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Abstract: The spatial and temporal variations in the atmospheric CO2 concentrations evidently
respond to anthropogenic CO2 emission activities. NO2, a pollutant gas emitted from fossil fuel
combustion, comes from the same emission sources as CO2. Exploiting the simultaneous emissions
characteristics of NO2 and CO2, we proposed an XCO2 prediction approach to reconstruct XCO2 data
based on the data-driven machine learning algorithm using multiple predictors, including satellite
observation of atmospheric NO2, to resolve the issue of data gaps in satellite observation of XCO2.
The prediction model showed good predictive performance in revealing CO2 concentrations in space
and time, with a total deviation of 0.17 ± 1.17 ppm in the cross-validation and 1.03 ± 1.15 ppm
compared to ground-based XCO2 measurements. As a result, the introduction of NO2 obtained better
improvements in the CO2 concentration responding to the anthropogenic emissions in space. The
reconstructed XCO2 data not only filled the gaps but also enhanced the signals of anthropogenic
CO2 emissions by using NO2 data, as NO2 strongly responds to anthropogenic CO2 emissions
(R2 = 0.92). Moreover, the predicted XCO2 data preferred to correct the abnormally low XCO2

retrievals at satellite observing footprints, where the XCO2_uncertainity field in the OCO-2 and
OCO-3 products indicated a larger uncertainty in the inversion algorithm.

Keywords: XCO2; gaps; NO2; homologous emission; machine learning

1. Introduction

The increase in atmospheric carbon dioxide (CO2) has significantly enhanced global
climate warming [1], mainly caused by carbon emissions from human activities [2]. In
order to mitigate global warming, countries are adopting measures to reduce and control
their anthropogenic carbon emissions. Changes in atmospheric CO2 concentrations can be
used as an indicator to monitor the effects of anthropogenic CO2 emission reductions and
control [3,4], as well as to evaluate the impacts on natural ecological CO2 emissions due to
extreme climate change [5,6]. Thus, accurate data on atmospheric CO2 concentrations in
space and time can help us better understand the changing mechanisms of the atmospheric
CO2 concentration induced by anthropogenic CO2 emissions and natural effects to support
government decision-making policies for carbon emission reduction and control.

Satellite observations of atmospheric CO2 have been used to obtain global CO2 data
effectively, with the advantage of global and period coverage. Currently, the XCO2 (colum-
nar average of molar fractions of carbon dioxide in dry air) retrievals derived from CO2
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observation satellites such as the Greenhouse Gases Observing Satellite (GOSAT), GOSAT-
2, Orbiting Carbon Observatory-2 (OCO-2), and OCO-3 are available from 2009 [7–10].
These XCO2 retrievals, however, have numerous gaps in space and time due to the satellite
observation mode, cloudy or aerosol-contaminated conditions, data quality filtering, etc.
These gaps result in missing the fine-tuning changes of CO2 in space and time, making
it difficult to correlate the correspondence of CO2 changes with anthropogenic emissions.
A data-driven methodology, which is different from the model-based data assimilation
method, was developed in this research to fill the gaps and reconstruct satellite-observed
XCO2 data.

Applying the geo-statistics of satellite XCO2 retrievals in space and time, some studies
have developed a gap-filling method [11,12]. Global spatio-temporal XCO2 datasets in a
1-degree grid over three-day or monthly periods from 2009 have been generated using
GOSAT, GOSAT-2, OCO-2, and OCO-3 [13] and have been released in the HARVARD
Dataverse [14]. The feasibility and reliability of these datasets have been verified by
comparing them with the ground-based measures (The Total Atmospheric Carbon Column
Observation Network, TCCON), cross-validation methods, and application analyses to
reveal changes in CO2 concentrations corresponding to anthropogenic emissions [15]
and extreme climate change. The spatial resolutions of data generated by this method
greatly depend on the number of XCO2 retrievals; the more XCO2 retrievals, the higher
the spatial resolution. It has been found that this method can only generate data with a
resolution of 0.5 degrees when using the available observation data from a single GOSAT,
or a combination of GOSAT, OCO-2, and OCO-3, in order to guarantee the accuracy of the
filled gaps and the reliability of the generated spatio-temporal data [16].

Recently, machine learning (ML) and deep learning methodologies for fusing multi-
source data have been developed to reconstruct high-resolution XCO2 data in space and
time, driven by the increase in satellite observations that directly or indirectly capture
changes in CO2. Algorithms such as Light Gradient-Boosting Machine (LGB), GWNN-
GWT, CatBoost (CatB), Random Forest (RF), and Multi-Layer Perceptron (MLP) have been
applied to develop XCO2 predictive models using satellite-observed CO2 as the target
variable and the multiple parameter data from multisource observations and measure-
ments as predictor variables [17–20]. The choice of predictor variables strongly influences
the accuracy and effectiveness of ML methodology. Previous research has used predictor
variables such as NDVI, land use, population, meteorological reanalysis data, and model-
simulated CO2 data. However, parameters such as land use and population, suggested to
describe the anthropogenic emissions, may not effectively interpret dynamic CO2 emission
activity, especially from constantly changing point sources. Furthermore, previous research
lacks clarity on the extent to which raw XCO2 retrievals at the footprints are modified after
being recomputed based on the ML model and whether the reconstructed XCO2 accurately
reflects responses to anthropogenic CO2 emissions.

