developed PM2.5 data product can accurately mirror global PM2.5
observations, thus serving as a valuable resource for epidemiological studies.

In a separate study, Yu et al. [10] enhanced the modeling of PM2.5 concentrations with
high spatial-temporal resolution. They incorporated data from the Next Generation Weather
Radar (NEXRAD), along with information from the European Centre for Medium-Range
Weather Forecasts (ECMWF), AOD measurements from the Geostationary Operational
Environmental Satellite (GOES-16), and PM2.5 concentrations measured by in situ sensors
from the Environmental Protection Agency (EPA) across the United States. This approach
was designed to improve the accuracy and detail of PM2.5 concentration modeling.
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Objectives

This study is driven by two main goals. The first goal is to highlight the importance
of collecting high-temporal-resolution data and feature variable observations that are syn-
chronized both spatially and temporally with particulate matter (PM) measurements for
accurate PM modeling. We used an especially designed system of IoT sensors, both so-
lar and grid-powered, to detect particulate matter and other environmental parameters,
deployed extensively in a densely populated area of North Texas. Our system, named
MINTS-AI (Multiscale Multiuse Multimodal Integrated Interactive Intelligent Sensing for
Actionable Insights), provides access to a wide range of PM sizes, including PM0.1, PM0.3,
PM0.5, PM1.0, PM5.0, and PM10.0. These sizes have been carefully modeled using available
feature variables such as weather conditions and light intensity, directly collected at the
location of PM data gathering, thus eliminating the need for data interpolation to match spe-
cific coordinates. The ability of the system to record data at exceptionally high frequencies
(every second) is crucial for understanding the dynamic nature of PM concentrations and
their interaction with environmental factors. This approach underscores the potential loss
of critical PM distribution characteristics when the spatial and temporal alignment of the
feature variables and the PM data are not precise. Moreover, incorporating a comprehensive
range of light-intensity measurements, which include over ten distinct levels, significantly
enhances the precision of PM modeling alongside other environmental variables.

The second goal broadens the detection capabilities for PM2.5 through a blend of on-
site and remote sensing techniques, making use of a rich dataset augmented with relevant
features. On-site detection involved collecting ground-level PM2.5 data from our own IoT
sensor network (MINTS-AI), as well as data from the OpenAQ network and the National
Environmental Protection Agency (EPA) in the United States. We also compiled aerosol
optical depth (AOD) data from the Geostationary Operational Environmental Satellite-
16 (GOES-16), meteorological information from the European Centre for Medium-Range
Weather Forecasts (ECMWF), aerosol assimilation data with air pollutants from the GrADS
Data Server, and additional solar and geographical data from 2020 to the present.

2. Materials

AOD, temperature, pressure, relative humidity, height of the planetary boundary layer,
wind speed, and direction are identified as crucial contextual variables for modeling and
estimating PM2.5 concentrations through satellite-based remote sensing and meteorological
data [16]. In addition to these, other specific data types were recognized as beneficial for
accurately modeling PM2.5 levels. This includes key meteorological parameters from the
European Centre for Medium-Range Weather Forecasts (ECMWF), AOD products from the
GOES-16 satellite, relevant air pollutants from the MERRA-2 database, solar variables, and
various ancillary variables. The primary data for PM2.5, used in this context, were sourced
from three platforms: the EPA Air Quality System (AQS), the OpenAQ global air quality
data platform, and 30 sensors from the UTD MINTS monitoring network.

Data collection for this study, encompassing PM2.5, meteorological variables, AOD,
and solar angles, varied in temporal and spatial resolutions and spanned from January
2020 to June 2023. To analyze these data, tree-based machine learning methods [11] were
used. These methods were chosen for their effectiveness in handling the highly time-
sensitive nature of the data, including the target variable PM2.5 and other influencing
environmental factors.

2.1. PM2.5 Ground Observations
2.1.1. MINTS Sensors

Temporal and spatial resolution plays a critical role in air monitoring and modeling
systems because air quality can change significantly over the different micro-environments
encountered on very small temporal and spatial scales. Harrison et al. (2015) [17] well
demonstrated this point, highlighting the challenges in accurately capturing these vari-
ations. However, one major obstacle is the significant maintenance costs of the sensing
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devices, coupled with the fact that the existing number of ground-based monitoring sites
is too limited to provide comprehensive spatial coverage. To address these challenges,
numerous studies, including one by Xiaohoe et al. (2021) [11], have been carried out to
improve the precision and coverage of PM2.5 data collection efforts.

This study focuses on the development of environmental sensing systems and models
to estimate particulate matter, using the foundation provided by the MINTS-AI platform.
MINTS-AI, a project spearheaded by the Physics Department at the University of Texas at
Dallas, is a collaborative initiative that champions open source and open data principles.
The platform has been instrumental in the design and deployment of in situ environmental
sensing systems across the Dallas–Fort Worth (DFW) metroplex Figure 1. These systems,
which utilize affordable airborne particle sensors combined with machine learning tech-
niques, have been strategically positioned to effectively monitor environmental conditions.
The data collected by these sensors are readily available for real-time analysis via an online
dashboard, as detailed by [18].

(a) (b) (c)
Figure 1. MINTS sensing systems deployment: (a) Central node at Plano, Texas; (b) UTD node at
Dallas college, Texas; (c) UTD node at Joppa city, Texas.

The central and UTD nodes are integral components of MINTS’s advanced station-
ary sensor systems, playing a key role in environmental data collection via IoT sensors.
These systems are equipped with a variety of sensors designed to measure particulate
matter, gases, ambient light intensity, and climatic conditions. Particulate matter levels
are monitored using the IPS 7100 sensors from Pierra Systems, which are celebrated for
their affordability, precision, and high sensitivity. These laser-scattering sensors have a
specified accuracy of ±10% for particulate counting (PC), are adept at providing precise
and real-time measurements of airborne particulate matter, ranging from PM10 to ultrafine
PM0.1, including particle counts and sizes. In particular, the IPS 7100 boasts low-power
consumption with the capability to collect and sample rapidly every second [19].

Additionally, the system incorporates cost-effective gas sensors like the SCD30 for esti-
mating CO2 levels and the MICS6814 for gauging concentrations of CO, N2, H2, NH3, CH4,
C3H4, C4H10, and C2H6OH. The BME280 sensor is used to measure temperature, humidity,
and pressure, thus aiding in climate analysis. The light intensity is tracked via a sensor capable
of detecting peaks across a wavelength range of 300 to 1100 nm. The central node also features
an ozone module that employs Optical Absorption Spectroscopy to ascertain ozone levels.
This expansive sensor network is actively deployed at various sites in the Dallas–Fort Worth
metroplex, dedicated to measuring and reporting particle matter concentrations [12].

