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Abstract: A non-periodic “step-like” variation in displacement is exhibited owing to the repeated
instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil
landslides has become a challenge in actual engineering for disaster prevention and mitigation.
Therefore, a support vector regression prediction (AMPSO-SVR) model based on adaptive mutation
particle swarm optimization is proposed, which is suitable for small samples of data. The shallow dis-
placement is decomposed into a trend component and fluctuating component by complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN), and the trend displacement is pre-
dicted by cubic polynomial fitting. In this paper, the multiple disaster-inducing factors of expansive
landslides and the time hysteresis effect between displacement and its influencing factors are fully
considered, and the crucial influencing factors which eliminate the time lag effect and state factors are
input into the model to predict the fluctuation displacement. Monitoring data in the Ningming area
of China are employed for the model validation. The predicted results are compared with those of
the traditional model. The model performance is evaluated through indicators such as the goodness
of fit R2 and root mean square error RMSE. The results show that the prediction RMSE of the new
model for three monitoring stations can reach 2.6 mm, 6.6 mm, and 2.5 mm, respectively. Compared
with the common Grid search support vector regression (GS-SVR), the Particle Swarm Optimization
Support Vector Regression (PSO-SVR) and Back Propagation Neural Network (BPNN) models have
average improvements of 58.4%, 38.1%, and 25.2% respectively. The goodness of fit R2 is superior
to 0.99 in the new method. The proposed model can effectively be deployed for the displacement
prediction of non-periodic stepped expansive soil landslides driven by multiple influencing factors,
providing a reference idea for the deformation prediction of expansive soil landslides.

Keywords: expansive soil landslide; displacement prediction; multiple driven factors; AMPSO-SVR;
time lag effect

1. Introduction

Expansive soil landslides are a complex clay geological hazard distributed in more
than 20 provinces in China, where nearly 400 million people live. Uneven settlements of
buildings, instability of engineering slopes, and other detriments are easily attributed to the
unstable deformation characteristics of expansive soil due to water absorption expansion
deformation and water loss shrinkage cracking [1].

To effectively prevent expansive soil landslide hazards, it is crucial to accurately pre-
dict future displacements by utilizing historical landslide data. Expansive soil landslides are
unstable nonlinear systems with complex instability mechanisms and special engineering
characteristics of repeated expansion and contraction; these special “step-like” characteris-
tics are presented in displacement curves [2]. Compared with traditional loess landslides,
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the step-like rise in the displacement of expansive soil landslides does not follow strict
rainfall periodicity and is often accompanied by strong burstiness [3–8]. This is because
expansive soil landslides are jointly affected by multiple internal and external factors. In
addition to precipitation, landslide stability is also significantly impacted by earth pressure
and soil moisture content [9–12]. Therefore, the dynamic prediction of the displacement
of step-like expansive soil landslides driven by multiple factors is an important technical
issue that needs to be solved urgently in the current research on landslide prediction.

Solutions for the prediction of step-like landslide displacement have been researched
by numerous scholars so far. For example, Zhu Xing proposed an extreme learning machine
(ELM) to predict the displacement of the Baijiabao landslide in the Three Gorges [13], Gao
Wei fused a grey system (GM) with an evolutionary neural network (ENN) to predict two
landslides in the Three Gorges Reservoir Area [14], and Yang Beibei constructed a long
short-term memory network (LSTM) for the displacement prediction of the Baishui river
landslide [15]. Nevertheless, single factors such as the reservoir water level and rainfall
were mainly considered in the above methods, but they are more suitable for landslides with
more obvious deformation cycles and a single influencing factor. The internal characteristics
of landslides, such as non-periodic soil stress or the internal moisture field of slopes,
have not been fully considered. The above neural-network-based prediction models have
complex algorithm structures and require high-quality feature data and sample sizes, which
is not suitable for predicting the displacement of non-periodic expansive soil landslides
under the joint influence of multiple internal and external factors. A strong generalization
ability is exhibited by Support Vector Regression (SVR) [16], and the nonlinear relationship
between multiple external factors and target displacement can be handled effectively. It
does not require complex operation for preprocessing and feature selection in an input
dataset, and the model has an excellent robustness. It is very suitable for predicting the
deformation of step-like landslides dominated by multiple factors. However, it is easy for
the traditional SVR model to fall into local optimal, which can be solved effectively by
adaptive mutation particle swarm optimization (AMPSO) [17,18].