Atmospheric NO2 concentration data, obtained from observations of Sentinel-5 Pre-
cursor/Tropospheric Monitoring Instrument (S5P/TROPOMI), have been widely used
in recent years to quantify anthropogenic CO2 emissions, as both NO2 and CO2 emitted
by human activity such as fossil fuel combustion originate from the same sources [21–24].
It has been shown that NO2 observations have the potential to provide much stronger
constraints to total annual fossil CO2 emissions [25–27]. NO2 emitted from a point source
can be sensitively detected with minimal background disturbance, as NO2 is a gas with
a short lifetime of only a few hours [28–30]. CO2, however, is a long-lived gas [31]. CO2
emissions from sources with weak signals of 1–4 ppm are overshadowed by background
levels exceeding 400 ppm, making it difficult to detect enhancements in CO2 emissions
with the existing signal-to-noise ratios of sensors in satellites. The magnitude of NO2
columns is generally much larger than background levels around the emitting source,
making it a suitable tracer for CO2 emissions and capable of characterizing anthropogenic
emissions. Therefore, NO2 can be used as a tracer for CO2 emissions, and previous research
has demonstrated the effectiveness of simultaneously using satellite observations of NO2
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and XCO2 to detect anthropogenic CO2 emissions [32]. Using NO2 as a proxy for fossil
CO2 allows for the quantification of anthropogenic emissions and distinguishes them from
biogenic sources of CO2 [33,34].

China is a country with high CO2 emissions and heavy air pollution due to rapid
economic development. Anthropogenic CO2 emissions in China are spatially and inhomo-
geneously distributed, with a significant concentration in the eastern region characterized
by high population density, numerous large cities, and industrial enterprises. Evidence
of satellite-based CO2 observations strongly correlating with satellite-based NO2 observa-
tions have been demonstrated in this area [14]. The Chinese government has been taking
measures to reduce carbon emissions and put forward clear time programs for emissions
reduction and has outlined clear timelines for emission reduction and control to contribute
to the mitigation of global climate warming [35–37]. Synergistic analysis of satellite-based
CO2 and NO2 could enhance our ability to better monitor the effects of emissions reduction.

Focusing on the effectiveness of predictors and reconstructed XCO2 based on ML, as
described above, we introduced NO2 data as one of the predictor variables. Our study area
was the Chinese mainland, and we developed an ML-based method to reconstruct XCO2
data from the satellite observations using multiple sources of data. We assessed the per-
formance of reconstructed XCO2 and the contribution and effect of NO2 in reconstructing
XCO2 for the quantification of anthropogenic emissions and differentiation from biogenic
sources of CO2. Additionally, we analyzed the co-variation of NO2 and CO2 in response to
the dramatic reduction in anthropogenic CO2 emissions in a special scenario.

2. Materials and Methods
2.1. Data Used for Reconstructing XCO2

The signals of atmospheric CO2 observed by satellites mainly originate from anthro-
pogenic CO2 emissions, CO2 uptake and emissions (fluxes) from land ecosystems, and
atmospheric transmission fluxes over the target area. We collected parameter data sig-
nificantly related to these sources CO2 [38–41], along with XCO2 retrievals derived from
OCO-2 and OCO-3 observations from January 2019 to December 2022 in the study area, as
shown in Table 1.

Table 1. Summary table of the multisource data used.

Acronym Parameter Source
Resolution

Product
Space Time

fp-XCO2 XCO2 retrievals OCO-2 2.25 km × 1.29 km 16 days OCO-2
_L2_Lite_FP_11r

OCO-3 2.25 km × 1.29 km 16 days OCO-3
_L2_Lite_FP_10.4r

NO2 Atmospheric NO2 column TROPOMI-S5P 0.01◦ Monthly Sentinel-5P OFFL NO2: Offline
Nitrogen Dioxide

NDVI Normalized-difference
vegetation index MODIS 0.05◦ Monthly MOD13C2

D2M 2 m dewpoint temperature ERA5—
fifth-generation ECMWF
atmospheric reanalysis

0.1◦ Monthly Complete ERA5 global
atmospheric reanalysis

T2M 2 m temperature
U10 10 m U-wind component
V10 10 m V-wind component

MXCO2 Mapping XCO2

Mapped geostatistical
method using XCO2

retrievals
0.5◦ Monthly

Global land 0.5◦ mapping XCO2
dataset using satellite

observations of GOSAT, OCO-2,
and OCO-3 from 2009 to 2022

T-XCO2 Ground-based XCO2 data TCCON Point - TCCON data from Hefei (PRC)

The XCO2 retrieval data were collected from the OCO-2 XCO2 (OCO-2_L2_Lite_FP
11r) and OCO-3 XCO2 (OCO-3_L2_Lite_FP 10.4r) data products from August 2019 to
December 2022. According to the threshold settings of the variables land_fraction < 90
and XCO2_quality_flag = 0 in the raw satellite observation data file, the land area and data
quality were filtered, respectively, and only land area and high-quality XCO2 data were
used for the analysis. The XCO2 retrievals were derived from CO2 sounder observations on
the Orbiting Carbon Observatory-2 (OCO-2) satellite (launched in 2014) and the Orbiting
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Carbon Observatory-3 (OCO-3) satellite (launched in 2019). The XCO2 data products
were generated by the Atmospheric CO2 Observations from Space (ACOS) XCO2 retrieval
algorithm, which is an all-physical algorithm and has been filtered through recommended
data screening and bias-corrected XCO2 in the Lite files. The retrieval algorithm exhibited a
significant regional bias, i.e., the surface pressure was incorrectly estimated in areas of high
topographic variability, leading to a more significant bias (~1 ppm) [42]. Cloud-disturbed
errors persist in the OCO-2 data, as noted by Massie et al. [43]. The deviation between the
bias-corrected XCO2 data and the Total Carbon Column Observing Network (TCCON) is
0.78 ± 1.14 ppm. Additionally, the temporal and spatial coverage of the observation data
was not continuous, and there were many blank areas due to limitations of clouds and
observation modes.