For our first study, the primary data on all particulate matter (PM) size fractions and
other relevant variables, as well as one of the key sources of ground-truth PM2.5 observations
for PM2.5 modeling, were obtained from the central and UTD Nodes of the UTD MINTS-AI
platform. This platform oversees 32 monitoring locations distributed throughout north Texas
in Dallas, Collin, and Tarrant counties. A significant number of these monitoring sites are
located in Richardson, near the University of Texas at Dallas, with additional sites in Fort
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Worth, Carrollton, and Plano. At each site, sensors are configured to collect data on particulate
matter, gases, and climatic conditions at high temporal resolution, capturing readings every
3 s. However, the scope for PM2.5 reference data is somewhat constrained by the relatively
limited number of monitoring locations within a somewhat confined area.

2.1.2. EPA

A primary source of PM2.5 data in the United States is the EPA’s in situ monitoring
network, which includes more than 500 ground-based stations scattered throughout the
country [20]. These networks are considered among the most reliable sources for aerosol
information. The Air Quality System (AQS) of the EPA is a database that aggregates ambient
air pollution data, including PM2.5 and PM10, collected by the EPA along with state, local,
and tribal air pollution control agencies through hundreds of monitors nationwide [21].
However, negative data values in the AQS can occur due to equipment failures and
measurement noise, particularly under very clean atmospheric conditions [11]. For this
study, PM2.5 data, sampled on an hourly basis, were retrieved using the AQS API Figure 2.
These datasets were then employed as ground-truth observations for the purposes of model
training and validation.

Figure 2. Ground observation sites of EPA (Red), OpenAQ (Blue), and MINTS (Green).

2.1.3. OpenAQ

In addition to the EPA, OpenAQ, a non-profit organization, facilitates global access
to air quality data. It aggregates and standardizes air quality data from all over the
world, offering it through a free, open source data platform. Since its launch in 2015,
OpenAQ has been collecting historical and real-time data from reference-grade government
monitoring stations. The platform covers particulate matter (PM) and various gaseous
pollutants, including NO, NO2, and CH4. As the largest open source air quality data
repository worldwide, OpenAQ provides an API for easy programmatic access to its
comprehensive database.

The OpenAQ database incorporates data from approximately 1000 ground-based
monitoring stations across the US, including stations from the EPA’s in situ monitoring
networks [22]. For this study, OpenAQ serves as an additional source of hourly sampled
PM2.5 data, which are utilized for modeling training and validation.

2.2. GOES-16 AOD

In this research, the AOD data from the GOES-16 satellite were utilized as one of the
key input features. GOES-16, a geostationary weather satellite operated by the National
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Oceanic and Atmospheric Administration (NOAA) of the United States, is located in a
stationary orbit above the Western Hemisphere [23–27]. AOD, with a spatial resolution as
fine as 0.5 km and a temporal resolution reaching up to 30 s, plays a significant role in this
study’s analysis.

The quality and reliability of AOD data are indicated by a data quality flag (DQF),
which ranges from 0 to 3. This flag helps users assess the confidence level in the AOD
measurements. However, it is important to note that AOD retrieval is challenging in cloudy
areas, and the accuracy of AOD data near clouds is less certain. The connection between
AOD and PM2.5 concentrations is influenced by various factors, including meteorological
conditions such as relative humidity and the height of the planetary boundary layer [15,16],
which means that this relationship can change over time and at different locations.

2.3. ECMWF Meteorological Data

The levels of airborne particulate matter are significantly influenced by weather
conditions, including wind speed, pressure, and temperature. Under elevated relative
humidity (RH) conditions, particles experience hygroscopic growth, a process wherein
water vapor condenses onto their surfaces, resulting in an increase in particle diameter
compared to normal conditions [28,29]. This growth enhances light scattering, significantly
impacting aerosol optical depth (AOD) values. Therefore, accounting for RH is crucial
when modeling particulate matter (PM) concentrations based on AOD measurements.

For this study, historical weather data were acquired through the Climate Data Store
(CDS) Application Programming Interface (API). The CDS is an extensive digital service
that provides a unified web interface to access a wide range of climate and environmental
data, including historical, current, and projected future conditions from various sources [30].
This service is developed and managed by the European Centre for Medium-Range Weather
Forecasts (ECMWF). The ECMWF has created ERA5-Land, a reanalysis dataset that offers a
detailed collection of global atmospheric data spanning from 1979 to the present. ERA5-
Land applies the reanalysis technique, which integrates model data with observations from
around the world to produce a globally comprehensive and consistent dataset in accordance
with physical laws. This dataset is structured on a fixed data grid with a spatial resolution
of 9 km and provides data updates on an hourly basis. The vertical extent of ERA5-Land
ranges from 2 m above the ground to a soil depth of 289 cm [31]. The meteorological
variables of ERA5-Land that are used for PM2.5 modeling are detailed in Table 1.

Table 1. Data source and variables for remote sensing approaches.

Source Variables Temporal Resolution Spatial Resolution

EPA PM2.5 1 h -

OpenAQ PM2.5 1 h -

MINTS PM2.5 3 s -

ECMWF meteorological

Temperature 1 h 10 km × 10 km
Pressure 1 h 10 km × 10 km

Dewpoint temperature 1 h 10 km × 10 km
Precipitation 1 h 10 km × 10 km
Skin reservoir 1 h 10 km × 10 km
Evaporation 1 h 10 km × 10 km

Specific humidity 1 h 10 km × 10 km
Relative humidity 1 h 10 km × 10 km

Wind speed 1 h 10 km × 10 km
Wind direction 1 h 10 km × 10 km

Boundary layer height 1 h 10 km × 10 km
Lake cover 1 h 10 km × 10 km

Leaf area index, high vegetation 1 h 10 km × 10 km
Leaf area index, low vegetation 1 h 10 km × 10 km

Snowfall 1 h 10 km × 10 km
Solar radiation 1 h 10 km × 10 km

Total cloud cover 1 h 10 km × 10 km
Specific rain water content 1 h 10 km × 10 km



Remote Sens. 2024, 16, 2454 7 of 25

Table 1. Cont.

Source Variables Temporal Resolution Spatial Resolution

GOES-16 Aerosol optical depth 5 m 2 km × 2 km
Data quality flag 5 m 2 km × 2 km

MERRA-2

AOD analysis 3 h 0.312° × 0.25°
Total column ozone 3 h 0.312° × 0.25°

Hydrophobic black carbon 3 h 0.312° × 0.25°
Hydrophilic black carbon 3 h 0.312° × 0.25°

Hydrophobic organic carbon 3 h 0.312° × 0.25°
Hydrophilic organic carbon 3 h 0.312° × 0.25°

SO4 sulfate aerosol 3 h 0.312° × 0.25°
SO2 sulfur dioxide 3 h 0.312° × 0.25°

NH3 Ammonia 3 h 0.312° × 0.25°
NH4 Ammonium ion 3 h 0.312° × 0.25°

NO3 Nitrate 3 h 0.312° × 0.25°
CO Carbon monoxide 3 h 0.312° × 0.25°
CO2 Carbon dioxide 3 h 0.312° × 0.25°

Ancillary Data

Landcover - 30 m × 30 m
Population - 30 arc-second

Soiltype - 10 m × 10 m
Lithology - 0.5° × 0.5°
Elevation - 15 arc-seconds
Cropland - 30 m × 30 m

Building footprint - -
Livestock - 5 min of arc

Solar zenith angle 1 h -
Solar azimuth angle 1 h -

Month - -

2.4. MERRA-2 Data

The MERRA-2 dataset, developed by NASA, represents the second iteration of the
Modern-Era Retrospective Analysis for Research and Applications. It is an atmospheric
reanalysis dataset that combines observational data with sophisticated modeling techniques
to create a continuous and high-quality historical account of the Earth’s climate system.
MERRA-2 utilizes the Goddard Earth Observing System Model, Version 5 (GEOS-5) data
assimilation system, which organizes data on a grid with a horizontal resolution of 0.625°
by 0.5°. This dataset offers both instantaneous and time-averaged products, available in
three-hour intervals [32].