Therefore, a machine learning prediction algorithm based on AMPSO-SVR is pro-
posed to predict the displacement of expansive soil landslides. The main idea includes:
(1) The total displacement being decomposed into trend and fluctuation terms, respectively,
by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN).
(2) The trend displacement being predicted by a fitting method and the relationship be-
tween the fluctuation term and the influencing factors being analyzed. (3) The time delay
effect between the displacement and multi-factor being considered, the multi-factor wave
term component being extracted by CEEMDAN and input into the AMPSO-SVR model
to predict the wave term displacement, and the prediction results being compared with
grid search support vector regression (GS-SVR), and particle swarm optimization support
vector regression (PSO-SVR), verifying that the “step-like” non-periodic displacement can
be accurately and dynamically predicted, which has a certain feasibility and scientificity.
(4) The total predicted displacement sequence being obtained by superimposing the pre-
dicted values of the trend and fluctuation terms.

2. Displacement Prediction Model of Expansive Soil Landslides
2.1. Displacement Time Series Theory

The displacement of expansive soil exhibits nonlinear characteristics under the influ-
ence of crack evolution and wet–dry cycles. The total displacement is decomposed into a
trend term, wave term displacement, and random term displacement according to the time
series theory [19,20].

S(t) = T(t) + P(t) + R(t) (1)

where S(t) is the total displacement value, T(t) is the trend term displacement, and P(t) is
the fluctuation term displacement. The magnitude of R(t) is small and negligible, and the
prediction of T(t) and P(t) is mainly focused on in this paper.
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2.2. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Moving average, wavelet decomposition, and EMD are commonly applied to landslide
displacement decomposition [21]. EMD decomposition is a conventional method for
decomposing non-stationary data. However, anomalies in displacement decomposition
may be caused by the existence of mode aliasing, and the displacement trend term and the
fluctuation term can be extracted inaccurately. Moving average has a poor adaptability
to noise, and wavelet decomposition has challenges in processing non-stationary signals
such as landslide displacement curves. The above problems can be effectively overcome
by CEEMDAN decomposition. Adaptive noise is added to landslide displacement curves,
which improves the robustness of decomposition and is more suitable for processing non-
stationary signals. These decomposed displacement components are more consistent with
the actual change trends of landslides. The CEEMDAN decomposition flow is designed as
follows in this paper:

(1) The landslide displacement S(t) is added with Gaussian white noise, whose K-th
mean is 0 to construct the K sequence Si(t) to be decomposed. i = 1, 2, 3, . . . k, ε is the
signal-to-noise ratio, and δi(t) is the white noise sequence added for the i-th time.

Si(t) = S(t) + εδi(t) (2)

(2) The EMD decomposition of Si(t) is performed, the first modal component (IMF) is
decomposed, and its mean is taken as the first modal component obtained by CEEMDAN
decomposition. Each modal component is a different frequency component of the original
displacement. r1(t) is the first residual component, which represents the non-extractable
aperiodic component of the displacement sequence.

IMF1(t) =
1
K

K

∑
i=1

IMFi
1(t) (3)

r1(t) = S(t)− IMF1(t) (4)

(3) The EMD decomposition is continued after noise is added to the residual compo-
nent rj(t) of phase j.

IMFj(t) =
1
k

K

∑
i=1

E1
(
rj−1(t) + ε j−1Ej−1(δi(t))

)
(5)

rj(t) = rj−1(t)− IMFj(t) (6)

(4) If the EMD stop condition is satisfied and the displacement residual component
rn(t) of the n-th decomposition is close to a monotone signal, then the CEEMDAN algorithm
ends its decomposition.

