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Abstract: Accurate and reliable estimation of actual evapotranspiration (AET) is essential for various
hydrological studies, including drought prediction, water resource management, and the analysis
of atmospheric–terrestrial carbon exchanges. Gridded AET products offer potential for application
in ungauged areas, but their uncertainties may be significant, making it difficult to identify the
best products for specific regions. While in situ data directly estimate gridded ET products, their
applicability is limited in ungauged areas that require FLUXNET data. This paper employs an
Extended Triple Collocation (ETC) method to estimate the uncertainty of Global Land Evaporation
Amsterdam Model (GLEAM), Famine Early Warning Systems Network (FLDAS), and Maximum
Entropy Production (MEP) AET product without requiring prior information. Subsequently, a merged
ET product is generated by combining ET estimates from three original products. Furthermore, the
study quantifies the uncertainty of each individual product across different vegetation covers and
then compares three original products and the Merged ET with data from 645 in situ sites. The results
indicate that GLEAM covers the largest area, accounting for 39.1% based on the correlation coefficient
criterion and 39.9% based on the error variation criterion. Meanwhile, FLDAS and MEP exhibit
similar performance characteristics. The merged ET derived from the ETC method demonstrates the
ability to mitigate uncertainty in ET estimates in North American (NA) and European (EU) regions,
as well as tundra, forest, grassland, and shrubland areas. This merged ET could be effectively utilized
to reduce uncertainty in AET estimates from multiple products for ungauged areas.

Keywords: actual evapotranspiration; Extended Triple Collocation; vegetation cover

1. Introduction

Accurate and reliable estimation of actual evapotranspiration (AET) is crucial for
hydrological studies, including water resource management [1,2], drought prediction,
and the investigation of atmospheric–terrestrial carbon exchanges [3–5]. Large-scale AET
estimates are inherently uncertain due to the high spatial heterogeneity and temporal
variability of evapotranspiration (ET) processes [6,7].

The increasing availability of global gridded actual evapotranspiration (ET) datasets,
generated through the integration and analysis of global datasets in combination with
remote sensing data and modeling, offers significant potential to improve hydrological
predictions in ungauged areas [8,9]. Nevertheless, these gridded ET datasets are subject to
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substantial uncertainties due to variations in forcing data, model structures, and parameter-
ization schemes [10–12]. Therefore, developing methodologies to quantify the uncertainties
in various ET products and their combinations is crucial for enhancing predictions in
ungauged areas.

Previous studies have examined the performance of actual evapotranspiration (AET)
under different vegetation covers at the catchment scale, but have not analyzed their
uncertainty. A range of methods have been employed to assess ET products at both regional
and global scales [13,14]. These methods can be categorized into two main types: one that
estimates the uncertainty in ET products by comparing them to land-based observed ET
values and another that indirectly evaluates ET products without using observed ET values
directly. Unfortunately, quantifying the uncertainty of ET products remains challenging
due to the need for long-term ET observations [15]. To address this challenge, the Triple
Collocation (TC) method was introduced [16] to quantify the uncertainty of different
products without knowing the true values. Further, the Extended Triple Collocation
(ETC) method was developed, which provides the correlation coefficient as an additional
performance metric to the TC method [17]. Recently, the TC and ETC methods have
been successfully applied to quantify uncertainty in various gridded datasets, including
precipitation [18–20], soil moisture [21,22], and evapotranspiration [23,24]. Khan et al. [21]
assessed the uncertainty of three ET products (GLEAM, GLDAS, and MOD16) using the
ETC method within the extent of Asia and analyzed their performances across different
vegetation covers. Guo et al. [23] systematically analyzed the uncertainty of eight ET
products in China from 2003 to 2014, comparing them to observations from the ChinaFLUX
network and quantifying their uncertainty at the grid scale using the ETC method. However,
most previous studies have used this method to evaluate ET products without assessing
their reliability across different vegetation covers. Consequently, it remains unclear how
well AET products perform under various vegetation covers, especially in areas with sparse
or no ground observations.

Peel et al. [25] assessed the average actual evapotranspiration (AET), calculated as
precipitation minus runoff, under forest and non-forest covers at the global catchment scale,
revealing that AET tends to be greater in non-forested catchments compared to forested
ones. Xia et al. [26] found that the uncertainty between estimated and observed daily ET
varied with vegetation cover. Volk et al. [27] evaluated an ensemble ET product using in
situ sites across the contiguous United States, concluding that cropland sites exhibit higher
accuracy compared to shrublands and forested sites. While previous studies have focused
on the impact of vegetation changes on AET or the performance of AET across different
vegetation covers, few have estimated the uncertainty of AET products under different
vegetation covers [28]. Accurate estimation of AET in croplands is crucial for evaluating
crop water requirements and optimizing water use efficiency [29]. Improving the computa-
tion of AET in natural vegetation is essential for assessing vegetation restoration-related
water consumption and water management [30]. Although these studies assess the uncer-
tainty of AET products under various vegetation covers and emphasize the importance of
reducing this uncertainty, they overlook methods to improve the quality of AET products.
Consequently, quantifying and reducing the uncertainty of AET products under different
vegetation covers is necessary for accurate global and regional AET estimates, particularly
in areas with sparse or no ground observations.