This study incorporates data on air pollutants such as black carbon, sulfate, and
nitrate from the MERRA-2 database to improve the precision of its models. Anthropogenic
atmospheric aerosols, such as black carbon, are known to adversely affect the global
climate [33]. Studies, including that of Menon et al. (2002) [34], have shown that efforts to
reduce black carbon emissions could decelerate the global temperature rise. Additionally,
atmospheric aerosols influence atmospheric chemistry; sources such as coal-fired power
plants, metal smelting operations, and vehicle emissions release sulfur and nitrogen oxides
into the atmosphere. These oxides can react with photochemical products and airborne
particles, resulting in the formation of acid aerosols [35].

Sulfate aerosols arise from the oxidation of sulfur dioxide (SO2) emissions from human
activities, such as the burning of fossil fuels, and natural events such as volcanic eruptions.
They can significantly affect the climate by reflecting sunlight back into space [36], leading
to cooling effects. Nitrate aerosols, produced by the oxidation of nitrogen oxides (NOx)
from fossil fuel combustion and biomass burning, contribute to haze and reduced visibility.
These aerosols also pose health risks to humans [37]. The formation and impact of these
pollutants highlight their importance in understanding and modeling climate and air
quality dynamics.
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2.5. Solar Illumination

Essentially, AOD measures how much sunlight is prevented from reaching the Earth’s
surface by aerosols in a vertical column of air from the surface to the top of the atmosphere.
The geometry of solar illumination is crucial in defining the context of AOD measurements.
Solar angles are closely related to the local time and have a huge influence on the AOD
quality. The AOD value will not be retrieved due to extreme solar angles [10,38]. In PM2.5
estimation models, two significant solar-related variables are considered: the solar zenith
angle and the solar azimuth angle. These angles influence the distance that sunlight travels
through the atmosphere of Earth to reach the surface.

2.6. Ancillary Data

In addition to data that change quickly over time, variables that change more slowly
can also provide valuable information on environmental, geological, and socioeconomic
factors that influence the spatial and temporal distribution of particulate matter concentra-
tions [39]. This study incorporated slowly varying variables such as the population density,
elevation, soil type, lithology, land cover, crop type, building footprint, and livestock distri-
bution as important contextual ancillary data. These variables help understand the broader
environmental and human factors that can impact the levels of particulate matter.

Population density can significantly influence particulate matter levels due to in-
creased human activities, such as traffic and industrial operations that emit pollutants.
The Socioeconomic Data and Applications Center (SEDAC) [40], a component of NASA,
provides data on population density in the form of raster datasets. These datasets offer esti-
mates of the population per square kilometer, aligned with figures from national censuses
and population registers for the years 2000, 2005, 2010, 2015, and 2020. The available global
raster files have a resolution of 30 arc seconds, roughly equivalent to 1 km at the equator.

Topographic features such as mountains and valleys play an important role in the
dispersion and accumulation of particulate matter, while trees and other forms of vegetation
serve as natural filters, capturing particulate matter and thus mitigating air pollution [41].
Geographic variables such as elevation, soil type, lithology, cropland, and land cover offer
information on the geological characteristics that could affect the levels of particles.

The Cropland Data Layer (CDL) is a geospatial product generated by the United States
Department of Agriculture (USDA) using moderate-resolution satellite imagery combined
with extensive agricultural ground truth, identifying around 250 different crop types. This
dataset, with a spatial resolution of 30 m, covers the entire continental United States.

Soil data are provided by the National Cooperative Soil Survey through the Web Soil
Survey (WSS), an initiative of the USDA Natural Resources Conservation Service (NRCS),
which details approximately 100 soil suborder categories [42].

The National Land Cover Database (NLCD) offers detailed information on land cover
and changes over time within the United States. With a 30-m resolution, the NLCD
categorizes land into 16 classes, including various types such as water bodies, urban areas,
barren lands, forests, shrublands, grasslands, agricultural areas, and wetlands [43,44].

Bathymetric data, crucial for mapping ocean floors and land elevations, are provided
by the General Bathymetric Chart of the Oceans (GEBCO), an international consortium of
ocean mapping experts. This dataset presents elevation data on a grid with 15 arc second
intervals [45].

Lithology, which encompasses the geochemical, mineralogical, and physical properties
of rocks, influences numerous Earth surface processes, including the transport of materials
to ecosystems, soils, rivers, and oceans. The Global Lithological Map (GLiM) was developed
by Hartmann and Moosdorf (2012) [46] by synthesizing regional geological maps and
literature, offering a representation of global rock types at a spatial resolution of 0.5°. This
classification includes 16 lithological classes, providing a comprehensive view of the Earth’s
surface composition.

Building footprint data are crucial for identifying the number of buildings around a
specific location, which can influence wind dynamics and consequently affect PM concen-



Remote Sens. 2024, 16, 2454 9 of 25

tration levels. Microsoft Maps offers a comprehensive open dataset of building footprints
for the United States. This dataset is created through the application of computer vision al-
gorithms in satellite imagery, resulting in 129,591,852 polygonal representations of building
footprints in all 50 states of the United States and the District of Columbia [47].

Gridded Livestock Data (GLD) provides a comprehensive overview of the global
distribution of various species of livestock in 2015, including cattle, sheep, goats, buffaloes,
horses, pigs, chickens, and ducks. This dataset is accessible for free through the Harvard
Dataverse repository. It features a spatial resolution of 5 min of arc, which is roughly
equivalent to 10 km at the equator. The data detail the total number of each species per
pixel (5 min of arc). It is available in two formats: a dasymetric product and an areal-
weighted product, both derived using redistribution methods. For this study, we chose to
use the dasymetric product in the TIFF file format. This decision was influenced by the
significant environmental impact of livestock farming, especially in terms of greenhouse gas
emissions from enteric fermentation and manure management, together with the disruption
of nitrogen and phosphorus cycles [48].