We collected three-level OFFL NO2 data products in the study area from January
2019 to December 2022 through the GEE platform. The raw NO2 observations were ob-
tained from the Copernicus Ecosystem’s Sentinel-5 Precursor observation satellite, a global
atmospheric pollution monitoring satellite launched on 13 October 2017, which carries
the Tropospheric Monitoring Raster Spectrometer (TROPOspheric Monitoring Instrument
(TROPOMI). Compared with previous remote-sensing instruments for monitoring at-
mospheric composition, the technical characteristics of the TROPOMI sensor have been
greatly improved, with the signal-to-noise ratio increased by a factor of 1 to 5 [44]. The
high temporal and spatial resolution and high-precision data observed by TROPOMI
can be used to study urban-scale air pollution conditions and air quality monitoring for
major events, providing a scientific data basis for policy decisions related to pollution
emissions [23,45–47]. TROPOMI inverts atmospheric NO2 data using Differential Opti-
cal Absorption Spectroscopy (DOAS) in the UV–Vis spectral band. The data processing
system is based on the DOMINO-2 product and the Ozone Monitoring Instrument (OMI)
EU QA4ECV NO2 reprocessing dataset, and the algorithm is further optimized with the
inversion–assimilation–modeling algorithm that uses the TM5-MP chemical transport
model at a 1◦ × 1◦ resolution in the global three dimensions as the basic element [44]. Since
October 2018, the Copernicus ecosystem has provided NO2 data through three Level 2
data products including Near Real-Time (NRTI), Offline (OFFL), and Reprocessing (RPRO).
Some of these products may have undergone multiple processing iterations, potentially
resulting in improved data quality but delayed availability. Since Level 2 data products
are generated on a per-orbit basis, further processing is required for areas where scanned
orbits are repeatedly observed. Google Earth Engine (GEE) provides Level 3 data products
with a spatial resolution of 1.1132 km, derived from Level 2 data that undergo screening
for quality and grid-based reprocessing. The satellite-observed NO2 data are the total
vertical column concentration in mol/m2. Since the effect of data observation noise can
lead to negative observations in the clean region, only anomalous observations below
−0.001 mol/m2 need to be removed, as recommended in the data description document.
In this study, monthly-averaged atmospheric NO2 data were calculated for the study area
using the GEE platform for online processing, converted to common units of molec/cm2

by a multiplication factor of 6.02214 × 1019, and the spatial resolution was standardized to
a 0.01◦ grid for use in this study.

We collected normalized vegetation index (NDVI) and ECMWF Reanalysis v5 (ERA5)
data during the same period as the XCO2 data, which were used as predictors to account
for the effects of the vegetation ecological system and atmospheric transport on the at-
mospheric CO2 concentrations. NDVI, obtained by the Moderate Resolution Imaging
Spectroradiometer (MODIS), can account for the CO2 uptake and release of the vegetation
ecological system. The seasonal variation in NDVI, caused by vegetation CO2 uptake and
release, results in seasonal variations in the CO2 concentration [48,49]. Meteorological
data, including T2M (2 m temperature), D2M (dew point temperature), U10 (10 m U-wind
fraction), and V10 (10 m V-wind fraction) were obtained from the ERA5 data. These data
were derived from the fifth generation of the reanalysis climatic dataset of the European
Centre for Medium-Range Weather Forecasts (ECMWF).
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Mapping-XCO2 (MXCO2), was used to constrain the global variation in XCO2 as one
of the predictors in modeling XCO2 prediction using ML. MXCO2, which represents spatio-
temporally continuous XCO2 data, was generated through geo-statistical analysis of the
XCO2 retrievals in space and time obtained from multiple satellite observations, including
GOSAT (April 2009 to August 2014), OCO-2 (September 2014 to December 2020), and OCO-
3 (August 2019 to December 2022). This dataset is available on the HARVARD Dataverse
(https://dataverse.harvard.edu/, accessed on 17 August 2021) [14]. The Mapping-XCO2
dataset, which exhibited a −0.29 ± 1.04 ppm deviation compared to the TCCON, enabled
examination of temporal and spatial changes at global and regional scales [50,51].

The ground-based XCO2 data released from 2019 to 2022 from Hefei station (117.17◦E,
31.9◦N) in China, which is in the Total Atmospheric Carbon Column Observation Network
(TCCON) [32,52] (https://tccon-wiki.caltech.edu/, accessed on 12 May 2021), were used
to validate the accuracy of the reconstructed data by the predictive model. TCCON data,
an atmospheric CO2 column concentration derived by ground-based Fourier Transform
Spectrometer (FTSE) observations, have been widely used to validate greenhouse gas
products from space-based observations.

2.2. Methodology

The modeling XCO2 prediction at spatio-temporal location i can be expressed as
follows using the NO2 data in addition to the other parameter variables.

XCO2[i] = f(NO2[i], NDVI[i], T2M[i], D2M[i], U10[i], V10[i], MXCO2[i], T[i]) (1)

where f represents the function obtained by the ML algorithm based on the training data.
XCO2[i] is the predicted XCO2 by model f at spatio-temporal location i; the variables, in-
cluding NO2[i], NDVI[i], T2M[i], D2M[i], U10[i], V10[i], MXCO2[i], and T[i], are the predictors
of the spatio-temporal constrain fields for the atmospheric CO2 concentration. Among the
predictive parameters, D2M and T2M denote the 2 m dew point temperature and 2 m air
temperature, respectively, elucidating the impact of meteorological temperature conditions
on the atmospheric CO2 concentration [53]. NO2 serves as an indicator of anthropogenic
CO2 emissions, stemming from the same sources [24]. TimeIndex represents timestamps
expressed in 1–12 corresponding to the current month, which was used to capture the
temporal seasonal variation in the CO2 concentration. NDVI represents physical quantities
of the normalized-difference vegetation index, which is used to characterize CO2 uptake
and emissions by surface vegetation ecosystems [54]. U10 and V10 represent the physical
quantities of the 10 m U-wind component and V-wind component, which are used to
characterize the transport effects of the atmospheric wind field [53]. Additionally, MXCO2
represents the spatio-temporal continuum of atmospheric XCO2, serving as a constraint on
the overall spatial distribution [14].

