A Study on the Object-Based High-Resolution Remote Sensing Image Classification of Crop Planting Structures in the Loess Plateau of Eastern Gansu Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data
2.3. Methodology
2.3.1. Canny Edge Detection
2.3.2. Image Segmentation
2.3.3. Optimal Segmentation Scale Estimation
2.3.4. Feature Factor
- (1)
- Spectral features (SPECs): Includes the mean of four bands of the visible spectrum, namely, the mean of the red band (Mean_R), the mean of the green band (Mean_G), the mean of the blue band (Mean_B), the mean of the near-infrared band (Mean_NIR), and the maximum difference value (Max_diff), the brightness value (Briahtness), and the Standard Deviation (Std) of different bands.
- (2)
- Texture features (GLCMs, GLDVs): Texture features refers to the spatial relationship between gray levels of adjacent pixels, which reflects a regional feature rather than that of a single pixel. It is determined by the distribution of a given pixel and its adjacent pixels. The most common methods for texture features include the Gray level co-occurrence matrix (GLCM) and the Gray level difference vector (GLDV). This paper selects the All dir GLCM Mean, GLCM Ent, GLCM Homo, GLCM Std, GLCM Dissim, GLCM Contrast, GLCM Ang. 2nd Moment and GLCM Corr, the all dir. GLDV and GLDV Mean, GLDV Ent, GLDV Contrast, and the GLDV Ang. 2nd Moment.
- (3)
- Geometric features (GEOMs): A total of 13 shape and scope features of objects, including their area, length/width, length, width, border length, the Shape Index, Density, Asymmetry, Roundness, the Boundary Index, compactness, Ellipse Fitting and Rectangle Fitting.
- (4)
- Index features (INDEs): Including the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), Red/Green ratio (Red/Green, R/G), and Ratio Vegetation Index (RVI).
2.3.5. Random Forest Classification
2.3.6. Convolutional Neural Network
2.3.7. Accuracy Evaluation
3. Results and Analysis
3.1. Segmentation Results Combined with Canny Edge Detection
3.2. Feature Factor Optimization
3.3. Object-Based Crop Classification Results
4. Discussion
4.1. Evaluation of the RF and CNN Model Results
4.2. Evaluation of the Effect of Combining Scale Segmentation with Feature Optimization
5. Conclusions
- (1)
- The multi-resolution segmentation that integrates the Canny edge detection algorithm helps improve the boundary integrity and separability of segmented objects. In addition, the best segmentation results of corn, buckwheat, wheat, and apples are obtained at the segmentation scales of 55, 35, 65, and 65, respectively.
- (2)
- The redundancy of feature factors for different crops has been greatly reduced after optimization. The best classification results are achieved by combining phenological feature factors with reference images of different crops.
- (3)
- The two classification models under the multi-level classification framework ensure high accuracy, with the RF model being overall superior to the CNN model. Future studies can focus on further refining the models and methods to improve the accuracy and applicability of crop classification.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Jia, X.; Qiao, J.; Shao, M. What Is the Mass of Loess in the Loess Plateau of China? Sci. Bull 2019, 64, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wei, W.; Chen, L.; Yang, L. The Joint Effects of Precipitation Gradient and Afforestation on Soil Moisture across the Loess Plateau of China. Forests 2019, 10, 285. [Google Scholar] [CrossRef]
- Li, C. Research of the Development of the Western Agriautural Industrization—Taking Qingyang City of Gansu Province as An Example. J. Northwest AF Univ. (Soc. Sci. Ed.) 2010, 10, 37–41. [Google Scholar] [CrossRef]
- Hu, Q.; Sulla-Menashe, D.; Xu, B.; Yin, H.; Tang, H.; Yang, P.; Wu, W. A Phenology-Based Spectral and Temporal Feature Selection Method for Crop Mapping from Satellite Time Series. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 218–229. [Google Scholar] [CrossRef]