3. Methodology

This project uses Europa High-Performance Computing (HPC) resources, overseen
by the Cyberinfrastructure Research Computing (CIRC) team at the University of Texas
at Dallas. Europa is a computing cluster that includes nodes from the decommissioned
Stampede supercomputer [49], originally developed by the Texas Advanced Computing
Center (TACC) at the University of Texas at Austin. Stampede stood out as a significant and
robust supercomputer within the United States, widely utilized for open science research
efforts [50].

3.1. All PM Size Fractions Modeling—MINTS Observation

In this phase of the study, data were exclusively acquired through the MINTS sensing
system, encompassing 31 sensors positioned in various locations across Texas. PM measure-
ments were obtained using the IPS7100 sensor, which was then utilized as target variables
for the machine learning models. The analysis framework integrated a variety of variables
from different sensors within the MINTS sensor unit as feature variables (Table 2). These
variables encompassed CO2 concentration measured by the SCD30 sensor and environmen-
tal parameters such as temperature, humidity, and atmospheric pressure, all monitored
by the BME280 sensor. The study also included data on visible light intensities across
different color bands of the AS7262 sensor, as well as ambient light intensities detected by
the TSL2591 sensor. To further enhance the feature set, data related to the infrared (IR) and
ultraviolet (UV) light intensities of the VEML6075 sensor were incorporated.

Table 2. MINTS embedded sensors and variables.

Sensor Variables

IPS7100

PM0.1
PM0.3
PM0.5
PM1.0
PM2.5
PM5.0
PM10.0

BME280
Temperature

Pressure
Humidity

SCD30 CO2
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Table 2. Cont.

Sensor Variables

AS7262

Violet
Blue

Green
Yellow
Orange

Red

TSL2591

Luminosity
Infrared

Full spectrum
Visible light

Lux

VEML6075 Ultraviolet A
Ultraviolet B

3.1.1. Data Matching

Since all sensors are integrated within a single unit in the MINTS sensing system,
there is no need to align the data based on spatial coordinates. Data sampling occurs every
10 s, but it is important to note that the recording times across the different sensors are
not synchronized. To effectively align the various sensor data with the PM measurements,
we implemented a one-minute time aggregation approach. This method addresses the
challenge of matching the high temporal resolution of our data with that of other sensing
systems, which generally have lower temporal resolutions. As a result, our analysis is solely
based on the high-temporal-resolution data from MINTS, limiting our feature variables to
those available within the MINTS dataset.

3.1.2. Experiment Design

To explore the effectiveness of different variables from various sensors across differ-
ent PM size fractions, we organized the variables into three unique group configurations
(Table 3). Each group contains seven specialized models, each addressing different PM
size categories. Group 1 models are built using only meteorological data from BME280
sensor. Group 2 models use a wider range of variables, including meteorological data from
BME280, CO2 concentrations from SCD30, and light intensities from AS7262, TSL2591, and
VEML6075. Meanwhile, Group 3 is tailored to assess the impact of light intensities specifi-
cally on different PM size fractions. The data sets for each group include approximately
617,000 entries, split into two parts: 80% of the data are used for training purposes, and the
remaining 20% are reserved for testing.

Table 3. MINTS observation PM groups.

Group Weather CO2 Light

1 ✓
2 ✓ ✓ ✓
3 ✓

The model’s training involved selecting a range of potentially optimized hyperparam-
eters with an understanding that the training performance heavily depends on various
factors. One such critical factor is the number of trees in tree-based models, which repre-
sents a key hyperparameter. Achieving an optimal balance is crucial because increasing the
number of trees not only influences the model’s performance but also raises the demand
on computer memory resources. Therefore, a careful decision was made regarding the
number of trees to fit within the constraints of the available computational infrastructure.
After training, the model underwent a validation process using the test dataset. This step
includes assessing performance metrics like the root mean square error (RMSE) and the
correlation coefficient (R) to gauge the model’s accuracy and predictive ability.
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3.2. PM2.5 Modeling—In-Situ and Remote Sensing
3.2.1. Data Matching

This study on estimating ground-level PM2.5 concentrations analyzed three and a
half years of historical data, covering the period from January 2020 to June 2023. The
variables used in this study were sourced from various databases, each with its own
temporal and spatial resolutions. Ground-level PM2.5 data from the EPA Air Quality
System (AQS) and OpenAQ, along with ECMWF meteorological data, are available at a
temporal resolution of one hour and were used as is, without the need for aggregation.
Conversely, PM2.5 data collected by the MINTS platform have a native temporal resolution
of 3 s, necessitating aggregation to align with the one-hour temporal resolution of other
data sources. Aerosol optical depth (AOD) data from the GOES-16 satellite, which are
recorded every five minutes, were selected based on the timestamp closest to the PM2.5
observation timestamps for consistency. Atmospheric gas data, obtained from the MERRA-
2 GEOS-5 model, have a temporal resolution of three hours. Linear temporal interpolation
was used to fill in the gaps between data points, ensuring that all variables match the PM2.5
observation timestamps accurately.

Following the harmonization of all highly dynamic data to a consistent one-hour temporal
resolution, feature variables such as the AOD data from GOES-16, meteorological data from
ECMWF, and solar angles were aligned with ground-based PM2.5 measurements. These PM2.5
measurements were sourced from three distinct platforms: the EPA Air Quality System (AQS),
OpenAQ, and the MINTS platform, and were used as the target variable in the analysis.

Data from various sources come with different spatial resolutions and utilize distinct
grid coordinate systems. The AOD data from GOES-16 have a fine spatial resolution of
2 km by 2 km. However, the original AOD data, stored in NetCDF format on Amazon S3,
adhere to the GOES-R Advanced Baseline Imager (ABI) fixed-grid projection coordinate
system. To make these data usable for geographical analyses, it is necessary to transform
the AOD data into a geographic coordinate system. This transformation relies on metadata
that include details about the perspective point height and the sweep angle axis. After
conversion, the AOD data are ready for further analysis.

The European Centre for Medium-Range Weather Forecasts (ECMWF) Climate Data
Store presents its meteorological variables from the ERA5 land reanalysis in GRIB grid
files, featuring a horizontal resolution of 0.1°. Meanwhile, data from the MERRA-2 GEOS-
5 model, available in netCDF-4 format, provide an approximate spatial resolution of
50 km × 50 km, offering a broader spatial coverage for analysis.

To effectively train a machine learning model, it is crucial to synchronize all datasets,
which contain various variables, in terms of both time and spatial coordinates. The alignment
of the coordinates of the dataset was achieved using the locations of ground-based PM
observation sites from the EPA, OpenAQ, and MINTS as the reference coordinate system. A
multilinear interpolation method was used to ensure that the datasets were accurately aligned.

After the matching process was completed, a data table was assembled. This table
includes synchronized time and coordinates for each entry, alongside PM2.5 observation
values, meteorological factors, AOD, air pollutant gases, and solar illumination geometry.
In addition, ancillary data from various sources were integrated into the table by aligning
their spatial coordinates with the reference coordinate system. This integration included
relevant data values but did not consider the temporal aspect of the data.