2.3. Support Vector Regression (SVR)

Expansive soil landslides are driven by various correlation factors [22]. The relation-
ship between displacement and external factors is not a simple linear form, but a more
complex curve shape, such as a polynomial or periodic relationship, etc., which can be
solved effectively by Support Vector Regression (SVR). SVR began with the research of
Drucker et al. (1997) [23]. The principle is to find a nonlinear mapping from the input space
to the output space, and the feature data x are mapped to a high-dimensional feature space,
and the regression plane with the optimal fitting performance in the high-dimensional
space is selected. Its mathematical model is as follows:

P_pre(x) = ωT φ(x) + b (7)

where P_pre(x) is the output value of the model, namely, the predicted displacement
value of the landslide fluctuation term corresponding to the predicted value of item P(t)



Remote Sens. 2024, 16, 2483 4 of 18

in Equation (1), ω is the inertia weight, b is the offset term, and φ(x) is the mapping
function between the landslide correlation factor x and predicted displacement, which
includes the input values of the model, namely, the data of multiple influence factors that
affect expansive soil landslides and the historical displacement data. The data of multiple
influence factors are mapped to a high-dimensional feature space for linear analysis in that
space. The nonlinear relationship between displacement and multi-factor features can be
modeled accurately by utilizing the kernel function in the SVR model. The key to SVR
machine learning is to find the optimal nonlinear mapping relationship so that the output
displacement f (x) is closer to the actual value.

2.4. Adaptive Mutation Particle Swarm Optimization (AMPSO)

The particle swarm optimization algorithm (PSO) is an evolutionary algorithm in-
spired by bird foraging [24]. The solution is regarded as a particle, the particle quality is
measured by the particle fitness, and the optimal solution is obtained through multiple
iterations. However, the particles are likely to quickly gather near a local optimum in
the early stages of the search process, and the search space is not fully explored. It is
easy to fall into the local optimum, which makes it difficult to obtain the global optimal
solution. The adaptive mutation particle swarm optimization (AMPSO) is an improvement
of the standard PSO, and it adjusts the search range of the solution space by dynamically
adjusting the weight and adaptive mutation mechanism so that the algorithm has a large
global search ability, which can address this issue. The strategy adopted by the algorithm
is to adjust the inertia weight adaptively. The larger weight is beneficial for improving
the global optimization ability of the particle that can make it skip the local optimum.
Therefore, a better optimal position on a large scale can be explored by taking a larger value
of ω initially, while a smaller weight will improve the local optimal ability of particles so
that the search process can be gradually converged. Later, the value of ω will decrease to
improve the convergence accuracy. The weight linear attenuation method is adopted in
this paper according to the iterative process, and its mathematical model is as follows:

Vk+1
id = ωVk

id + c1r1

(
Pk

id − Wk
id

)
+ c2r2

(
Pk

gd − Wk
gd

)
Wk+1

id = Wk
id + Vk+1

id

(8)

ωiner = ωstart −
(ωstart − ωend)·I

N
(9)

where i is the number of particles, d is the dimension of the prediction space, k is the number
of iterations, v is the particle velocity, W is the particle position, ω is the inertia weight,
Equation (9) is the updating method for weight ω in Equation (8), ωiner is the inertial weight
of adaptive change, ωstart is the maximum weight (value is 0.9), and ωend is the minimum
weight value (value is 0.4). The inertia weight in Equation (8) can be linearly decreased in
this way, and the tradeoff between global search and local search can be balanced in the
iterative process. This strategy of decreasing weights is aimed at giving the algorithm a
greater exploration ability in the initial stage, and gradually increasing the focus on local
search in subsequent iterations. Oscillation near the global optimal solution in the late
particle search is effectively avoided. I is the current number of iterations, N is the total
number of iterations, c1 is the learning factor 1, and c2 is the learning factor 2. r1 and r2 are
random floating point numbers ranging from 0 to 1, P is the optimal position of the particle
individual, and g is the global optimal position of the particle swarm.