In summary, despite numerous studies attempting to reduce uncertainty in ET esti-
mates through various methods, including ETC, there is an urgent need for research on
quantifying the uncertainty of AET products and enhancing their accuracy across different
vegetation covers. To address this, we propose the following questions:

1. How is the performance of three products according to the results of the ETC method?
2. Does the ET merging method yield a superior ET product compared to individ-

ual products?
3. How does the performance of the ET merging method vary under different vegeta-

tion covers?
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The answers to these questions are of great significance to the application of remote
sensing data to estimate ET in ungauged areas under different vegetation covers. To
tackle these questions, we selected three global ET products for testing worldwide. The
remainder of the paper is structured as follows: Section 2 describes the materials and
methods; Section 3.1 analyzes uncertainties in the three ET products using the ETC method;
Section 3.2 presents the merged ET dataset which was obtained; and finally, we evaluate the
performance of the merged ET and individual products in different vegetation covers and
regions compared to in situ data. This study enriches our understanding of the applicability
of the ETC method and informs the selection of ET products for ungauged areas.

2. Materials and Methods

To assess the performance of GLEAM, FLDAS, MEP, and their merged ET products un-
der different vegetation covers in “ungauged” areas, we intentionally treat global areas as
“ungauged”. Initially, we employ the ETC method to assess the three ET products without
prior assumptions. Subsequently, a merged ET is derived based on the results from ETC. Fi-
nally, we compare the three original products and the merged ET with in situ measurements
to validate their accuracy. These evaluations highlight the ETC method’s effectiveness in
significantly reducing uncertainty in global ET estimates for ungauged areas.

2.1. Data Sources

Three evapotranspiration (ET) products spanning from July 2002 to December 2018
were selected for this study: the GLEAM (Global Land Evaporation Amsterdam Model),
FLDAS (Famine Early Warning Systems Network), and MEP (Maximum Entropy Produc-
tion) products. All products were downscaled using the nearest-neighbor interpolation
method in MATLAB to achieve a consistent spatial resolution of 0.5◦ × 0.5◦.

The Global Land Evaporation Amsterdam Model (GLEAM) is a sophisticated land
surface model dedicated to the estimation of the different components of terrestrial evap-
oration from satellite data [31]. Potential evaporation, based on observations of surface
net radiation and near-surface air temperature, is calculated using the Priestley and Tay-
lor equation [32], which is then converted into actual evaporation using the evaporative
stress factor. S. GLEAM v3.6a provides data on a 0.25◦ × 0.25◦ latitude–longitude grid
(https://www.gleam.eu/, accessed on 3 December 2022).

The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS) is a customized version of the NASA Land Information System (LIS),
accessible at http://lis.gsfc.nasa.gov, accessed on 12 January 2024. FLDAS utilizes rainfall
and other meteorological inputs to generate multi-model and multi-forcing estimates of
hydroclimate conditions, including soil moisture, evapotranspiration, and runoff [33]. AET
data are provided in the FLDAS Noah Land Surface Model L4 Global Monthly dataset,
with a spatial resolution of 0.1◦ × 0.1◦.

The MEP model, developed by Wang and Bras [32,33], integrates non-equilibrium
thermodynamics, Bayesian probability, information theory, and boundary-layer turbulence
theory to estimate actual evapotranspiration (AET). This model utilizes net radiation,
surface temperature, and specific humidity as input variables and determines surface heat
fluxes by minimizing a dissipation function that includes latent, sensible, and ground
heat fluxes while maintaining the surface energy balance [34]. Further details on the MEP
formulation can be found in Appendix A. The MEP product derived using this model is
provided by Yang et al. [34] and is available on a 0.25◦ × 0.25◦ latitude–longitude grid
(https://doi.org/10.6084/m9.figshare.20401386.v1, accessed on 10 January 2024).

Hajji et al. [34] compared the MEP product with three classic ET models (PM, PT-
JPL, and ARTS) at eight FLUXNET sites, finding that the MEP product exhibited the best
performance across various land cover types in the continental United States, including
grassland, cropland, woody savanna/shrubland, deciduous broadleaved forests, and
evergreen needleleaf forests. Yang et al. [35] applied the MEP model globally to compute
AET and validated it against EC flux sites, confirming that the MEP product generally

https://www.gleam.eu/
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outperformed the GLDAS product. These studies suggest that the MEP model can be
successfully extended to larger scales, and that its uncertainty may be quantified using new
methodologies. To date, the accuracy of the MEP product has primarily been evaluated by
comparing it with other products using FLUXNET data as a reference. However, there has
been no direct comparison of the MEP product with other AET products due to the lack of
a suitable approach. Therefore, we chose the Extended Triple Collocation (ETC) method to
globally compare the MEP product with other AET products.