The framework for refining XCO2 characteristics in space and time using simultane-
ously emitted NO2 alongside CO2, as shown in Figure 1, includes ML-based reconstruction
of XCO2 data and assessment of the NO2 field constraint to modeling CO2.

2.2.1. Modeling XCO2 Prediction and Reconstructing XCO2 in Space and Time

We built an XCO2 prediction model by co-locating the fp-XCO2 as the Y variable with
the predictor variables as the X variable, including NO2, NDVI, T2M, D2M, U10, V10,
MXCO2, and TimeIndex in Equation (1).

The training samples used for modeling XCO2 predictions are especially critical, as the
type of predictor variables and their spatial scale greatly influence the modeling accuracy
and the performance of the predicted XCO2. In addition to incorporating NO2, we applied
MXCO2 data generated through mathematical geostatistics of the XCO2 retrievals rather
than simulated XCO2 such as CarbonTracker, as carried out by other researchers [17].
This approach aims to constrain the spatio-temporal relationship of XCO2, relying on a
data-driven method that identifies a mathematical (constraining) relationship between
observations of XCO2 from OCO satellites and multiple parameters. MXCO2 demonstrates

https://dataverse.harvard.edu/
https://tccon-wiki.caltech.edu/
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the spatio-temporal relationships among the XCO2 retrievals and addresses gaps in satellite
observations through mathematical geostatistical methods [13,14].
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We assessed the predictive effects of model training data at different scales of a 0.5◦

grid that is the same as MXCO2 and a 0.1◦ grid that is the same as the reconstructed XCO2
grid using four ML algorithms, CatB, LGB, MLP, and LSTM, respectively. The results
showed that both 0.5◦ and 0.1◦ training data without MXCO2 demonstrated much lower
prediction accuracy than did those with MXCO2 via cross-validation for all ML algorithms,
indicating that MXCO2 can help constrain the spatial relationship of XCO2 during model
training. Furthermore, XCO2 predictions from the 0.5◦-grid training data demonstrated
higher accuracy than those from the 0.1◦-grid training data, because resampling MXCO2
to a 0.1◦ grid within a 0.5◦ grid could result in the loss of spatio-temporal characteristic
information due to the smoothing of scale-up resampling.

As a result of the training data analysis above, we generated a dataset consisting of a
set of co-located fp-XCO2 and predictors (NO2, NDVI, T2M, D2M, U10, V10, and MXCO2)
from the years 2019 to 2022 in a 0.5◦ grid/month unit. We then split it into two parts;
one is 10% of this dataset, which was randomly extracted as a cross-validation dataset,
while the remaining data were used as the training dataset for modeling XCO2 predictions
(hereinafter referred to as the T-dataset).

Additionally, we detrended the impact of background on XCO2 (hereafter referred to
as dXCO2) by subtracting the monthly average values of the entire XCO2 dataset in the
study area for the XCO2 in values in both the T-dataset and P-dataset. This step removed
effects from the background due to the atmospheric transportation and the accumulations
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of CO2 over a long lifetime. Lastly, the XCO2 predictions were calculated for each grid by
adding the predicted dXCO2 value to the background trend value used in the same month.

We assessed the performance of the ML algorithms, including CatB, LGB, MLP, and
Long Short-Term Memory (LSTM), which have been proven more effective for nonlinear
prediction. CatB and LGB are decision tree models, while MLP and LSTM are neural
network models. After parameter testing and tuning, the optimal parameter settings for
each model are shown below. The CatB model had 10,000 iterations and a learning rate
of 0.001. The LGB model had 500 leaf nodes, a model depth of 8, and a learning rate of
0.001. The MLP model had (64, 32, 8) hidden neurons and a learning rate of 0.001. The
LSTM model had 50 hidden neurons and a learning rate of 0.001. As a result, the predic-
tions by CatB significantly outperformed those of LGB, MLP, and LSTM through model
cross-validation, demonstrating reasonable performance in predicting XCO2 in both space
and time. CatB showed the smallest deviation from fp-XCO2, which is 0.17 ± 1.17 ppm
(R2 = 0.81), while LGB, MLP, and LSTM showed deviations of 0.21 ± 1.18 ppm
(R2 = 0.79), 1.49 ± 3.18 ppm (R2 = 0.47), and 1.03 ± 2.16 ppm (R2 = 0.58), respectively
(see Figure A1). Specific comparative validation screenings of the model results are out-
lined in the Discussion section. Therefore, we applied CatB for modeling XCO2 predictions
to reconstruct XCO2.

2.2.2. Evaluation of Reconstructed XCO2 and Effects of NO2 Constraints

The multiple predictor variable data (NO2, NDVI, T2M, D2M, U10, V10, and MXCO2)
in Equation (1), each with different spatial and temporal resolutions as shown in Table 1,
were integrated into the dataset at a resolution of 0.1◦ grid/month unit for each variable
from the years 2019 to 2022 (hereinafter referred to as the P-dataset). This integration was
achieved through resampling, where those variables with a resolution of less than 0.1◦ in
the grid were averaged within each grid for each variable, and MXCO2 was resampled
using the nearest-neighbor method.

XCO2 was predicted using the XCO2 prediction model built previously with the P-
dataset and reconstructed XCO2 data at a resolution of 0.1◦/month from 2019 to 2022, as
shown in Figure 1.

The accuracy and performance of the reconstructed XCO2 were implemented through
three methods, namely, model cross-validation, ground-based observed XCO2, and analysis
of the predictor’s contribution and co-response of NO2 and CO2 to anthropogenic emissions,
as well as the effects of NO2 for disentanglement from biogenic sources of CO2.