Simultaneously, random particle mutation should be added to the particle position
and velocity search in the iterative process to increase the diversity of the population. The
mutation method selected is as follows:

i f R < Cm,
{

ceil(2 × R) = 1, vc = R × (Cmax − Cmin) + Cmin
ceil(2 × R) = 2, vg = R × (gmax − gmin) + gmin

(10)
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In the formula, R is the random number of distributions [0, 1], Cm is the preset mu-
tation probability (constant, set as 0.8 in this paper), vc is the particle motion velocity
of hyperparameter c, vg is the velocity of the particle with the hyperparameter gamma,
and Cmin, Cmax, gmin, and gmax are the search boundaries of the parameters. The adaptive
mutation search for the optimal particles is implemented by this method, which enables
the SVR model to jump out of the local optimum and find the best parameters c and g.
These parameters enable the model to find the best mapping function φ(x). The risk of
easily falling into overfitting is reduced. The adaptive mutation particle swarm optimiza-
tion utilizes adaptive optimization to enable the SVR to select parameters more robustly,
reducing the problem of model performance degradation caused by improper parameter
selection. This is particularly significant for small sample data, as they are more sensitive
to parameter selection. The prediction accuracy is further improved.

2.5. The Flow of Prediction Method

The process of the proposed prediction model is shown in Figure 1. The steps are as
follows: (1) GNSS (Global Navigation Satellite System) displacement and earth pressure,
precipitation, soil moisture content, and other data are collected by multi-source sensors.
Among them, the displacement is obtained by self-developed GNSS monitoring equipment
with a Ublox ZED-F9P board, and the measurement accuracy is better than 5 mm in both
the horizontal and vertical directions. The soil moisture content is obtained by soil moisture
meters, with a measurement accuracy of ±3%. The earth pressure is measured by earth
pressure boxes, with a nominal measurement accuracy of ±0.5% F.S. The precipitation is
obtained by funnel-type rain gauges, with an accuracy of measurement of ±0.2 mm. The
multi-source data are processed on a self-built expansive soil landslide monitoring cloud
platform; the GNSS displacement is calculated by real-time relative positioning with a
solution frequency of 1 s and the GNSS receiver is mainly deployed at the leading edge
and the middle of the slope, where the stability of expansive soil landslides is poor. A
soil hygrometer determines the soil moisture content by measuring the change in the soil
dielectric constant; its measurement frequency is 4 h and it should be deployed 30 cm below
the surface of the expansive soil. The earth pressure box converts the mechanical pressure
into an electrical signal and converts the electrical signal into the actual pressure value
through calibration, with a measurement frequency of 4 h. The box is laid in the middle of
the soilbag and reinforced with steel bars. The rain gauge collects precipitation through a
tipping bucket structure. Its measurement frequency is 6 h and it is deployed in a stable
and open location. (2) The landslide displacement is decomposed into a trend term and
wave term, respectively, with CEEMDAN. The trend term displacement represents the long-
term trend of landslide development and is predicted by the polynomial fitting method.
(3) The correlation and the influence lag time between the fluctuation displacement and
external factors are determined. The wave term component of multiple factors is the key
part that affects changes in the fluctuation term displacement, which is similarly extracted
by CEEMDAN and will be set as the optimal correlation factor to predict the step-like
displacement of expansive soil landslides. (4) The AMPSO-SVR model is established by
considering the state factors of landslide development. (5) Finally, the performance of the
prediction model is evaluated with indicators like R2, MAPE, and RMSE.

2.6. Evaluation Indicators for Displacement Prediction

Three evaluation indicators were used to evaluate the prediction accuracy of the proposed
model R2 (goodness of fit), RMSE (root mean square error), and MAPE (mean absolute
percentage error). Their mathematical expressions are shown in Equations (11)–(13):

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (11)
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (13)

where yi is the measured displacement, ŷi is the predicted displacement, y is the aver-
age displacement, which corresponds to the fluctuation term displacement, and i is the
monitoring period.
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Figure 1. Multi-factor support vector regression displacement prediction flow of expansive soil.