In this study, MEP, GLEAM, and FLDAS products from three different algorithms
were selected. GLEAM data, which are widely used, calculated evapotranspiration for
four land use types—short vegetation, tall vegetation, bare soil, and open water—using the
P-T formula to estimate potential evapotranspiration. FLDAS was employed routinely to
generate multi-model and multi-forcing estimates of hydroclimate states and fluxes across
semi-arid, food-insecure regions of Africa. It utilized a land surface model (LSM) to com-
pute evapotranspiration, employing quantitative methods to simulate vertical exchanges of
water and energy fluxes between the atmosphere and land surface. The MEP model calcu-
lated evapotranspiration by dividing it into soil evaporation and vegetation transpiration
components. These three products use distinct methods to compute evapotranspiration,
enabling their assessment using the Extended Triple Collocation (ETC) method.

To evaluate the quality of ET datasets and their Merged ET, comprehensive flux
EC ET data from 645 sites across networks—AmeriFlux, FLUXNET, EuroFlux, AsiaFlux,
and ChinaFlux—were utilized (see Figure A1). These datasets were used to calculate ET
(mm d−1) through Eq. ET = LE

λ × 3600 × 24, with more details available in reference [36].
The EC data, recorded every half hour between 1994 and 2019, covered periods ranging
from 1 year (12 months) to 21 years (252 months). Initially, the flux data underwent
processing and integration into monthly datasets following quality control procedures [37].
Gaps in the in situ EC measurements were filled using a combination and an enhancement
from Reicestein [38]. Out of these, we selected 301 towers that had data spanning more
than two months from July 2002 to December 2018.

The ISLSCP II Potential Natural Vegetation (PNV) Cover product is part of the Inter-
national Satellite Land-Surface Climatology Project, Initiative II (ISLSCP II) data collection.
It categorizes vegetation cover into 15 distinct categories, in addition to water. For this
study, the file potential_veg_hd.asc, with a spatial resolution of 0.5◦, was utilized. The PNV
dataset depicts global vegetation cover in its natural state, unaffected by human activities.
In addition to the PNV data, cropland information from the MODIS Vegetation Cover
dataset was incorporated. The MODIS Vegetation Cover dataset provides a geographic rep-
resentation of 17 vegetation cover classes according to the classification scheme proposed
by the International Geosphere-Biosphere Programme (IGBP). Globally, these vegetation
covers can be grouped into six types: forest, shrubland, savanna, grassland, croplands, and
tundra, as illustrated in Figure A1.

2.2. Extended Triple Collocation (ETC) Method

Hydrological simulation usually requires calibration against the “true” value of the
target variable, which can be challenging in areas with sparse monitoring points. ETC is a
statistical method which addresses this by estimating the correlation coefficient and the
random-error variance of three independent datasets. The ETC method is based on the
TC method, but includes an additional performance metric to the TC method, the Pearson
correlation coefficient [16,17]. The equations of ETC, used to estimate the variance of the
noise error (errVar) and correlation coefficients (rho) for three AET products (MEP, GLEAM,
and FLDAS), can be summarized as:

AETi = ai + biT + εi (1)

where the AETi(i ∈ {1, 2, 3}) are three actual evapotranspiration products. Equation (1)
represents that AETi is linearly related to the unknown true value (T) with additive random
error εi. ai and bi are the ordinary least squares (OLS) intercepts and slopes, respectively;
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σT is Cov(T, T), that is, the variance of T; Cov is the covariance between two datasets; and
E is the mean of the dataset.

Cov(AETi, AETj) = E(AETiAETj)− E(AETi)E(AETj)
= aibjσ

2
T + biCov(T, ε j) + bjCov(T, εi) + Cov(εi, ε j)

(2)

where it is assumed that the errors from the independent sources have zero mean (E(εi) = 0)
and are uncorrelated with each other, i.e., Cov

(
εi, εj

)
= 0, i ̸= j, and with T, i.e., Cov(εi, T) = 0.

The i and j index refer to the GLEAM, FLDAS, or MEP products. Cov(AETi, AETj) is
represented by Covij.

θi = biσT (3)

where θi is a new variable introduced to minimize the number of unknowns required for
solving equations.

Under the assumption that the mean error equals zero, the error variance is the square
of the absolute error. The following formulas are derived [17]:

σ2
ε1 = Cov11 −

Cov12Cov13

Cov23
(4)

σ2
ε2 = Cov22 −

Cov12Cov23

Cov13
(5)

σ2
ε3 = Cov33 −

Cov13Cov23

Cov12
(6)

ρ2
T,AET1

=
Cov12Cov13

Cov11Cov23
(7)

ρ2
T,AET2

=
Cov12Cov23

Cov22Cov13
(8)

ρ2
T,AET3

=
Cov13Cov23

Cov33Cov12
(9)

where σ2
εi

is the error variance (mm2/day2) of dataset i, and ρ2
T,AETi

is the Pearson correlation
coefficient of AETi products with respect to the unknown true value T. For further details,
please refer to reference [17].