- Ozdarici-Ok, A.; Ok, A.O.; Schindler, K. Mapping of Agricultural Crops from Single High-Resolution Multispectral Images-Data-Driven Smoothing vs. Parcel-Based Smoothing. Remote Sens. 2015, 7, 5611–5638. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of Crop Types and Crop Sequences with Combined Time Series of Sentinel-1, Sentinel-2 and Landsat 8 Data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Faqe Ibrahim, G.R.; Rasul, A.; Abdullah, H. Improving Crop Classification Accuracy with Integrated Sentinel-1 and Sentinel-2 Data: A Case Study of Barley and Wheat. J. Geovisualization Spat. Anal. 2023, 7, 22. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. [Google Scholar] [CrossRef]
- Yang, S.; Gu, L.; Li, X.; Jiang, T.; Ren, R. Crop Classification Method Based on Optimal Feature Selection and Hybrid CNN-RF Networks for Multi-Temporal Remote Sensing Imagery. Remote Sens. 2020, 12, 3119. [Google Scholar] [CrossRef]
- Wang, L.; Ma, H.; Li, J.; Gao, Y.; Fan, L.; Yang, Z.; Yang, Y.; Wang, C. An Automated Extraction of Small- and Middle-Sized Rice Fields under Complex Terrain Based on SAR Time Series: A Case Study of Chongqing. Comput. Electron. Agric. 2022, 200, 107232. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies. Remote Sens. 2020, 12, 2779. [Google Scholar] [CrossRef]
- Johnson, B.A. High-Resolution Urban Land-Cover Classification Using a Competitive Multi-Scale Object-Based Approach. Remote Sens. Lett. 2013, 4, 131–140. [Google Scholar] [CrossRef]
- Heumann, B.W. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree-Support Vector Machine Approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Murden, D. Evaluating High Resolution SPOT 5 Satellite Imagery for Crop Identification. Comput. Electron. Agric. 2011, 75, 347–354. [Google Scholar] [CrossRef]
- Mou, A.H.; Li, B.H.; Zhou, C.Y.; Zheng, D.Y.; Dong, E.R.; Cao, F.J. Estimating Winter Wheat Straw Amount and Spatial Distribution in Qihe County, China, Using GF-1 Satellite Images. J. Renew. Sustain. Energy 2021, 13, 013102. [Google Scholar] [CrossRef]
- Meng, S.; Zhong, Y.; Luo, C.; Hu, X.; Wang, X.; Huang, S. Optimal Temporal Window Selection for Winter Wheat and Rapeseed Mapping with Sentinel-2 Images: A Case Study of Zhongxiang in China. Remote Sens. 2020, 12, 226. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, S.; Li, W.; Zhang, C. Parcel-Level Mapping of Crops in a Smallholder Agricultural Area: A Case of Central China Using Single-Temporal VHSR Imagery. Comput. Electron. Agric. 2020, 175, 105581. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Chen, L.; Chen, S. Remote Sensing-Based Extraction and Analysis of Temporal and Spatial Variations of Winter Wheat Planting Areas in the Henan Province of China. Open Life Sci. 2018, 13, 533–543. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, J. Does the Rational Function Model’s Accuracy for GF1 and GF6 WFV Images Satisfy Practical Requirements? Remote Sens. 2023, 15, 2820. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Zhong, B.; Liu, Q.; Wu, S.; Ji, C.; Zhao, J.; Li, L.; Shi, X.; Yang, A. Integrated Vegetation Cover of Typical Steppe in China Based on Mixed Decomposing Derived from High Resolution Remote Sensing Data. Sci. Total Environ. 2023, 904, 166738. [Google Scholar] [CrossRef]
- Zhou, Q.; Yu, Q.; Liu, J.; Wu, W.; Tang, H. Perspective of Chinese GF-1 High-Resolution Satellite Data in Agricultural Remote Sensing Monitoring. J. Integr. Agric. 2017, 16, 242–251. [Google Scholar] [CrossRef]
- Xia, T.; He, Z.; Cai, Z.; Wang, C.; Wang, W.; Wang, J.; Hu, Q.; Song, Q. Exploring the Potential of Chinese GF-6 Images for Crop Mapping in Regions with Complex Agricultural Landscapes. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102702. [Google Scholar] [CrossRef]
- Su, T.; Zhang, S. Object-Based Crop Classification in Hetao Plain Using Random Forest. Earth Sci. Inform. 2021, 14, 119–131. [Google Scholar] [CrossRef]
- Karimi, N.; Sheshangosht, S.; Eftekhari, M. Crop Type Detection Using an Object-Based Classification Method and Multi-Temporal Landsat Satellite Images. Paddy Water Environ. 2022, 20, 395–412. [Google Scholar] [CrossRef]