We extracted ground-based XCO2 data from the TCCON site in Hefei, obtained
between 12:00 and 14:00 around the local observation time of OCO series satellites (13:30),
and calculated monthly averaged values (hereafter referred to as T-XCO2). The paired
data of the co-located predicted XCO2 and T-XCO2 were used to calculate three metrics,
the coefficient of determination (R2), the root mean square error (RMSE), and the mean
absolute percentage error (MAPE), using the following equations to evaluate the accuracy
of the predicted XCO2.

The coefficient of determination, R-squared (R2), was calculated by Equation (2), where
a value closer to 1 indicates a better fit of the model.

R2 = 1 − ∑
(
Yi − Ŷ

)
∑
(
Yi − Y

) (2)

The formula for the root mean square error (RMSE) and mean absolute prediction
error (MAPE) are as follows, respectively:

XRMSE =

√
∑N

i=1
(
Yi − Ŷi

)2

N
(3)

XMAPE =
100%

N ∑N
i=1

∣∣∣∣Yi − Ŷi

Y

∣∣∣∣ (4)
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where Yi is the observed value, Ŷ is the model predicted value, Y is the mean of the
observations, and N is the number of samples.

We applied the SHAP (Shapley Additive exPlanations) method to assess the contri-
bution of predictor variables to the XCO2 predictions and to explore the contribution of
NO2 co-emitted with fossil CO2 during combustion, along with the co-variation of NO2
and CO2 in response to anthropogenic CO2 emissions through clustering analysis. Cluster-
ing analysis of the spatio-temporal characteristics of NO2 can demonstrate the emission
intensity in clustered area units, thereby integrating different chemical processes of NO2
and CO2 in the atmosphere. This approach allows us to investigate the co-variation of NO2
and XCO2 in response to anthropogenic CO2 emissions by statistically analyzing clustered
areas, which helps avoid the effects of chemical processes in NO2 and CO2. The clustering
analysis of NO2 data at a resolution of 0.1◦/month from the years 2019 to 2022 classified
the study area into 14 categories using the K-means method.

3. Results
3.1. Model Prediction Accuracy and Performance of the Reconstructed XCO2
3.1.1. Accuracy of the XCO2 Predictions

Figure 2 demonstrates the predicted XCO2 from the CatB-based built predictive model
compared to both the satellite-based fp-XCO2 and the ground-based observed XCO2.
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Figure 2. Validations of the model predicting XCO2 through (a) cross-validation and (b) comparison
with T-XCO2.

The results from the cross-validation, as shown in Figure 2a, demonstrate that the R2,
RMSE, and MAPE of the XCO2 predictions compared with the fp-XCO2 are 0.81, 2.26 ppm,
and 0.38, respectively, with a total deviation of 0.17 ± 1.17 ppm. The model’s predicted
XCO2 tended to be higher than the satellite-observed XCO2 in the low-value range of
fp-XCO2, which implies that the model predictions increase those low XCO2 retrievals
mostly in the areas without anthropogenic emissions or irregular values. The validation
of the predicted XCO2 against T-XCO2, shown in Figure 2b, demonstrates R2, RMSE, and
MAPE values of 0.79, 1.52 ppm, and 0.29, respectively. The total deviation of the predicted
XCO2 was 1.03 ± 1.15 ppm, similar to the deviation of the co-located fp-XCO2 and TCCON
site, which was 0.89 ± 1.23 ppm.
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3.1.2. Performance of the Model Predictions

We applied the XCO2 prediction model constructed by the CatB algorithm and T-
dataset to generate an XCO2 dataset at a resolution of 0.1◦ grid/month, denoted as Cm-
XCO2, from 2019 to 2022 using the predictor dataset from 2019 to 2022. Figure 3 shows
the averaged values for each grid calculated from the model-predicted XCO2, as well as
the original satellite-observed XCO2 values within the 0.1◦ grid. The model-predicted
XCO2 exhibited significantly finer spatial features and appeared more reasonable than the
original satellite XCO2 retrievals, particularly evident in the resolution of anomalous high
XCO2 in the southern region, and the western Taklamakan Desert in the original satellite
observations in the study area.
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Figure 3. Spatial distribution of the mean XCO2 values in the study area. (a) Predicted XCO2

(Cm-XCO2) and (b) fp-XCO2 for each 0.1◦ grid.

We assessed the impact of model prediction on the original satellite-observed XCO2
(fp-XCO2) that was re-calculated by the predicting model comparing the co-located fp-
XCO2 and Cm-XCO2. Figure 4 shows a diagram, histogram, and the difference of the
co-located Cm-XCO2 and fp-XCO2, along with a comparison with the posterior uncertainty
in the XCO2 algorithm released in L2 product data [55].

It can be found from Figure 4a,b that the model predicting XCO2 narrowed the range
of fp-XCO2 values from 399.06–428.67 ppm to 403.04–424.14 ppm within the cumulative
frequency range of 5–95%. The low fp-XCO2 values of 395–402 ppm were enlarged to
403–417 ppm using the predictive model, occurring mostly in mountainous areas with
highly undulating terrain along the edge of the Tibetan Plateau, as shown in Figure 4c. Here,
the differences between Cm-XCO2 and fp-XCO2 ranged from 1 to 4 ppm. It is known that a
CO2 concentration of less than 400 ppm is unreasonable since 2019 according to the global
CO2 background concentration (see Figure A2), where the minimum of CO2 concentration
was 408 ppm in 2019, as observed the from ground-based XCO2 measurements from the
TCCON station in Hefei shown in Figure 2b.
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retrieval data products derived by the OCO L2 algorithm [56] over the edge of the Tibetan 
Plateau, respectively, which has higher elevation and topographic variations. This is likely 
because the sharp variations in elevation in the undulating terrain result in anomalous 
values of fp-XCO2. Currently, the remaining uncertainties in XCO2 retrievals may indicate 

Figure 4. Effects of the predictive model for the original satellite-observed XCO2 (fp-XCO2) that was
re-calculated using this model. (a) Comparison of the co-located fp-XCO2 and Cm-XCO2 based on
the monthly averages of the XCO2 retrievals within a 0.1◦ grid from 2019 to 2022. (b) Histograms of
the co-located fp-XCO2 and Cm-XCO2. (c) Mean difference between the co-located Cm-XCO2 and
fp-XCO2 between 2019 and 2022 in the study area. (d) Mean posterior uncertainty in XCO2 from the
L2 product algorithm.