2.3. Evapotranspiration Merging

To suppress the evapotranspiration anomaly errors, we aimed to obtain a merged ET
product using weighted averaging evapotranspiration anomalies. Based on the ETC esti-
mates, an optimal merging technique can be formulated employing least-square methods
as follows [19]:

MET = AET1w1 + AET2w2 + AET3w3 (10)

where MET is the merged evapotranspiration product, and w1, w2 and w3 are the weights
of the three products in evapotranspiration merging. The least-square solutions of the
merging weights are calculated as:

w1 =
σε2σε3

σε1σε2 + σε1σε3 + σε2σε3
(11)

w2 =
σε1σε3

σε1σε2 + σε1σε3 + σε2σε3
(12)

w3 =
σε1σε2

σε1σε2 + σε1σε3 + σε2σε3
(13)
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2.4. Statistical Analysis

In order to estimate the relationship between the AET products and the flux tower
measurements, the coefficient of determination (R2), mean absolute error (MAE), root mean
square error (RMSE), and similarity indicator (SI) were used to indicate the consistency and
errors. The calculations of these indexes were as follows:

R2 =
(SSXY)

2

SSXSSY
(14)

MAE =
∑|X − Y|

N
(15)

RMSE = [
∑ (X − Y)2

N
]

1
2

(16)

SI = 1 − ∑ (X − Y)2

∑ (
∣∣X − Y

∣∣+∣∣Y − Y
∣∣) 2 (17)

The Kling Gupta Efficiency (KGE) combines correlation, variability bias, and mean
bias into a single metric. KGE is defined as [39,40]:

KGE = 1 −
√
(r − 1)2 + (

σX

σY
− 1)

2
+ (

µX

µY
− 1)

2
(18)

where Si and xi are the standard deviation and mean of three ET products at the ith cell. N
represents the length of the time series X. SSxy is the square of the covariance between X
and Y, SSx is the variance of X, and SSy is the variance of in situ data (Y). X and Y are the
AET product (MEP, GLEAM, FLDAS) and reference separately. r is the linear correlation
between the AET product and in situ data, σX and σY are the standard deviations of the
AET product and in situ data, and µX and µY are the mean values of the AET product and
in situ data.

2.5. Flowchart

The primary process for reducing uncertainty in actual evapotranspiration (AET)
estimates from three global evapotranspiration (ET) products, particularly for application
in ungauged vegetation areas, is illustrated in Figure 1. Each step is detailed below. First,
in Step 1, the three AET products were harmonized to the same temporal and spatial
resolution. Next, in Step 2, their uncertainties were computed using the ETC method.
Subsequently, based on the ETC method results, the merged ET was derived from the three
original products. Finally, the uncertainties of the three original products and their merged
ET were analyzed across various vegetation covers.
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3. Results
3.1. Uncertainties in AET Datasets based on ETC Approach
3.1.1. Spatial Consistency of AET Products Globally

Figure 2a–c depict the spatial distribution of the mean annual actual evapotranspira-
tion (AET) for the three products spanning from 2003 to 2018. Globally, the annual AET
exhibited comparable spatial patterns across all three products. The recorded maximum
values of annual AET were 2516.9 mm/year for GLEAM, 2043.6 mm/year for FLDAS,
and 1647.5 mm/year for MEP. Notably, GLEAM and FLDAS consistently outperformed
FLDAS. Furthermore, the mean annual AET was observed to be highest in South America
(excluding the southwest) and Africa (excluding the northern and southern regions).
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Figure 2. Mean annual global actual evapotranspiration and latitudinal distribution from three
gridded products. (a–c) show the mean annual evapotranspiration from (a) GLEAM, (b) FLDAS, and
(c) MEP. Note that the AET data for Greenland in GLEAM and FLDAS are missing.

Regarding latitudinal distribution, all three products demonstrated similar trends
along the latitudes, with the highest values observed around the equatorial region. How-
ever, in the Southern Hemisphere, MEP displayed a smoother trend compared to the
fluctuating patterns observed with GLEAM and FLDAS.

3.1.2. Correlation Coefficient Distribution of AET Products

Figure 3 illustrates the estimated correlation coefficients of the three products. Gen-
erally, these products demonstrated performances consistent with the actual data in the
middle and high latitudes of the Northern Hemisphere. GLEAM exhibited a strong per-
formance in regions such as Oceania, southern South America, and northern Asia, while
FLDAS showed the highest correlation coefficient for evapotranspiration (ET) in Europe
and central Asia.

MEP demonstrated a notable performance in northern and central North America,
regions near the South Atlantic Ocean in South America, the Eurasian continent around
latitude 50◦N, Algeria, northwestern Saudi Arabia, Iran, parts of western Australia, and
the Arctic Circle. However, it is important to highlight that within the region between the
Tropic of Cancer and the Tropic of Capricorn, MEP’s correlation coefficient significantly
deviated from that of the other products, indicating poorer performance. Additionally,
MEP exhibited a lower correlation coefficient in Australia.