It is important to note that GOES-16 AOD data are available only during daylight
hours and in cloud-free locations. The Data Quality Flag (DQF) included with the AOD
data provides insight into the quality of the AOD measurements. To maintain high data
integrity, only AOD values classified as high quality, based on DQF information, were
selected for use. As a consequence, many entries in the dataset had missing AOD values,
which were then filled with the corresponding AOD data from the MERRA-2 dataset to
complete the dataset.
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3.2.2. Experiment Design

To explore the effects of incorporating data from MINTS PM2.5, MERRA-2, and other
sources on PM2.5 modeling, six unique model configurations were developed (Table 4).
The first model, Model-1, is the basic model that includes the MINTS data but excludes
the Ancillary and MERRA-2 data. Model-2 is designed to examine the impact of ancillary
data on PM2.5 modeling. Model-3 aims to assess the contribution of MERRA-2 data and
incorporates all available features, being used for reconstructing national ground-level
PM2.5 concentrations. Model-4, which excludes MINTS data, investigates the influence
of additional in situ observations. Models 5 and 6 focus specifically on the effects of
including MINTS PM2.5 data, reflecting the limited duration of MINTS data availability and
the geographical limitation of MINTS observation sites to Texas. All models use ECMWF
meteorological variables, GOES-16 AOD data as basic features, and target PM2.5 values from
EPA and OpenAQ, with variations in the inclusion of features between different models.

Table 4. PM2.5 model categories. The first four models are designed for PM2.5 modeling across
the entire United States, while the last two models specifically target the Texas region. The
distinction among these models lies in the incorporation of ancillary data, MERRA-2 data and
MINTS PM2.5 data.

Model Spatial
Coverage Time Span Ancillary MERRA-2 MINTS

1 US January 2020–June 2023 ✓
2 US January 2020–June 2023 ✓ ✓
3 US January 2020–June 2023 ✓ ✓ ✓
4 US January 2020–June 2023 ✓ ✓

5 TX September 2021–June 2023 ✓ ✓ ✓
6 TX September 2021–June 2023 ✓ ✓

The datasets for Models 1, 2, and 3 contain 1,521,790 entries, while Model-4 has
1,512,889 entries. Models 5 and 6 have significantly fewer entries, with 61,889 and
52,988 entries, respectively, due to the restricted geographic scope to Texas and the shorter
data period. These datasets are divided into training and testing sets with a ratio of 90%
to 10%, a common practice for training and evaluating machine learning models. The
models are trained using a tree-based machine learning approach, optimized with selected
hyperparameters. The performance of these models is then validated in the testing set,
using metrics such as the root mean square error (RMSE) and the correlation coefficient (R)
to evaluate accuracy.

3.3. Machine Learning Approaches

The machine learning approach is particularly well suited for studies like this for
several reasons. First, PM concentrations are affected by a wide array of factors, including
those beyond the scope of this study. Secondly, there is a notable absence of theoretical
models capable of accurately depicting the relationships between various variables and PM
concentrations. Lastly, this study relies on a substantial dataset with numerous variables,
and machine learning algorithms excel at managing complex datasets that traditional data
analysis methods might find challenging.

Although different machine learning models, including neural networks and XGBoost,
can be applied to PM modeling, tree-based methods like random forests offer distinct
advantages. For example, tree-based models tend to perform more efficiently with large
datasets. Furthermore, ensemble machine learning techniques, which combine multiple
weak learners into a robust model, are particularly effective in minimizing bias and variance,
offering a clear understanding of how each variable contributes to the prediction of the
model [11].

In this study, the extra tree (ET) regression algorithm, an enhancement of the random
forest algorithm, was chosen for modeling PM2.5. The ET model was shown to be effective
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for PM2.5 modeling using AOD and meteorological variables in previous research [11,51]. It
constructs numerous decision trees, each trained on a randomly selected subset of features
and data samples, introducing additional randomness into the model. This not only speeds
up the training process but also makes the model less prone to overfitting from noisy data.

4. Results
4.1. MINTS All PM Size Fraction Modeling

In this section, we specifically focus on the use of data only from the MINTS sensing
system. The modeling efforts are categorized into three main groups, each defined by a
unique set of feature variables. Additionally, each main group is further divided into seven
subcategories, targeting different PM size fractions.

Of these main groups, Group-2, which utilizes all the features available from the
MINTS system, shows the highest correlation coefficients (R values) in the test data com-
pared to the other groups (Table 5). Within Group-2, the variation in R values between
subcategories is relatively minor. In particular, when using just three meteorological vari-
ables (temperature, pressure, and humidity) in Group-1, the models show impressively
high performance on the test data, with R values reaching around 0.92. Group-3, designed
to explore the effect of light intensity from various frequency channels on different PM
size fractions, found that models for PM0.1, relying solely on light intensity data, pro-
duced higher R values on the test data than those for other PM size fractions within the
same group.

Table 5. Three main groups are sub-categorized on PM size fractions. The respective evaluation
results for all the sub-categories are presented.

Group PM Sample Size Train R Train RMSE
(µg/m³) Test R Test RMSE

(µg/m³)

1

PM0.1 616,301 0.999 0.016 0.914 0.152
PM0.3 616,866 1.0 0.923 0.923 18.953
PM0.5 617,760 1.0 1.138 0.911 22.277
PM1.0 617,765 1.0 1.202 0.937 19.151
PM2.5 617,767 1.0 1.976 0.923 26.273
PM5.0 617,771 1.0 2.276 0.932 30.352
PM10.0 617,771 1.0 2.304 0.933 31.165

2

PM0.1 616,301 1.0 0.0 0.978 0.077
PM0.3 616,866 1.0 0.003 0.978 10.545
PM0.5 617,760 1.0 0.006 0.977 11.576
PM1.0 617,765 1.0 0.003 0.978 11.376
PM2.5 617,767 1.0 0.019 0.973 15.747
PM5.0 617,771 1.0 0.021 0.979 17.528
PM10.0 617,771 1.0 0.021 0.978 18.273

3

PM0.1 616,301 0.707 0.274 0.312 0.36
PM0.3 616,866 0.571 40.509 0.044 50.633
PM0.5 617,760 0.597 42.575 0.053 55.74
PM1.0 617,765 0.609 44.09 0.063 56.271
PM2.5 617,767 0.648 54.793 0.11 69.386
PM5.0 617,771 0.617 69.17 0.095 84.653
PM10.0 617,771 0.608 72.213 0.091 87.307

Scatter plots were created to illustrate the correlation between predicted and actual PM
levels for all specified groups and across different PM size categories. This paper selectively
features the most illustrative scatter plots for visual analysis. Figure 3 shows the scatter
plots for the smallest (PM0.1) and largest (PM10.0) PM size fractions within Group-2, which
showed a superior performance compared to the other groups. Additionally, Figure 4
shows plots depicting the relative importance of various features in the models analyzed.
These graphs clearly demonstrate that carbon dioxide, pressure, temperature, and humidity
are crucial factors for both PM0.1 and PM10.0 sizes. Furthermore, for the smallest particles
(PM0.1), light intensities in the ultraviolet A and B spectrum play a vital role. In contrast,
for the larger particles (PM10.0), light intensities in the violet and full spectrum ranges make
significant contributions to the predictive accuracy of the models.
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(a) (b)
Figure 3. Scatter diagrams depicting the training and testing datasets for Group-2 (incorporate all the
feature variables within MINTS system): (a) PM0.1; and (b) PM10.0.