3. Experimental Analysis—Expansive Soil Landslide on Chongai Highway in Ningming
3.1. Landslide Overview

The Ningming expansive soil landslide is located in Ningming Basin, Guangxi Province,
China, which has the largest expansive soil deposit in the world and is a typical expansive
soil research area. The expansive soil in this area belongs to the type of residual expansive
soil [25]. It is a medium expansive soil with a free expansion coefficient of about 58%. The
geographical location and overview of the slope are shown in Figure 2. The specific location
of the landslide is about 5.2 km on the north bank of the Mingjiang River, a tributary of the
Pearl River, 1 km west of Wayao Village, and near the Chongzuo–Aidian highway. Mainly
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in the shape of a long and narrow fan, it is a highway cutting landslide with a slope of
about 1:1.5.
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The region has a tropical marine monsoon climate with an average annual precipi-
tation of 1200 mm and with spring and summer from April to October and autumn and
winter from November to March. A total of eight GNSS monitoring points (NN01–NN08)
were deployed to establish a real-time displacement-monitoring system with a monitor-
ing accuracy better than 5 mm due to the obvious displacement of slope unloading. In
addition, sensors such as those for earth pressure and soil moisture content were installed
to strengthen the monitoring system, and the data transmission interval was 4 h. A rain
gauge was arranged at the rear edge, and the data transmission interval was 1 h.

3.2. Deformation Characteristics

The GNSS cumulative displacement curve of the Ningming expansive soil slope is
shown in Figure 3, which was calculated by the real-time GNSS landslide cloud platform.
Due to the low stability at the three monitoring points on the top position of the slope,
there was a significant increase in displacement compared to other points, hence, these
three points were selected as the experimental dataset. The red, green, and blue curves
represent the displacements of the NN06, NN07, and NN08 monitoring points, showing
a step-like characteristic. They are located in sections
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of the slope, where the risk
of instability is high as a result of excavation unloading, and the slide direction is 78◦

north by west. The interstitial rise in displacement was mainly due to the occurrence of
heavy rainfall events around 25 d and 155 d in the figure. The fissure of expansive soil
provided an excellent channel for rainwater infiltration, resulting in a rapid increase in soil
water content and a decrease in matrix suction as a result of the decrease in slope shear



Remote Sens. 2024, 16, 2483 8 of 18

strength with an increase in saturation. The whole process time was relatively short, so
the cumulative displacement increased rapidly with a strong mutability. There was no
significant change in displacement during the drying period.
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Figure 3. Displacement curve of landslide monitoring points.

The on-site failure form of the slope is shown in Figure 4. The soil near the GNSS mon-
itoring equipment was significantly cracked, and fish-scale shallow failure characteristics
appeared after two instability events. Many cracks developed obviously, and these cracks
gradually closed and deepened with an increase in instability frequency, finally collapsing
in the form of a traction landslide.
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4. Displacement Prediction

A multi-factor support vector regression prediction model was established with the
GNSS cumulative displacement, soil moisture content, earth pressure, precipitation, and
other data of monitoring points NN06–NN08 for about 200 days. The first 150 days of
data were selected as the training set, the last 50 days were selected as the prediction set.
The 75% training set ratio helped the model to better learn the pattern of the data, leaving
a smaller proportion (25%) of sufficient samples to evaluate the generalization ability of
the model, with the problem of overfitting of the training set being effectively avoided.
Furthermore, the displacement of expansive soil experienced irregular changes such as a
smooth and steep rise in the first 150 days, including the dynamic changes of expansive
soil landslides from the safety stage to the instability stage. Hence, the selection of training
and prediction sets in this way was more representative.