Of particular note is MEP’s comparatively lower correlation coefficient with the actual
data in Africa compared to GLEAM and FLDAS. Within Africa, MEP’s performance was
notably poorer in North Africa, possibly attributable to the effects of soil water stress.
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3.1.3. Best Performing ET Products on Each Grid

Figure 4 illustrates the spatial distribution of the products based on the largest corre-
lation coefficient (a) and the lowest variation in error (b). Globally, the GLEAM product
covered the largest area with the highest correlation coefficient, accounting for 39.1%,
followed by FLDAS (33.4%) and MEP (27.5%). Concerning error variation, GLEAM demon-
strated superior performance over 39.9% of global grids, while FLDAS and MEP each
covered 30%, indicating a similar level of performance between FLDAS and MEP. Specifi-
cally, GLEAM performed exceptionally well in regions including South America, Africa,
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southern Asia, and northern Oceania. FLDAS exhibited the lowest uncertainty regarding
evapotranspiration (ET) over Europe, northern Asia, and central Oceania. Meanwhile, MEP
achieved high accuracy in northern regions of America.
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3.1.4. Uncertainty under Different Vegetation Coverages

Figure 5 illustrates the error variation and correlation coefficient derived from the ETC
method between the unknown truth and three actual evapotranspiration (AET) products
(GLEAM, FLDAS, MEP) across different vegetation covers during the study period. Their
performance varied across different vegetation covers. Across all biome types except
tundra, GLEAM consistently showed the best performance, with the lowest error and the
highest correlation. FLDAS and MEP exhibited competitive metrics in certain biomes,
but overall, GLEAM was the most reliable dataset according to the provided criteria. In
shrubland, FLDAS and MEP showed relatively low correlation coefficients, below 0.5. For
the remaining vegetation types, the correlation coefficients of all three products exceeded
0.5. In croplands and forests, the correlation coefficients were notably high, around 0.8,
followed by forests, grasslands, and tundra.
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3.2. Merged ET Dataset and the Trends

Overall, the spatial variations of random error in GLEAM, FLDAS, and MEP actual
evapotranspiration (AET) demonstrate that their broad uncertainty patterns were strongly
influenced by the underlying vegetation cover as well as the accuracy of the reference
forcing dataset [41]. The performances of these three products showed regional divergence.
To leverage the strengths of each individual product, we derived a merged ET through the
ETC method by assigning weights to different individual products. The weights for the
three products are shown in Figures A3–A5.

Figure 6 illustrates the global distribution of the merged ET. The merged ET displayed
a similar spatial distribution to the original products, with lower values observed in South
America (excluding the Southwest) compared to FLDAS, particularly in regions dominated
by forests. Additionally, the merged ET exhibited fluctuations in the Southern Hemisphere.
In the Northern Hemisphere, the merged ET, along with the GLEAM and FLDAS products,
showed fluctuating trends, whereas the MEP product did not.
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3.3. Assessment of AET Products and Merged ET
3.3.1. Assessment of AET Products

To gain a deeper understanding of the disparities between merged ET and the original
products, Figure 7 presents the spatial distribution of differences in Kling–Gupta efficiency
(KGE) values across various geographical zones. The performance of merged ET exhibited
regional variations.
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Figure 7. In situ comparison of three gridded products and merged ET. Maps showing the differ-
ence in the Kling–Gupta efficiency (KGE) metric between three gridded products and merged ET,
calculated using observations at flux tower sites in different geographical zones: North America
(NA), Europe (EU), Asia (AS), and rest of the world (RW). (a–c) show the KGE difference between
(a) GLEAM, (b) FLDAS, and (c) MEP compared to merged ET. Blue (red) tones indicate an improve-
ment (degradation) in merged ET compared to the respective gridded products.

In North America (NA), which has the largest number of FLUXNET tower sites,
merged ET demonstrated a superior performance compared to the original products,
particularly for GLEAM (improving at 59.4% of sites) and FLDAS (enhancing at 77.5% of
sites), while MEP exhibited improvement at 35.5% of sites. Notably, the KGE values of
merged ET and in situ data mostly reached 0.5 in NA (refer to Figure A2), indicating the
reliability of merged ET in this region.

In Europe (EU), merged ET outperformed the original products across the majority of
flux tower stations, with all stations showing improvements of approximately 60% or more.
This improvement extended to stations situated in relatively arid southern regions.

However, in Asia (AS) and the rest of the world (RW), the performance of merged ET
closely mirrored that of the original products, with KGE values mostly around 0.3 when
compared to in situ data.