- Li, J.; Shen, Y.; Yang, C. An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images. Remote Sens. 2021, 13, 65. [Google Scholar] [CrossRef]
- Du, X.; Zare, A. Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2741–2753. [Google Scholar] [CrossRef]
- Li, D.; Yang, F.; Wang, X. Study on Ensemble Crop Information Extraction of Remote Sensing Images Based on SVM and BPNN. J. Indian Soc. Remote Sens. 2017, 45, 229–237. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Penatti, O.A.B.; Nogueira, K.; Dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; pp. 44–51. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Kanda, F.; Kubo, M.; Muramoto, K. Watershed segmentation and classification of tree species using high resolution forest imagery. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Voume 6, pp. 3822–3825. [Google Scholar] [CrossRef]
- Wei, H.; Hu, Q.; Cai, Z.; Yang, J.; Song, Q.; Yin, G.; Xu, B. An Object-and Topology-Based Analysis (Otba) Method for Mapping Rice-Crayfish Fields in South China. Remote Sens. 2021, 13, 4666. [Google Scholar] [CrossRef]
- Shao, P. Study on Main Features Information Extraction Technology of High-Resolution Remotely Sensed Image Based on Multiresolution Segmentation. Master’s Thesis, Jilin University, Changchun, China, 2015. [Google Scholar]
- Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of Feature Selection on the Accuracy and Spatial Uncertainty of Per-Field Crop Classification Using Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 2013, 85, 102–119. [Google Scholar] [CrossRef]
- Chen, Z.; Jia, K.; Li, Q.; Xiao, C.; Wei, D.; Zhao, X.; Wei, X.; Yao, Y.; Li, J. Hybrid Feature Selection for Cropland Identification Using GF-5 Satellite Image. Natl. Remote Sens. Bull. 2022, 26, 1383–1394. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, M.; Du, J. Spatial and Temporal Variation Characteristics of Surface Humid Condition in Qingyang from 1981 to 2016. Chin. Agric. Sci. Bulletion 2019, 35, 101–106. [Google Scholar]
- Nolan, S.; Unkovich, M.; Yuying, S.; Lingling, L.; Bellotti, W. Farming Systems of the Loess Plateau, Gansu Province, China. Agric. Ecosyst. Environ. 2008, 124, 13–23. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian Grasslands Using Random Forest Feature Importance Selection during the Optimal Phenological Period. Ecol. Indic. 2022, 135, 108529. [Google Scholar] [CrossRef]
- Ghimire, P.; Lei, D.; Juan, N. Effect of Image Fusion on Vegetation Index Quality-A Comparative Study from Gaofen-1, Gaofen-2, Gaofen-4, Landsat-8 OLI and MODIS Imagery. Remote Sens. 2020, 12, 1550. [Google Scholar] [CrossRef]
- Saleh, M.A.; Ameen, Z.S.; Altrjman, C.; Al-Turjman, F. Computer-Vision-Based Statue Detection with Gaussian Smoothing Filter and EfficientDet. Sustainability 2022, 14, 11413. [Google Scholar] [CrossRef]
- Yu, H.; Gu, X.; Wang, S. The edge detection of river model based on self-adaptive Canny Algorithm and connected domain segmentation. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Yan, H.; Shao, X.Q. Object detection based on improved non-maximum suppression algorithm. J. Image 2018, 23, 1676–1685. [Google Scholar]
- Jiang, F.; Wang, G.; He, P.; Zheng, C.; Xiao, Z.; Wu, Y. Application of Canny Operator Threshold Adaptive Segmentation Algorithm Combined with Digital Image Processing in Tunnel Face Crevice Extraction. J. Supercomput. 2022, 78, 11601–11620. [Google Scholar] [CrossRef]
- Li, P.; Shi, T.; Zhao, Y.; Lu, A. Design of Threshold Segmentation Method for Quantum Image. Int. J. Theor. Phys. 2020, 59, 514–538. [Google Scholar] [CrossRef]
- Tab, F.A.; Naghdy, G.; Mertins, A. Scalable Multiresolution Color Image Segmentation. Signal Process. 2006, 86, 1670–1687. [Google Scholar] [CrossRef]
- Dian, Y.Y.; Fang, S.H.; Yao, C.H. Change detection for high-resolution images using multilevel segment method. J. Remote Sens. 2016, 20, 129–137. [Google Scholar]
- Drǎguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Ma, H. Object-Based Remote Sensing Image Classification of Forest Based on Multi-Level Segmentation. Master’s Thesis, Beijing Forestry University, Beijing, China, 2014. [Google Scholar]