(a) (b)
Figure 4. Importance of features for Group-2 (incorporate all the feature variables within MINTS
system): (a) PM0.1; and (b) PM10.0.

Figures 5 and 6 illustrate the scatter and feature importance plots for PM0.1 and PM10.0,
focusing on Group-3 (incorporate only light sensing variables within MINTS system). These
plots are instrumental in highlighting the light intensity frequency ranges that significantly
impact model development, clearly differentiating between the sizes of the particles.

(a) (b)
Figure 5. Scatter plots depicting the training and testing data for Group-3 (incorporate only light
sensing variables within MINTS system): (a) PM0.1; and (b) PM10.0.

Consistent with the size-dependent light scattering properties of aerosols, our analysis
reveals that for fine particle modeling (PM0.1), light intensities in the ultraviolet A and B
frequency ranges contain valuable information. On the other hand, for the larger particle
size (PM10.0), light intensities in the red and violet frequency ranges play a more critical
role in the construction of predictive models. This clarification of the importance of the
features provides insight into the unique characteristics and variables useful for modeling
each PM size fraction.
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(a) (b)
Figure 6. Importance of features for Group-3 (incorporate only light sensing variables within MINTS
system): (a) PM0.1; and (b) PM10.0.

4.2. Complimentary In Situ and Remote Sensing PM2.5 Modeling

This section looks at the creation of four national PM2.5 estimation models, each notable
for its high temporal resolution and distinguished by different target variables and PM2.5
observation sources. Additionally, two regional PM2.5 models were developed, categorized
based on the observation sources used. The purpose of classifying these regional models is to
demonstrate the benefits of improving PM estimation models with additional ground-based
observations and to evaluate the effectiveness of incorporating MINTS data.

The national dataset includes a comprehensive collection of approximately
1,521,790 observations and 53 predictor variables. The regional dataset contains about
61,889 observations with the same set of feature variables, all employed in the model
training and testing phases. The data were split into training and testing segments in a
90:10 ratio. Training data were used for model fitting, with the performance of the models
evaluated in both datasets. Table 6 offers a detailed examination of essential evaluation
metrics, such as the correlation coefficients between actual observations and the predictions
made by machine learning, model R scores, and root mean square error (RMSE) figures,
all based on test data. These metrics collectively facilitate an evaluation of the models’
accuracy and predictive capability.

Table 6. Model categories as well as their corresponding evaluation result are listed.

Model Sample Size Train R Train RMSE
(µg/m³) Test R Test RMSE

(µg/m³)

1 1,521,790 0.998 0.388 0.793 3.673
2 1,521,790 0.998 0.388 0.816 3.501
3 1,521,790 0.998 0.388 0.849 3.201
4 1,512,889 0.998 0.392 0.834 3.364

5 61,889 0.998 0.527 0.872 4.474
6 52,988 0.997 0.565 0.816 4.253

The base model, referred to as Model-1, utilizes PM2.5 data collected from a variety
of sources, including the Environmental Protection Agency (EPA), OpenAQ, and the
MINTS-AI environmental sensing system. This initial model exclusively relies on ECMWF
meteorological data and Aerosol Optical Depth (AOD) feature variables from the GOES-16
satellite, achieving a correlation coefficient (R) of 0.793. The introduction of additional data
to the base model leads to an improvement in the R-value, which climbs from 0.793 to 0.816.
Following this, Model-3, which integrates both supplementary data and MERRA-2 data,
reaches an R value of 0.849, indicating a further improvement in model performance. In
contrast, removing the MINTS-AI environmental sensing data from Model-3 results in a
decrease in the R value to 0.834. Importantly, incorporating MINTS data into the regional
model, identified as Model-5, significantly improves the model performance, demonstrating
the valuable impact of the MINTS data on the accuracy of PM2.5 estimations.

The scatter diagram comparing the measured versus estimated values for Model-3 (seen
in Figure 7) visually demonstrates the correlation between actual (measured) and predicted
(estimated) values for a specific target variable. This plot is instrumental in pinpointing the
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strengths of the model and areas that need refinement, thus serving as a crucial tool for
assessing model performance and identifying potential enhancements. To aid in the analysis
of overlapping data points, marginal histograms are incorporated into the figure. Furthermore,
the importance ranking of the predictors (shown in Figure 8) is designed to highlight the
contribution of each variable to Model-3’s predictive capability. Variables ranked with higher
importance scores exert a more substantial influence on the model predictions. In particular,
the most critical variables, according to the feature importance chart, include aerosol optical
depth (AOD) analysis (utilizing AOD data from MERRA-2), specific humidity, AOD from
GOES-16, dew point temperature, carbon monoxide, and carbon dioxide.

Figure 7. Scatter plots depicting training and testing data in log scale, accompanied by marginal
probability density functions, illustrating the analysis conducted for Model-3.

Figure 8. Feature importance score for Model-3.
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4.3. Nationwide PM2.5 Model Validation

Model-3, which incorporates all available features and PM2.5 data sources, stands out
for its exceptional performance in mapping ground-level PM2.5 concentrations throughout
the United States. The detail and precision of this PM2.5 mapping are influenced by the reso-
lution of the remote sensing data employed. A comprehensive input dataset for the machine
learning model was prepared through several preprocessing steps. To ensure uniformity in
all ground-level PM2.5 concentration maps, the ECMWF meteorological data grid, which
measures approximately 10 km × 10 km and covers the whole US region, is used as the
standard coordinate framework. This grid array was transformed from a two-dimensional
shape into a one-dimensional format and then combined into a tabular structure, such as a
dataframe. This coordinate dataframe, containing latitude and longitude, was used as the
reference coordinate dataframe. However, when using data from different sources, which
may follow various coordinate systems, it becomes necessary to align them with the stan-
dard grid using linear interpolation to ensure consistency. The low dynamic ancillary data
were augmented to this reference coordinate dataframe by matching the locations. Since
all other feature variables vary with timestamps, this reference coordinate dataframe with
matched ancillary data was duplicated for hourly timestamps. ECMWF meteorological
data were incorporated into the corresponding hourly reference dataframe by matching
the spatial coordinates. Time-interpolated MERRA-2 data were also integrated into the
respective timestamp dataframes by matching location coordinates. AOD data were then
aligned with the respective timestamp dataframes by matching location coordinates. Solar
angles for specific datetime dataframes were generated using the spatial coordinates. The
resulting dataframes for each timestamp contained spatially matched feature variables
data. These enriched dataframes were sequentially inputted into the machine learning
model to generate the hourly dataframes of estimated PM2.5 concentrations at all location
coordinates. These output dataframes were transformed into two-dimensional arrays of
latitude, longitude, and estimated PM2.5 to visualize the PM2.5 reconstruction maps.