For the analysis of the performance of the three original products and their merged
ET under different vegetation covers, Kling–Gupta efficiency (KGE) values of the four
products with in situ data were calculated and are presented in Figure 8. The merged ET
demonstrated improvement over the original products across almost all vegetation covers,
particularly in forests and croplands. Among the original products, FLDAS exhibited the
highest KGE value (0.57), possibly due to its specific characteristics. However, none of the
products showed consistently satisfactory results when compared to in situ data for tundra
vegetation cover.
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3.3.2. Uncertainties Compared to In Situ Data under Different Vegetation Covers

The multi-year average monthly mean actual evapotranspiration (AET) of GLEAM,
FLDAS, MEP, and merged ET under various vegetation covers is illustrated in Figure 9,
revealing noticeable variations in AET among different vegetation covers. Furthermore,
each product exhibited varying AET values for the same vegetation cover. Consequently,
this study proceeds to assess the uncertainty of these three products across different
vegetation covers.

In general, the median AET order across different vegetation covers for the four
products was as follows: savanna > croplands > forest > grassland > shrubland > tun-
dra. Additionally, FLDAS demonstrated the highest values among the four products in
croplands, grassland, forest, and tundra, whereas MEP exhibited the highest values in
shrubland and savanna.

Moreover, the results from the statistical comparison, illustrated in Figure 10 and
Table A1, highlight the independent accuracy of the four AET products across diverse vege-
tation covers at each selected site. On average, the outcomes from grassland and shrubland
vegetation covers exhibited the highest agreement between flux tower measurements and
Merged ET. Specifically, they exhibited R2 values of 0.6633 and 0.6380, MAE values of
11.9154 and 7.1514, RMSE values of 19.1637 and 11.0493, and SI values of 0.8070 and 0.6290,
respectively, followed by tundra, croplands, savanna, and forest.

In conclusion, the merged ET product consistently demonstrated significant improve-
ments in R2 across various vegetation types compared to individual products. Notably, it
showed substantial improvements in shrubland areas, achieving the highest R2 (0.6380) and
SI (0.6290) as well as the lowest MAE and RMSE values, surpassing GLEAM, FLDAS, and
MEP. In grasslands, merged ET performed comparably to FLDAS, with similar R2 values
(0.6633 and 0.6648, respectively), both outperforming GLEAM and MEP. Although it was
slightly lower than MEP in croplands, merged ET still exhibited superior performance, with
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the highest R2 (0.6836) and SI (0.8574), along with lower MAE (16.5585) and RMSE (24.1886).
In savanna and tundra biomes, merged ET performed competitively with GLEAM and
MEP, demonstrating superior accuracy compared to FLDAS. Even in forested areas, where
performance is typically challenging, merged ET exhibited substantial improvements, with
the highest R2 (0.4352) compared to GLEAM and MEP. Specifically, merged ET excelled
in tundra, forest, grassland, and shrubland areas. These findings underscore the efficacy
of merged ET in enhancing accuracy across diverse vegetation covers, establishing it as a
valuable dataset for understanding spatial dynamics in evapotranspiration.
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Figure 10. Comparison of the physical accuracy of GLEAM, FLDAS, MEP, and merged ET with flux
tower measurements, assessed by (a) the coefficient of determination (R2), (b) the mean absolute
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indicator (SI).



Remote Sens. 2024, 16, 2484 15 of 25

4. Discussion
4.1. Evaluation of Merged ET and Individual Products

Overall, among the individual products, GLEAM exhibited the best performance
globally. GLEAM utilizes the Priestley–Taylor equation as its core algorithm to estimate
potential evapotranspiration (PET), which is then converted to actual evapotranspiration
(AET). This approach outperformed FLDAS and MEP, which utilize the Priestley–Means
and Maximum Entropy Production methods, respectively [42].

The median AET order across different vegetation covers for the three individual
products and merged ET was as follows: savanna > croplands > forest > grassland >
shrubland > tundra. This finding aligns with the results of Dong et al. [43] and Zhang
et al. [44]. However, Peel et al. noted that the mean annual AET tends to be higher in
non-forested catchments compared to forested catchments [25], but this study shows that
shrubland, grassland, and tundra have lower AET values than forest. This phenomenon
may be attributed to Peel’s studies categorizing vegetation covers as either forested or
non-forested without further subdividing the non-forested vegetation covers. The varying
evapotranspiration values among different subcategories within the non-forested classifica-
tion might have influenced the results. FLDAS exhibited the highest value in croplands
and forests, whilst Elnashar et al. [37] proved that FLDAS products overestimated AET
values across croplands and forests. Merged ET addresses this issue by assigning a weight
to FLDAS, mitigating the overestimation effect.

The performance of merged ET compared to the original products showed regional
divergence. In NA and EU, merged ET demonstrated substantial improvement relative
to the original products, whereas, in AS and RW, merged ET performed similarly to the
original products. The limited number of in situ validation sites in AS and RW relative to
NA and EU may restrict thorough validation of its reliability.

Taken together, our findings suggest that the choice of input forcings and of core
algorithm are crucial factors in determining the accuracy of AET estimates, particularly
in regions with complex vegetation covers. Furthermore, obtaining merged ET through
individual products is feasible in NA and EU regions. However, further analysis and
validation are required in future studies for regions with fewer in situ sites, such as AS
and RW.