4.1. Extraction and Prediction of Trend Displacement

The trend term and fluctuation term of the displacement time series were extracted by
CEEMDAN decomposition. The decomposition results are shown in Figure 5, from which
it can be seen that the trend displacement component was nearly monotonically increasing,
while the fluctuation term displacement was characterized by intermittent oscillation.
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The trend displacement was fitted by the least squares cubic polynomial according
to the nonlinear curve characteristics of the trend displacement at the monitoring points
NN06, NN07, and NN08. The fitting expression is s(t) = at3 + bt2 + ct + d, where s(t) is the
trend term displacement, t is the monitoring time, and a, b, c, and d are the coefficients. The
prediction results and accuracy of the trend term displacement are shown in Figure 6. The
fitting accuracy RMSEs of the NN06, NN07, and NN08 monitoring points were 0.68 mm,
0.51 mm, and 0.46 mm, respectively, and the goodness of fit R2 were 0.9989, 0.9959, and
0.9976, respectively.
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4.2. Extraction and Prediction of Fluctuation Term Displacement

The fluctuation term displacement was obtained by subtracting the trend term dis-
placement from the total displacement, which reflects the landslide displacement changes
under the influence of external factors. In this paper, a multi-factor machine learning
dynamic prediction model was established for the GNSS fluctuation term displacement at
NN06, NN07, and NN08 for 200 d. The displacement data of the first 150 d were selected
as the training set, and the last 50 d were selected as the test set.

4.2.1. Determination of Key Disaster-Inducing Factors

The prediction performance of the landslide displacement of expansive soil is directly
affected by the selection of disaster-inducing factors [26]. Strength attenuation and swelling
deformation are caused by unsaturated seepage under rainfall conditions, which has a
significant impact on landslide stability. Moreover, the infiltration effect of rainwater is
enhanced by the existence of cracks in expansive soil, and the effective water content of the
soil is increased, which leads to the hygroscopic expansion of soil. The volume deformation
of expansive soil under the dry–wet cycle has a significant impact on the pressure distri-
bution of the retaining wall, and the lateral earth pressure increases significantly under
the action of infiltrating rainwater and the mass of the overlying soil [27–29]. Therefore,
precipitation, soil moisture content, and earth pressure are regarded as key factors for
displacement prediction.

4.2.2. Time Lag Correlation

During the deformation process of an expansive soil landslide induced by rainfall, the
soil moisture content and earth pressure first begin to increase, there is a lag time in the
corresponding displacement changes, and the lag time is different at several monitoring
points. To find the best correlation factor of the landslide displacement for the model
training and avoid obvious deviations in the prediction results, the displacement response
lag times of each monitoring point were determined by time delay correlation analysis
(TDCA). The results are shown in Figure 7 (Unit: d): for the NN06, NN07, and NN08
monitoring points, the time lag parameters of the fluctuation term displacement and soil
moisture content, earth pressure, and cumulative rainfall were (3 d, 1 d, 3 d), (2 d, 0 d, 3 d),
and (3 d, 1 d, 4 d), respectively.

4.2.3. Fluctuation Term Displacement Prediction

Compared with the neural network prediction model, the prediction problem of multi-
dimensional features can be solved by SVR more efficiently, and the prediction model
is built by combining the AMPSO optimization algorithm. Since each non-periodic step
change of the expansive soil slope displacement is greatly impacted by the fluctuation term
of the external multi-source factor, the fluctuation term of the influencing factor is extracted
by CEEMDAN. The mutation information of the influencing factors can be reflected by the
fluctuation term component of the multi-factor, which is strongly related to the mutation
of the fluctuation term displacement. Hence, it is more suitable for predicting the wave
term displacement. As shown in Figure 8, the blue, green, orange, and red circled curves
represent the fluctuation term displacement, fluctuation term cumulative precipitation,
fluctuation term soil moisture content, and fluctuation term earth pressure at the monitoring
points. The correlation between the wave term displacement and the influence factors
sequence was more notable when the time lag was eliminated. It can be seen that the
fluctuation term cumulative precipitation, soil moisture content, and fluctuation term
periodic earth pressure started to increase, and the fluctuation term displacement showed
a sudden increase simultaneously. If the cumulative precipitation, soil moisture content,
and earth pressure of the fluctuation items continued to decrease overall, although there
was a small local rebound, the corresponding fluctuation term displacement decreased
synchronously and rose synchronously again during the next instability. Therefore, the
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fluctuation term displacement was more consistent with the fluctuation term change trend
of external influence factors.
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A self-learning AMPSO-SVR displacement prediction model was established based on
the libsvm toolkit in matlab2021b software by normalizing the multi-factor association data
and displacement data which eliminated the time lag effect. The model in this section was
trained on a Hewlett-Packard computer with an Intel core i7-11800H processor (clocked
at 2.3 GHz, eight cores, and sixteen threads), an NVIDIA RTX3050 GPU, and 16 G of
memory. The fitness function is defined as the mean square error between the predicted
and measured displacement values.