Wildfires significantly contribute to the increase and change in the composition of
airborne particulate matter, including both primary and secondary pollutants, which can
affect human health and the environment. Large wildfire events in the United States
have been linked to specific weather conditions, such as droughts, high temperatures,
low humidity, and strong winds, which are conducive to the ignition and propagation
of wildfires. Figure 9 illustrates the PM2.5 concentrations on the ground as estimated by
Model-3 during one of the most significant wildfire events in the US, the Santa Clara Unit
(SCU) Lightning Complex fire in California in 2020. This fire, sparked by dry lightning on
August 16, was eventually contained in early October.

Figure 9a,b offer visual insights into the ground-level PM2.5 concentrations recorded
at two different times: 9 PM and midnight on 2 October 2023. These visualizations were
produced using a modified version of Model-3, specifically trained without incorporating
MERRA-2 Aerosol Optical Depth (AOD) data. On the other hand, Figure 9c,d depict the
PM2.5 concentrations at the same times, but were generated using the original version of
Model-3, which includes a comprehensive set of feature parameters. Both variations of
the model successfully identified areas of high PM2.5 concentrations in California, with
the pollution spreading to the northeast over the three-hour interval. In particular, the
specialized version of Model-3 encounters limitations due to the absence of GOES-16 AOD
data in areas covered by clouds, resulting in gaps in the PM2.5 concentration estimates.
To overcome these limitations, the original Model-3 supplements missing GOES-16 AOD
observations with MERRA-2 AOD data, ensuring a more detailed portrayal of PM2.5
concentrations throughout the region. The chosen color scale adheres to the guidelines of
the World Health Organization (WHO), setting the threshold at 25 µg/m3 for the annual
mean concentration of PM2.5, beyond which there is a significant risk to health. This
threshold is used as the upper limit to visualize the map data, in accordance with global
health standards.
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The coverage of the MINTS sensing system is limited to the north Texas region. To
comprehensively evaluate the performance of the model in PM2.5 reconstruction, our analysis
exclusively focuses on results within the state of Texas. Specifically, we scrutinize data
from three distinct timestamps on 1 January 2023, comparing them with PM2.5 observations
collected by two MINTS in situ sites located in Joppa and Austin, represented by solid black
circles on the maps in Figure 10. This figure visually presents the PM2.5 reconstruction results
generated by Model-3 at these three timestamps, each separated by a minimum interval of 11
h. Similarly, Figure 11 provides a time series illustrating PM2.5 observations recorded by the
ground sensors of the two MINTS in the cities of Joppa (blue) and Austin (orange).

(a) (b)

(c) (d)

Figure 9. PM2.5 reconstruction during the Santa Clara Unit (SCU) Lightning Complex fire in 2020.
Panels (a,b) are for 9 PM UTC and midnight on October 2, respectively, using a specialized version of
Model-2 that exclusively incorporates AOD data from GOES-16. Panels (c,d) are for the same times
but using the original Model-3. Areas with PM2.5 concentrations exceeding the 25 µg/m³ threshold
are highlighted in red.

(a) (b) (c)

Figure 10. Reconstructed PM2.5 concentrations across the Texas region at three distinct timestamps on
1 January 2023, in UTC. The black solid circle in the north corresponds to the MINTS ground sensor
located in Joppa (south Dallas), while the black solid circle in the south represents the MINTS ground
sensor located in Austin. The subfigures depict the following timestamps: (a) 1 January 2023 at 01:00
AM UTC; (b) 2023 January 1 at 02:00 PM UTC; and (c) 2 January 2023 at 01:00 AM UTC.
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In particular, the three gray dashed lines in Figure 11 correspond to the timestamps
of the PM2.5 reconstruction maps shown in Figure 10. Specifically, Figure 10a depicts a
relatively less polluted environment at both locations around 7 PM Central Time on 31
December 2022 (equivalent to 1 January 2023, at 01:00 UTC). This finding aligns with similar
observations of lower pollution concentrations made by the Austin MINTS ground sensor
at the same time (corresponding to the first gray dashed line). Approximately 13 h later,
the model captures elevated PM2.5 concentrations near Austin, while concentrations in
the Joppa area remain lower (Figure 10b). This pattern closely mirrors the observations
recorded by the two MINTS ground sensors, with high PM2.5 concentrations observed in
Austin and lower levels in Joppa. In a subsequent timeframe, approximately 24 h after
the initial observation, the model indicates an expansion of higher PM2.5 concentrations,
particularly in the Joppa area (Figure 10c). This trend is aligned with the simultaneous
observation of higher concentrations by both MINTS ground sensors at both locations.

Figure 11. PM2.5 measurements obtained from two MINTS in situ sensors located in Joppa (depicted
in blue) and Austin (shown in orange). The timestamps indicated by the gray dashed lines align with
those presented in Figure 10.

4.4. Time Fraction of PM2.5 Concentration Exceed Thresholds in 2022

Since 2000, there has been a notable 42% decrease in overall PM2.5 levels in the United
States, attributed to the implementation of clean air regulations. Despite this progress, concerns
remain about the need for further reductions. In February 2024, responding to these concerns,
the Environmental Protection Agency (EPA) revised the national standards of ambient air
quality for PM. Specifically, the annual primary PM2.5 standard was revised downward from
12 µg/m3 to 9 µg/m3, aiming to mitigate the adverse health impacts and associated costs.
The EPA estimates that adhering to this new standard could lead to potential savings of up to
USD 46 billion in avoided healthcare and hospitalization costs by 2032 [52–60].

In this section, we used our Model-3 machine learning to estimate hourly PM2.5
concentrations across the entire United States for the year 2022. The resulting dataset
allows us to calculate the fraction of time during which PM2.5 concentrations exceeded
five distinct threshold levels (8 µg/m3, 9 µg/m3, 10 µg/m3, 11 µg/m3, and 12 µg/m3)
throughout the entirety of 2022. The accompanying figure illustrates maps showing the
percentage of time that PM2.5 concentrations exceeded the specified threshold levels, with
color-coded representations corresponding to the percentage values.