Additionally, comparing Figures 4c and 4d reveals that the large differences between
Cm-XCO2 and fp-XCO2 correspond to large posterior uncertainty in the XCO2 retrieval
data products derived by the OCO L2 algorithm [56] over the edge of the Tibetan Plateau,
respectively, which has higher elevation and topographic variations. This is likely because
the sharp variations in elevation in the undulating terrain result in anomalous values of
fp-XCO2. Currently, the remaining uncertainties in XCO2 retrievals may indicate large
biases, especially in regions with large topographic variations [54]. Therefore, the recon-
structed XCO2 for these abnormally low values of fp-XCO2, by constraint computation
of XCO2 through the ML of the multiple variables, rectified these XCO2 retrievals with
large uncertainties, which could be induced by the uncertainty of input parameters in the
algorithms of XCO2 retrievals [55].

The high values of fp-XCO2 ranged from 422 to 430 ppm, which are currently unrea-
sonable, as the Global Atmosphere Watch Programme (GAW) global background station
located in Waliguan, Qinghai, China, observed that the atmospheric CO2 concentrations
peaked at 419.3 ppm in 2022 [57]. These high values are predicted to be reduced to low
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values ranging from 415 to 420 ppm in Cm-XCO2, mostly in eastern areas with differences
ranging from −2 ppm to −3 ppm.

3.2. Co-Variation of CO2 and NO2 to Anthropogenic CO2 Emissions
3.2.1. NO2 Constraints Enhancing the XCO2 Response to Anthropogenic Emissions

The larger the SHAP value of a predictor variable, the greater its contribution to
the model prediction. The contribution of an individual variable is ranked in order of
contributions by the average SHAP value, as shown in Figure 5. This is defined as the
average of the absolute SHAP value (in ppm) and the standard deviation calculated from
the training data from 2019 to 2022.
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Figure 5. Contribution of the predictor variables in modeling XCO2 using the CatB algorithm.

The results of the SHAP values show that D2M, NO2, and TimeIndex significantly
contributed to modeling XCO2 predictions much more than the other variables. The largest
contributor, D2M, and third-largest, TimeIndex, are likely significant because the distinct
seasonal variation in CO2 is strongly impacted by CO2 uptake and release in terrestrial
ecosystems, which generally depend on temperature and water vapor, as explained by
D2M and monthly time. The contribution of the vegetation index NDVI was low, ranking
second from the bottom. The spatial NDVI demonstrated the different seasonal variations
in CO2 absorption capacity over various land surfaces with different vegetation and non-
vegetation densities. Wind can result in CO2 flowing in space, diminishing the CO2 signals
in the atmosphere from CO2 fluxes of land ecosystem surfaces [19].

NO2 ranked second in the contribution of multiple variables to modeling XCO2 predic-
tion. NO2, a pollutant gas emitted from fossil fuel combustion, strongly affects the modeling
of XCO2 prediction due to its co-emission with CO2. NO2 showed the strongest linear rela-
tionship with Cm-XCO2 (R2 = 0.57) among the predictor variables (see Figure A3), while D2M
and NDVI showed a nonlinear relationship with Cm-XCO2. Furthermore, we investigated
the co-variation of NO2 and XCO2 in relationship to anthropogenic CO2 emissions.

NO2, as a tracer of CO2 emissions from fossil fuel combustion, can constrain the
predictive model to enhance the information on CO2 from the anthropogenic emissions. The
spatial distribution of NO2, as shown in Figure 6a, generally aligned with the anthropogenic
CO2 emissions (Figure 6b), and the hotspots of emissions demonstrated the spread of high
NO2 concentrations. NO2 showed a strong response to the anthropogenic CO2 emissions
with an R2 of 0.92, as shown in Figure 6c, when calculating their correlation between NO2
and EDGAR emissions using the averaged values of the grids within each clustered area
derived from the spatio-temporal clustering analysis of NO2 data. This result implies
that NO2, as a predictor variable, could strengthen the response to anthropogenic CO2
emissions in modeling XCO2 predictions. The predicted XCO2 for those locations of the
satellite-observed XCO2 (fp-XCO2) showed an R2 of 0.79 with the co-located anthropogenic
emission, which is higher than the R2 of fp-XCO2 (R2 = 0.66). Here, the CO2 response to
anthropogenic emissions (66–79%) was lower than that of NO2 (92%), reasonably indicating
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that atmospheric CO2 still includes natural emissions from land ecosystems and transported
CO2 fluxes.
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Figure 6. The relationship between NO2 and anthropogenic CO2 emissions from EDGAR from 2019
to 2022. (a) Annual mean atmospheric NO2 concentration. (b) Annual mean anthropogenic CO2

emissions (2019–2022). (c) NO2 and XCO2 response to anthropogenic CO2 emissions from EDGAR
calculated based on the averaged values of the grids within each clustered area derived from the
spatio-temporal clustering analysis of NO2 data.