4.2. The Effect of the Uncertainty

Plant transpiration (Tr), soil evaporation (Es), and canopy interception (Ei) are com-
puted individually in GLEAM and FLDAS [33,45]. In contrast, MEP exclusively calculates
plant transpiration (Tr) and soil evaporation (Es) separately [35]. Both Tr and Es are cal-
culated using a series of stress factors to constrain the Priestley–Taylor (PT) potential
evapotranspiration equation [31], while the Ei is calculated separately using the Gash
model [46,47] in GLEAM. FLDAS computes potential evapotranspiration (PET) using
the Penman approach, with Tr, Es, and Ei calculated using different stress factors to con-
strain PET [48]. MEP employs the Maximum Entropy Production method formulation
(Appendix A) for AET calculation. As a result, these three products employ diverse method-
ologies for calculating AET, thereby adhering to the assumption of evapotranspiration
components (ETC).

The results from the Extended Triple Collocation (ETC) method reveal varying lev-
els of uncertainty among the three ET products across different vegetation covers. The
MEP product demonstrated acceptable uncertainty in croplands, forests, savannas, and
grasslands. GLEAM yielded satisfactory results in most vegetation covers, while FLDAS
performs well in forests and grasslands. However, no single ET product excels across
all vegetation covers, including the FLUXCOM versions. This could be attributed to the
systematic errors in in situ flux tower measurements, as discussed by Fang et al. [49]. The
uncertainty in modeled ET estimates can be attributed to various factors, including the uti-
lization of multiple input-forcing products and algorithms, as highlighted by Cao et al. [50].
The MEP model relies solely on readily available input variables, which helps to mitigate
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the issue of oversensitivity to air temperature, a common problem in many evaporation
models, as mentioned by Isabelle et al. [51]. This could explain the excellent performance
of MEP in forest vegetation cover. It is worth noting that net radiation (Rn) plays a crucial
role in the MEP model for calculating AET. Rn can be directly influenced by forestry and
natural disturbances, as Halim et al. [52] discussed. This may contribute to MEP’s satisfying
performance in croplands.

The GLEAM model employs Priestley–Taylor (PT) equations to calculate evaporation,
with a PT coefficient α that takes different values for tall or short vegetation, as explained
by Wu et al. [53]. However, this coefficient is fixed for tall or short vegetation, which may
lead to deviations in forest and shrubland vegetation cover. Additionally, limitations in
retrieving surface soil moisture from space in densely forested regions pose challenges
for products that rely on soil moisture data. This is evident in GLEAM’s relatively poorer
performance in forested areas compared to other vegetation covers [54]. On the other hand,
the poor performance of FLDAS is attributed to bias introduced by the forcing data and its
downscaling [55].

The performance of merged ET in reducing uncertainty compared to the original
products varies across different regions and vegetation covers. Merged ET demonstrates
satisfactory performance in NA and EU regions. Significant improvements are observed
in merged ET compared to the original products, particularly in forests and cropland
vegetation covers with higher KGE values. This allows researchers to obtain superior ET
products across different regions and vegetation covers, especially in regions with fewer in
situ sites.

4.3. Comparison with Other Studies and Application

The results indicate that the merged ET derived from the ETC method effectively
reduces uncertainty in ET estimates across North America (NA), Europe (EU), and various
vegetation covers such as tundra, forest, grassland, and shrubland. These findings align
with previous studies. For instance, He et al. [56] found a slight improvement in the
correlation coefficient (less than 0.025) when comparing Merged ET to GLEAM in China,
whereas our study shows a more substantial overall improvement. Similarly, Jongmin
et al. [57] evaluated ERA5-Land, GLDAS, and MERRA2 over East Asia and observed that
the merged ET of three signal products showed improvement, with RMSE decreasing by
1 to 13 mm/month, which aligns with the findings of this study. However, there have
been relatively few studies of this nature, and they often focus on a limited number of
products across specific regions without considering different vegetation covers. To our
knowledge, this paper is the first to explore the uncertainty of GLEAM, FLDAS, and MEP
under various vegetation covers, not only selecting but also generating ET products for
ungauged areas using global data.

This study underscores the significant potential of utilizing evapotranspiration (ET)
estimation methods to enhance ET assessments in ungauged regions using multiple readily
available global ET products. Actual ET datasets have been extensively employed in hydro-
meteorological applications, such as water resources management, weather forecasting,
and predictions of hydroclimate extremes [58–61]. However, ground-based methodologies
are typically used to validate ET estimates at specific sites due to their limited spatial
coverage. Scaling up ET estimates to larger spatial extents relies on the use of ET models.
With the rapid evolution of remote sensing technology, numerous ET algorithms have been
developed for regional ET estimation. This paper offers valuable insights for researchers
studying areas where direct ET measurements are lacking, highlighting the importance
of integrating multiple global ET products to improve the accuracy and reliability of ET
assessments in these regions.