- Zhang, J.; Wang, Y.; Li, Y.; Wang, X. An Object-Oriented Optimal Scale Choice Method for Heigh Spatial Resolution Remote Sensing Image. Sci. Technol. Rev. 2009, 27, 91–94. [Google Scholar]
- Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Rad, A.M.; Aghighi, H.; Radiom, S. A Novel Method for Automatic Potato Mapping Using Time Series of Sentinel-2 Images. Comput. Electron. Agric. 2020, 175, 105583. [Google Scholar] [CrossRef]
- Wang, M.; Fei, X.; Zhang, Y.; Chen, Z.; Wang, X.; Tsou, J.Y.; Liu, D.; Lu, X. Assessing Texture Features to Classify Coastal Wetland Vegetation from High Spatial Resolution Imagery Using Completed Local Binary Patterns (CLBP). Remote Sens. 2018, 10, 778. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, Y.; Zhang, M. Extract of Land Use/Cover Information Based on HJ Satellites Data and Object-Oriented Classification. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2017, 33, 258–265. [Google Scholar] [CrossRef]
- Fu, T.; Ma, L.; Li, M.; Johnson, B.A. Using Convolutional Neural Network to Identify Irregular Segmentation Objects from Very High-Resolution Remote Sensing Imagery. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106–154. [Google Scholar] [CrossRef]
- Uchida, K.; Tanaka, M.; Okutomi, M. Coupled Convolution Layer for Convolutional Neural Network. Neural Netw. 2018, 105, 197–205. [Google Scholar] [CrossRef]
- Fortuna-Cervantes, J.M.; Ramírez-Torres, M.T.; Mejía-Carlos, M.; Murguía, J.S.; Martinez-Carranza, J.; Soubervielle-Montalvo, C.; Guerra-García, C.A. Texture and Materials Image Classification Based on Wavelet Pooling Layer in CNN. Appl. Sci. 2022, 12, 3592. [Google Scholar] [CrossRef]
- Więckowska, B.; Kubiak, K.B.; Jóźwiak, P.; Moryson, W.; Stawińska-Witoszyńska, B. Cohen’s Kappa Coefficient as a Measure to Assess Classification Improvement Following the Addition of a New Marker to a Regression Model. Int. J. Environ. Res. Public Health 2022, 19, 10213. [Google Scholar] [CrossRef] [PubMed]
- An, B.; Zhang, B. Logistic Regression with Image Covariates via the Combination of L1and Sobolev Regularizations. PLoS ONE 2020, 15, e0234975. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Chen, J.; Liu, W.; Yang, W. Ship Classification and Detection Based on CNN Using GF-3 SAR Images. Remote Sens. 2018, 10, 2043. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y.; Canales Torres, M.A.; Taipe, C.L.R. Crop Classification of Upland Fields Using Random Forest of Time-Series Landsat 7 ETM+ Data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Yin, C. Fine Crop Classification Based on UAV Hyperspectral Images and Random Forest. ISPRS Int. J. Geoinf. 2022, 11, 252. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Feng, L.; Ma, Y.; Du, Q. A New Attention-Based CNN Approach for Crop Mapping Using Time Series Sentinel-2 Images. Comput. Electron. Agric. 2021, 184, 106090. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of Three Deep Learning Models for Early Crop Classification Using Sentinel-1A Imagery Time Series-a Case Study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, W.; Yu, J.; Zhang, H. Fine Classification of Urban vegetation based UAV images. China Environ. Sci. 2022, 42, 2852–2861. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep Learning for Time Series Classification: A Review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Mishra, C.; Gupta, D.L. Deep Machine Learning and Neural Networks: An Overview. IAES Int. J. Artif. Intell. (IJ-AI) 2017, 6, 66. [Google Scholar] [CrossRef]
- Zou, B.; Xu, X.; Zhang, L. Object-Based Classification of PolSAR Images Based on Spatial and Semantic Features. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2020, 13, 609–619. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Tonbul, H.; Yildiz Erdemir, M.; Colkesen, I. Dimensionality Reduction and Classification of Hyperspectral Images Using Object-Based Image Analysis. J. Indian Soc. Remote Sens. 2018, 46, 1297–1306. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, T.; Sun, Q.; Wang, H. Adaptive Fusion with Multi-Scale Features for Interactive Image Segmentation. Appl. Intell. 2021, 51, 5610–5621. [Google Scholar] [CrossRef]