The relationship between the co-located NO2 and fp-XCO2 reached up to 0.74 based
on the clustered areas, compared with the calculations based on the grids (R2 = 0.57 in
Figure A3b). The clustered areas derived from the spatio-temporal clustering analysis of
NO2 data smoothed the impacts of different spreads and lifetimes between NO2 and CO2
in the grid by averaging said grids for each clustered area. The strong correlations between
the predicted XCO2 (Cfp-XCO2 and Cm-XCO2) and NO2, with R2 values of 0.86 and 0.92,
respectively, as shown in Figure 7, indicated that NO2, as one of the predictors, can constrain
XCO2 in modeling XCO2 predictions. This is consistent with Emily G. Yang et al.’s suggestion
that the satellite-based NO2 can serve as a proxy species to constrain CO2 [34].
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3.2.2. Co-Response of NO2 and CO2 Concentrations to Anthropogenic Emissions under
Special Scenarios of Human Activity

The significant reduction in human activities during the 2020–2022 COVID-19 period
resulted in decreases in NO2 and CO2 from anthropogenic emissions [14]. We analyzed the
co-variation of CO2 and NO2 under this particular reduction in anthropogenic emissions
from 2019 to 2022 to find how NO2 and XCO2 synchronized in response to an abnormal
reduction in anthropogenic emissions. Based on the clustering results of the spatio-temporal
characteristics of the NO2 concentration and anthropogenic CO2 emissions in China, we
selected 13 regions of interest (ROIs) with high NO2 values and anthropogenic emissions,
as shown in Figure 8a. ROI1–ROI13 (referred to as R1–R13 in Figure 8) indicate Wuhan
(R1-Wuhan), Shanghai (R2-Shanghai), the Yangtze River Delta (R3-YRD), Beijing–Tianjin–
Hebei (R4-BTH), Xi’an (R5-Xian), Shanxi Coal Mining Belt (R6-ShanxiCoal), Jinan (R7-
Jinan), Chengdu–Chongqing (R8-ChengduC), Guangzhou (R9-Guangzhou), the strip west-
northwest of Urumqi toward Shihezi (R10-Wulumuqi), Yinchuan (R11-Yinchuan), the strip
south of Hohhot (R12-Huhehaote), and Shenyang (R13-Shenyang).
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Figure 8. Analysis of NO2 and XCO2 in regions of interest (ROIs) with (a) ROI locations where the
background map shows the clustering results of NO2 data from 2019 to 2022 and the legend presents
the 14 classes and averaged values of NO2 from 2019 to 2022 for each class to the left and right of
symbol, (b) yearly average values of ∆NO2 and ∆XCO2 (y-axis) for each ROI (x-axis) in the winter
(December–February) for the four years of 2019–2022, and (c) the relationship between NO2 and
XCO2, which is calculated by using 2019 yearly averages as contrasting values for each ROI in the
three years 2020, 2021, and 2022, respectively.

It is known that the maximum anthropogenic emissions generally occur in the winter
season when the XCO2 shows the largest enhancements [14]. Therefore, we calculated the
enhancement relative to the background value in the winter (December–February) for each
ROI (winter value in ROIs minus the winter average of the overall study area in the same
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year) for the four years from 2019 to 2022 (hereafter referred as to ∆XCO2 and ∆NO2), as
shown in Figure 8b. Figure 8b shows that both ∆NO2 and ∆XCO2, after 2019, ahead of the
COVID-19 outbreak and control, were lower than the values in the normal year of 2019
from R1 to R7, especially in R1-Wuhan in the eastern part of China, where ∆XCO2 was
around 3 ppm. These yearly changes clearly respond to the unexpected reduction of human
activity in 2020 and 2021 during the COVID-19 outbreak and control, with human economic
activity not returning to 2019 levels in 2022. The reduction in anthropogenic activity during
the COVID-19 period resulted in a decrease in ∆NO2 of 0.4–1.0 × 1016 molec/cm2 and in
∆CO2 of 0.5–1.7 ppm compared to 2019. The largest decrease in ∆CO2, 1.7 ppm, occurred
when emissions from human activity were minimized in Wuhan.

The ∆CO2 in R8–R13 were less than those of R1–R7, and the interannual variations
were also small due to a lesser impact from COVID-19. It should be noted that ∆NO2 in R10-
Urumqi presented the largest value among the ROIs abnormally, with the maximum value,
3.4 × 1016 molec/cm2, occurring in 2021, not in the normal year of 2019. The maximum
interannual difference was up to 75% during 2019–2022, while ∆CO2 did not present similar
changes to ∆NO2 correspondingly, with the maximum interannual difference being only
12%. This abnormal ∆NO2 was due to high emissions from many air-polluting enterprises
(mainly the coal and chemical industry and non-ferrous metals) that have been rapidly
increasing in recent years in this region, resulting in it having the worst air pollution in
China in recent years. The discrepancy, where the change in CO2 did not correspond to the
change in NO2, was likely caused by two reasons. One reason is probably due to the fossil
fuel combustion processes in these air-polluting enterprises, of coal chemical industry and
non-ferrous metal, in which NO2, the pollutant gas emitted by companies, has been rising,
while CO2 has reached its maximum. That is, the emitted CO2 does not respond to an
increase in emitted NO2 from these sources when NO2 emissions increase beyond a certain
level. Another reason is probably due to the uncertainties of XCO2 data; the aerosols, which
are one of the key input parameters in the XCO2 retrieval algorithm, likely introduced
large biases due to the heavy air pollution (see Figure 4d), even if the ML predictions (see
Figure 4c) modified some of their biases.

The extreme reductions in anthropogenic emissions in 2020 and 2021 impacted the
corresponding variation in NO2 and XCO2 when comparing NO2 and XCO2 in these two
years to the normal year 2019, as shown in Figure 8c. We found that the R2 in 2020 and
2021 (0.49–0.50) was less than in 2022 (0.63) when anthropogenic emissions had begun to
recover but not yet returned to 2019 levels. This implies that CO2 may inexactly respond to
NO2 changes in these extreme scenarios and during extreme NO2 events like R10-Urumqi.