Taking into account the different lag times of the displacements for each monitoring
point, multi-factor data that eliminated the time lag effect were added to the training model.
The multi-factor data to eliminate the delay effect were added to the training model while
considering the different lag times of the displacements at each monitoring point. For the
NN06 monitoring point, six types of data, including the fluctuation item soil moisture
content (SMC), fluctuation item cumulative precipitation 3 days ago, fluctuation item
earth pressure (EP) 1 day ago, and historical displacements in the past 1 d, 2 d, and 3 d,
were taken as model inputs. Similarly, for the NN07 monitoring point, the fluctuation
term soil moisture content 2 days ago, fluctuation term cumulative precipitation 3 days
ago, and fluctuation term earth pressure 1 day ago were combined. For the NN08 point,
the fluctuation term soil moisture content 3 days ago, cumulative precipitation of the
fluctuation term 4 days ago, and earth pressure data of the fluctuation term 2 days ago
were input into the model for data training.
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((a) NN06; (b) NN07; (c) NN08).

However, it is not reliable to predict the displacement by only considering the influ-
encing factors and ignoring the development state of the landslide itself. The historical
displacements before 3 d, 2 d, and 1 d were added into the model as predicted state factors.
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A total of six sequences were taken as inputs to the AMPSO-SVR model (Figure 9). After 150
iterations of parameter optimization, the final displacement prediction value was obtained.
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To evaluate the actual performance of the prediction model, the results were compared
with the commonly used GS-SVR, PSO-SVR, and BPNN models (see Figure 10). The good-
ness of fit R2, root mean square error RMSE, and mean absolute percentage error MAPE
were calculated. The calculation formula is as shown in Equation (10). The calculation
results of related indicators are shown in Table 1. As can be seen from the prediction results
in Figure 10, the green circle curve is the measured displacement data of the landslide, the
blue circle curve is the prediction result of the GS-SVR model, the yellow square curve is the
prediction result of the PSO-SVR model, the purple triangle curve is the prediction result of
the BPNN model, and the red diamond curve is the prediction result of the AMPSO-SVR
model. Among them, the predicted results of the GS-SVR model at the monitoring points
NN06 and NN08 during the instability period were significantly greater than the measured
displacement, and the predicted displacement was not stable in the short time after the
slope failure, which is not consistent with the characteristics of the displacement tending to
be stable after the actual landslide failure. The goodness of fit and root mean square error
at point NN06 were 0.9524 and 5.9 mm, respectively. The goodness of fit and root mean
square error at point NN07 were 0.9459 and 13.2 mm, respectively. The goodness of fit and
root mean square error at point NN08 were 0.9239 and 8.5 mm, respectively. The prediction
error was larger among the four prediction models.
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(c) NN08).

The predicted results of PSO-SVR were similar to the measured results, but the good-
ness of fit and root mean square error were inferior to the results of the AMPSO-SVR model.
The BPNN prediction results showed a good performance at points NN06 and NN08, but a
poor performance at point NN07. It can be seen that the predicted value at point NN07 was
significantly higher than the measured value during the sliding stage, which had significant
errors. Therefore, the generalization ability of this model was insufficient.
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Table 1. Evaluation indicators of different prediction models.