As shown in Figure 12a, certain areas in the eastern United States and California exhibit
elevated percentage values, indicating that these regions experienced PM2.5 concentrations
exceeding the threshold of 12 µg/m3 for more than 20% of the time throughout the year 2022.
However, Figure 12d illustrates that the entire United States shows elevated percentage values,
suggesting that the entire nation encountered PM2.5 concentrations exceeding the threshold of
9 µg/m3 for more than 20% of the time in 2022. In particular, the eastern United States and
California regions sustained PM2.5 concentrations that exceeded the threshold of 9 µg/m3 for
more than 50% of the time during the same period. These estimates underscore the importance
of regulatory measures aiming to maintain annual PM2.5 concentrations below 9 µg/m3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 12. Percentage of time exceeding PM2.5 concentration thresholds throughout the entirety
of 2022, as estimated by Model-3. The subfigures (a,d,g,j,m) illustrate the duration exceeding the
thresholds 12 µg/m3, 11 µg/m3, 10 µg/m3, 9 µg/m3, and 8 µg/m3 over the US, respectively. The
subfigures (b,e,h,k,n) illustrate the corresponding PM2.5 exceeding in Texas regions and the subfigures
(c,f,i,l,o) illustrate the corresponding PM2.5 exceeding in Dallas regions, respectively.
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5. Conclusions

Environmental agencies often depend on a small set of airborne particulate monitor-
ing stations, which are often unevenly spread out, leading to low temporal resolution in
PM observations. These inherent constraints limit the precision of PM modeling due to
the significant variability in PM concentrations at fine scales and over time. To address
these issues, the UTD MINTS-AI platform has implemented a specialized environmental
monitoring network tailored for use in local communities in Texas. This network is specifi-
cally designed to gather PM data, along with relevant environmental variables, with high
temporal resolution and fine spatial detail.

In this paper, we concentrated on two distinct studies related to PM modeling. In the
first study, we underscored the significance of raw data collection within a synchronized
temporal and spatial coordinate system for effective PM modeling. In the second study, we
enhanced PM2.5 modeling by employing an asynchronized temporal and spatial coordinate
system, leveraging pertinent remote sensing data.

In the first study, in order to underscore the significance of a synchronized temporal
and spatial coordinate system, we exclusively utilized data only from the MINTS sensing
system recorded between September 2021 and June 2023. This restriction of data collection
to the MINTS sensing system was intentional, as it allows access to both PM data and other
pertinent environmental data at precisely the same location with synchronized time stamps.
The decision to utilize the extra tree regression model, based on its strong performance
in prior research and efficient computational processing, proved successful in tackling
these challenges. Modeling activities were categorized based on environmental factors,
incorporating all available feature variables (all available variables from the embedded
sensors within MINTS system) that exhibited a superior performance across different PM
size fractions. Specifically, variables such as carbon dioxide, pressure, temperature, and
humidity emerged as the most influential during the modeling phase. Moreover, it was
discovered that high-frequency band light intensities played a secondary role in modeling
fine PM sizes, whereas low-frequency band light intensities had a more significant impact
on modeling larger PM sizes. It is noteworthy that the modeling of the fine PM size
fraction (PM0.1) resulted in higher correlation coefficient (R) values compared to coarser
PM size fractions in Group-3, which solely relied on the light intensity variables. This
result indicates that, for smaller particle sizes, Mie scattering can be beneficial in accurately
capturing specific particle characteristics. This can be attributed to the fact that the diameter
of PM0.1 particles falls within the ultraviolet wavelength range, which improves the model’s
capability to capture finer details of PM concentrations. Importantly, when a model is built
solely on light intensity data from different frequency bands, it becomes clear that variations
in the fine PM size fraction can be effectively captured by high-frequency band intensities.

It is important to highlight that using only three environmental factors, namely tem-
perature, pressure, and humidity, has been proven to be effective in modeling various PM
size fractions with high performance, as evidenced by high R values, as long as the data
were collected in a synchronized temporal and spatial coordinate system. This effective-
ness can be attributed to the advantage of having data collected at the exact geographical
location where PM observations are made. This means that all data are gathered at the
same coordinates with synchronized timestamps, eliminating the need for data alignment
or interpolation, which are crucial in PM modeling. Additionally, the data are captured at a
high temporal resolution, allowing for a comprehensive representation of PM variations
and related changes in feature variables. Importantly, the timestamps for different variables
are closely synchronized, reducing the introduction of noise that often occurs during data
alignment processes. This synchronization enhances the model’s capability to detect subtle
nuances in PM fluctuations. However, it is crucial to recognize that such ideal circum-
stances are often unattainable in real-world situations. When modeling PM, which involves
integrating environmental data from different sources, requiring spatial and temporal data
alignment, a more extensive set of environmental factors is typically needed to achieve
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satisfactory model performance. This was demonstrated in the second study, where PM2.5
modeling incorporated complementary in situ and remote sensing approaches.

With the development of nationwide PM2.5 models in the second study, a diverse array
of predictor variables was harnessed. This included high-temporal AOD data derived from
the GOES-16 geostationary satellite, meteorological variables sourced from the ECMWF,
ancillary data gathered from various external sources, location-specific solar angles, and re-
analysis data related to AOD and air pollutant gases, obtained from the MERRA-2 database.
The model training process was stratified into categories based on the inclusion of feature
variables and the sources of ground observations of PM. As noted above, these variables
originate from disparate sources, each characterized by distinct coordinate systems and
temporal resolutions. To align these datasets, a linear interpolation method was applied,
albeit with noticeable consequences on model performance. Interestingly, the model that
incorporated all available feature parameters and utilized data from all sources of PM
observation exhibited the most favorable performance, particularly in terms of R values, in
the context of the nationwide PM2.5 modeling. In particular, among the most influential
variables that contributed to this performance were AOD, specific humidity, dew point
temperature, carbon monoxide, and carbon dioxide.

Based on the comparative analysis of models, it becomes evident that the inclusion of
auxiliary and MERRA-2 data as supplementary feature variables improves the accuracy
of the model, as reflected in higher R values. This augmentation helps to better discern
variations in PM2.5 concentrations with respect to both temporal and spatial dimensions.
Furthermore, the integration of environmental sensing data from the MINTS-AI platform,
although limited to a small number of sites within the Texas region, has a positive impact
on the precision of nationwide PM2.5 models. These findings underscore the potential
advantages of incorporating additional ground-based observations and their associated
data into PM modeling, as they contribute to improved model accuracy.

Although the increase in the R value for the national model resulting from the inte-
gration of MINTS environmental sensing data may not be substantial, due to the limited
number of MINTS sites located primarily in Texas, there is a discernible enhancement in
regional models with the inclusion of MINTS data. This observation suggests that PM2.5
exhibits intricate variations on a very fine spatial scale. To capture more nuanced features
or to achieve highly accurate PM2.5 estimates, it is imperative to expand the network of
ground sensing systems, ensuring an even distribution in a broader geographical area.

Using our analysis approach to reconstruct the fine-time resolution PM2.5 distribution
across the entire United States for our study period, we found that the entire nation
encountered PM2.5 levels that exceeded 9 µg/m3 for more than 20% of the time of our
analysis period, with the eastern United States and California experiencing concentrations
exceeding 9 µg/m3 for over 50% of the time, highlighting the importance of regulatory
efforts to maintain annual PM2.5 concentrations below 9 µg/m3.
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