Further, in contrast to 2019, the monthly differences between monthly values from 2020
to 2022 and the same month in 2019 showed that XCO2 inexactly responded to NO2 as well.
Figure 9 shows an example of these differences for R1-Wuhan, R2-Shanghai, R3-YRD, and
R4-BTH, where the fluctuations in human economic activities were the highest during the
COVID-19 period. Figure 9 shows a co-decrease in NO2 and XCO2 during the first period
of COVID-19, covering January–March of 2020, especially in R1-Wuhan, which experienced
an extreme reduction in human activities due to COVID-19. NO2 showed a decrease of
1.3 × 1016 molec/cm2 in February 2020, corresponding to a reduction of 1.4 ppm in XCO2.
The faint co-decrease in NO2 and XCO2 during the COVID-19 controlling period in April
2022 in R2-Shanghai is shown as well, with a decrease of 0.5 × 1016 molec/cm2 in NO2,
corresponding to a reduction of 0.5 ppm in XCO2.
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Figure 9. An example of differences between the monthly XCO2 and NO2 values from 2020 to 2022
and the same month in 2019 for R1-Wuhan, R2-Shngahia, R3-YRD, and 4-BTH, as well as the overall
study area.

XCO2 still demonstrated a yearly increase of, on average, 2.3 ppm from 2020 to 2022,
which implies that regional reductions in anthropogenic emission activities, such as in
China, cannot effectively mitigate the increase in CO2 globally. This means that to mitigate
further increase in CO2, global action is required.

4. Discussion

Considering that the prediction results of different machine learning algorithms differ,
we further compared the prediction performance of LGB, MLP, and LSTM. The results
showed that the prediction results of all three models were worse than CatB. The R2 and
total deviation of the cross-validation for the four models (CatB, LGB, MLP, and LSTM)
were 0.81, 0.79, 0.47, and 0.58, and 0.17 ± 1.17 ppm, 0.21 ± 1.18 ppm, 1.49 ± 3.18 ppm,
and 1.03 ± 2.16 ppm (see Figures 2 and A1), respectively. The predictions of CatB and
LGB, based on decision trees, were better than those of MLP and LSTM, based on neural
networks. LGB and LSTM generally presented overestimates, while MLP presented severe
underestimates (see Figures 3 and 10).
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These results are likely due to the fact that different machine learning algorithms
have different abilities to capture the features of multisource satellite observations. CatB,
and LGB are optimized algorithms based on the Gradient-Boosting Decision Tree (GBDT)
algorithm, which is the most widely used ML algorithm. GBDT applies weak classifiers
(decision trees) for training to obtain an optimal model iteratively, which has the advantages
of a good training effect and being hard to overfit. MLP and LSTM are forward-structured
artificial neural networks containing an input layer, an output layer, and several hidden
layers. The error backward propagation technique was employed to train the parameters
of the neural network model and is capable of handling nonlinear separable problems.

The total contribution of the model predictor parameters to the predictions (see
Figures 5 and 11) showed that the contribution of the predictor variables in MLP and
LSTM were 24.7%, 13.6%, 13.6%, 10.8%, 10.7%, 10.4%, 8.5%, and 7.7% (NDVI, NO2, MXCO2,
T2M, V10, U10, D2M, and TimeIndex) and 22.7%, 19%, 16.5%, 11.9%, 11.2%, 8%, 6.3%,
and 4.5% (TimeIndex, MXCO2, NO2, D2M, NDVI, T2M, V10, and U10), respectively. It
can be seen that NDVI and MXCO2 had unusually high contributions in MLP, as well
as TimeIndex and MXCO2 in LSTM, which led to significantly worse predictions in both
models. In addition, TimeIndex contributed a higher percentage in LGB and LSTM than
in CatB. As described in Section 2.2, for the physical significance and impact of the pre-
dicted parameters, overconsideration of the temporal increase in the atmospheric CO2
concentration leads to an overall overestimation of its predictions.
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5. Conclusions

The spatio-temporal discontinuities in the original satellite XCO2 observations and the
large number of data gaps make it difficult to accurately reveal the spatial and temporal
characteristics of the atmospheric CO2 concentration. We reconstructed satellite-observed
XCO2 data using multiple predictors, including satellite-observed NO2 with co-emissions
from the same sources based on a machine learning algorithm to generate spatially and
temporally continuous monthly XCO2 data from January 2019 to December 2022 in Chinese
regions. The accuracy of the ML predictive model and the effectiveness of introducing
NO2 to enhance the XCO2 response to anthropogenic emission activities were assessed
through the cross-validation, validation against TCCON observations, and comparison
with original satellite XCO2 retrievals.

The results showed that the predictive model had good predictive performance in
terms of revealing the spatial and temporal concentrations of CO2, with an R2 and total
deviations of 0.79, 0.17 ± 1.17 ppm, and 0.81, 1.03 ± 1.15 ppm, respectively, compared
to ground-based XCO2 measurements and model cross-validation. The reconstructed
XCO2 data not only fills in the gaps but also corrects the large uncertainties of the original
observations over areas with high elevation and steep terrain. The strong correlation of
NO2 with the anthropogenic CO2 emissions (R2 = 0.92), due to simultaneous anthropogenic
CO2 emissions, implies that the introduction of NO2 can enhance the anthropogenic
emissions information in the model-predicted XCO2 with R2 = 0.76, which is higher than the
R2 = 0.66 found for the raw satellite-observed XCO2.

The findings, by analyzing co-response variations of XCO2 and NO2 under special
anthropogenic emission scenarios during the COVID-19 control period of 2020–2022 in the
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study area, indicate a synchronized CO2 and NO2 response to the dramatic reduction in
anthropogenic activities; however, CO2 could incompletely respond to NO2 changes in the
case of overly heavy gas polluting scenarios. This XCO2 and NO2 co-response variation
mechanism to anthropogenic CO2 emissions needs further verification via practical CO2
and NO2 emissions measures.
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