Monitoring Points R2 RMSE (mm) MAPE Model

NN06

0.9524 5.9 0.3131 GS-SVR

0.9626 5.2 0.2661 PSO-SVR

0.9864 3.1 0.1273 BPNN

0.9907 2.6 0.1017 AMPSO-SVR

NN07

0.9459 13.2 0.1793 GS-SVR

0.9821 7.6 0.1124 PSO-SVR

0.9776 8.9 0.1254 BPNN

0.9857 6.6 0.1181 AMPSO-SVR

NN08

0.9239 8.5 0.3766 GS-SVR

0.9697 5.3 0.3871 PSO-SVR

0.9872 3.8 0.2135 BPNN

0.9934 2.5 0.0964 AMPSO-SVR

The AMPSO-SVR prediction results were most consistent with the measured displace-
ments at the three monitoring points. The goodness of fit and root mean square error at
point NN06 were 0.9907 and 2.6 mm, respectively. The goodness of fit and root mean square
error at point NN07 were 0.9857 and 6.6 mm, respectively. The goodness of fit and root
mean square error at point NN08 were 0.9934 and 2.5 mm, respectively. With the maximum
goodness of fit and minimum root mean square error, the comprehensive generalization
ability of the model was better than that of the other three models. Hence, the prediction
performance of the AMPSO-SVR model was superior to other models.

4.3. Total Displacement Prediction and Accuracy Analysis

The predicted value of the total displacement was obtained by superpositioning the
predicted value of the displacement of the fluctuation term and the trend term, which was
compared with the measurements. The prediction result curves are shown in Figure 11. The
goodness of fit R2 and RMSE of the predicted and measured displacements of the NN06,
NN07, and NN08 monitoring points were 0.99, 2.6 mm, 0.99, 6.6 mm, and 0.99, 2.5 mm,
respectively. These prediction results were consistent with the actual measurements, and
the accuracy was in the order of millimeters. This indicated that the AMPSO-SVR prediction
model can be well applied to multi-factor-driven non-periodic step-like expansive soil
landslide displacement prediction.
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5. Conclusions

(1) The characteristics of the “ladder-type” deformation of expansive soil landslides due
to their non-periodic repeated instability were recorded and analyzed. The important
relationship between key influencing factors such as earth pressure, soil moisture
content, and cumulative precipitation with this step displacement were also revealed.
Meanwhile, the lag response time of landslide displacement and influencing factors
was determined. The GNSS displacement of monitoring points at different parts of
the Ningming expansive soil slope was different from the lag time of the influencing
factors. The average GNSS displacement lagged behind rainfall, soil moisture content,
and earth pressure at 3 d, 2 d, and 1 d, respectively. The GNSS displacement sequence
corrected by the lag period was in good agreement with the multi-source influence
factor sequence.

(2) The displacements of the trend term and fluctuation term were obtained by CEEM-
DAN decomposition. The displacements of the trend term were predicted by cubic
polynomial fitting. Taking into account the non-periodic step of the fluctuation dis-
placement of the expansive soil landslide that was affected by multiple external factors,
a dynamic prediction model driven by multi-factors was established to predict the
displacement of the fluctuation term. The prediction results were in good agreement
with the obtained measurements. The average RMSE predicted by AMPSO-SVR was
3.94 mm, compared with the results of the GS-SVR, PSO-SVR, and BPNN models, it
was increased by 58.3%, 38.1%, and 25.2%, respectively.

(3) The proposed model was feasible and reliable in the prediction of step-like and non-
periodic expansive soil landslides, and the stepped deformation and external multiple
factors could be modeled efficiently, which gives it the potential to be applied to other
expansive soil landslide deformation predictions.

In general, the proposed method had a good performance in predicting the step-wise
displacement of expansive soil with a strong suddenness, especially expansive soil landslides
driven by multiple internal and external factors. However, it is mainly aimed at the instability
of expansive soil landslides with relatively short monitoring periods, and further research
is needed for the displacement prediction process of expansive soil landslides with longer
terms (e.g., more than 5 years). In addition, more complex prediction algorithms such as
deep learning models will be tested and evaluated in subsequent research.
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