- Jiang, N.; Shi, H.; Geng, J. Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification. Remote Sens. 2022, 14, 5550. [Google Scholar] [CrossRef]
- Chen, S.; Useya, J.; Mugiyo, H. Decision-Level Fusion of Sentinel-1 SAR and Landsat 8 OLI Texture Features for Crop Discrimination and Classification: Case of Masvingo, Zimbabwe. Heliyon 2020, 6, e05358. [Google Scholar] [CrossRef] [PubMed]
- Khojastehnazhand, M.; Roostaei, M. Classification of Seven Iranian Wheat Varieties Using Texture Features. Expert Syst. Appl. 2022, 199, 117014. [Google Scholar] [CrossRef]
- Zhang, D.; Ying, C.; Wu, L.; Meng, Z.; Wang, X.; Ma, Y. Using Time Series Sentinel Images for Object-Oriented Crop Extraction of Planting Structure in the Google Earth Engine. Agronomy 2023, 13, 2350. [Google Scholar] [CrossRef]
Name of Satellite | Spectral Band | Spatial Resolution (m) | Products | Number of Images | |||
---|---|---|---|---|---|---|---|
I | II | III | IV | ||||
GF-1 | Red | 8 | Fusion image (2 m) | / | 2 | 1 | / |
Green | |||||||
Blue | |||||||
Near-Infrared (NIR) | |||||||
Panchromatic | 2 | ||||||
GF-2 | Red | 4 | Fusion image (1 m) | 4 | 1 | 1 | 4 |
Green | |||||||
Blue | |||||||
Near-Infrared (NIR) | |||||||
Panchromatic | 1 | ||||||
GF-6 | Red | 8 | Fusion image (2 m) | / | 1 | 2 | / |
Green | |||||||
Blue | |||||||
Near-Infrared (NIR) | |||||||
Panchromatic | 2 |
Feature Category | Feature Variable | Total/Number |
---|---|---|
Spectral feature | Mean_R, Mean_G, Mean_B, Mean_NIR, Max_diff, Briahtness and Standard Deviation (four bands) | 10 |
Texture features | GLCM Mean, GLCM Ent, GLCM Homo, GLCM Std, GLCM Dissim, GLCM Contrast and GLCM Ang. 2nd Moment, GLCM Corr, GLDV Mean, GLDV Ent, GLDV Contrast and GLDV Ang. 2nd Moment | 12 |
Geometric features | area, length/width, length, width, border length, Shape Index, Density, Asymmetry, Roundness, Boundary Index, Compactness, Ellipse Fitting, Rectangle Fitting | 13 |
Index features | EVI, NDVI, R/G and RVI | 4 |
Test Area | Type of Crops | Kappa Coefficient of Each Crop | Kappa Coefficient of Overall Classification Results | Overall Accuracy | |||
---|---|---|---|---|---|---|---|
RF Model | CNN Model | RF Model | CNN Model | RF Model | CNN Model | ||
I | Wheat | 0.92 | 0.90 | 0.89 | 0.87 | 0.92 | 0.91 |
Corn | 0.85 | 0.81 | |||||
Buckwheat | 0.96 | 0.93 | |||||
II | Wheat | 0.93 | 0.89 | 0.91 | 0.88 | 0.95 | 0.93 |
Corn | 0.91 | 0.87 | |||||
Buckwheat | 0.86 | 0.88 | |||||
III | Wheat | 0.87 | 0.89 | 0.85 | 0.84 | 0.89 | 0.89 |
Corn | 0.84 | 0.81 | |||||
Apple | 0.85 | 0.80 | |||||
IV | Wheat | 0.86 | 0.79 | 0.86 | 0.85 | 0.91 | 0.90 |
Corn | 0.78 | 0.86 | |||||
Apple | 0.93 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Qi, Y.; Zhang, H.; Wang, H.; Zhang, J.; Ma, X.; Zhang, J.; Ma, C. A Study on the Object-Based High-Resolution Remote Sensing Image Classification of Crop Planting Structures in the Loess Plateau of Eastern Gansu Province. Remote Sens. 2024, 16, 2479. https://doi.org/10.3390/rs16132479
Yang R, Qi Y, Zhang H, Wang H, Zhang J, Ma X, Zhang J, Ma C. A Study on the Object-Based High-Resolution Remote Sensing Image Classification of Crop Planting Structures in the Loess Plateau of Eastern Gansu Province. Remote Sensing. 2024; 16(13):2479. https://doi.org/10.3390/rs16132479
Chicago/Turabian StyleYang, Rui, Yuan Qi, Hui Zhang, Hongwei Wang, Jinlong Zhang, Xiaofang Ma, Juan Zhang, and Chao Ma. 2024. "A Study on the Object-Based High-Resolution Remote Sensing Image Classification of Crop Planting Structures in the Loess Plateau of Eastern Gansu Province" Remote Sensing 16, no. 13: 2479. https://doi.org/10.3390/rs16132479
APA StyleYang, R., Qi, Y., Zhang, H., Wang, H., Zhang, J., Ma, X., Zhang, J., & Ma, C. (2024). A Study on the Object-Based High-Resolution Remote Sensing Image Classification of Crop Planting Structures in the Loess Plateau of Eastern Gansu Province. Remote Sensing, 16(13), 2479. https://doi.org/10.3390/rs16132479