4.4. Limitations and Future Works

The results of our in situ data comparison indicate that the merged ET derived from the
ETC method effectively mitigates uncertainty in ET estimates in NA and EU regions, and
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various vegetation covers, including tundra, forest, grassland, shrubland, and particularly
forest and cropland. However, the performance of the merged ET is somewhat limited by
the quality of the products used for merging. This underscores the potential for further
enhancing the ETC method by selecting ET products with superior performance based
on prior knowledge before merging. Previous studies have highlighted the strengths and
weaknesses of different model algorithms [62–64]. For example, the GLEAM product esti-
mates ET using diagnostic models (e.g., Priestley–Taylor equation), which requires minimal
prior data on soil and vegetation characteristics for estimating energy balance components.
However, the GLEAM product is predominantly influenced by radiation, meteorological
factors, and vegetation variables, often neglecting soil moisture constraints [65,66] that are
crucial for regulating plant transpiration. In contrast, FLDAS products derived from the
Land Surface Model (LSM) are constrained by soil moisture [67].

To match the resolution of vegetation cover dataset, we uniformly resampled the ET
products to 0.5◦ using the nearest-neighbor interpolation method in Matlab. Additionally,
Gloria et al. found that some ET remote sensing products showed less uncertainty at
coarse resolutions, but higher uncertainty at finer resolutions [68]. However, Zhu et al. [69]
showed that, after resampling the MOD16 (generated through an improved Penman
Monteith algorithm), SSEBop (generated based on the Simplified Surface Energy Balance
model), and Advanced Very High Resolution Radiometer (AVHRR) products to 0.25◦, their
accuracy decreased. In future research, we hope to investigate the impact of different
spatial scales on product uncertainty.

This study assigns different weights to individual total evapotranspiration products
to obtain the merged ET. However, the partitioning of evapotranspiration components is
influenced by vegetation cover, as increases in leaf area index (LAI) reduce incoming solar
radiation reaching the soil surface, thereby decreasing soil evaporation and regulating the
allocation of ET components [70–72]. Apart from the ETC method evaluated in this study,
various other merging methods can significantly reduce uncertainty in ET products [73–75].
Exploring how to estimate ET components using different merging methods and reducing
ET uncertainty presents a promising direction for future research.

5. Conclusions

Developing robust global products poses a considerable challenge. This study investi-
gates the capability of the ETC method to estimate the uncertainty of three AET products
(GLEAM, FLDAS, and MEP) globally, without requiring prior information, and quantifies
their uncertainty across different vegetation covers. Subsequently, based on the results of
ETC, a merged ET is derived by combining the ET from multiple products on a monthly
scale. Furthermore, the performance of the three original products and the merged ET is
compared across 645 sites globally.

In terms of the best-performing ET representation, GLEAM covers the most significant
area, accounting for 39.1% based on the correlation coefficient criterion and 39.9% based
on the error variation criterion. Meanwhile, FLDAS and MEP exhibit similar performance
characteristics. However, when considering different vegetation covers, the results indicate
that only some products outperform others in specific vegetation covers.

By leveraging the strengths of each individual product, we obtained a merged ET
through the ETC method by assigning weights to different individual products. The
comparison with in situ sites revealed the potential of the merged ET to mitigate uncertainty
in ET estimates in NA and EU regions and various vegetation covers, including tundra,
forest, grassland, and shrubland. In essence, the ETC method combined with the merging
approach proved to be highly effective in obtaining a superior ET product, surpassing the
performance of any individual source ET products in these regions and vegetation covers.
It paves the way for enhancing the accuracy of large-scale evapotranspiration datasets.
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Appendix A

Formulation of the Maximum Entropy Production Method:
Under the constraint of the surface energy balance, the minimization of the dissipation

or entropy production function (A1) yields a distinct partitioning of net radiation (Rn) into
latent heat (LE), sensible heat (H), and ground heat (G) fluxes. This formulation produces
solutions as follows [76,77]:

LE + H + G = Rn (A1)

σ(Ts, qs) =
λ2

cpRv

qs

T2
S

(A2)

B(σ) = 6(

√
1 +

11
36

σ − 1) (A3)

LE = B(σ)H (A4)

G =
B(σ)

σ

Is

I0
H|H|−

1
6 (A5)

where σ(Ts, qs) is a dimensionless parameter characterizing the phase change-related state
of the evaporating surface; Ts is the skin surface temperature; qs is the surface specific
humidity; λ is the vaporization heat of liquid water; cp is the specific heat of air under
constant pressure; Rv is the gas constant of water vapor; I0 is the concise expression of the
H-independent coefficient; and Is characterizes a thermal property of the soil varying with
moisture content.

Two distinct versions of the MEP (Maximum Entropy Production) model are proposed
for bare soil surface and vegetation, respectively [34,51], as follows:

Evaporation (Es) from the bare soil surface:

Es =
LE
λ

(A6)

When considering a completely vegetated surface, G is approximately 0.

Ev =
Rn

1 + B−1(σs)

1
λ

(A7)

σs = ηs
λ2

cpRv

qs

T2
s

(A8)
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where ηs characterizes the effect of the openness of stomatal apertures on the transport of
water vapor, satisfying the given condition.

Finally, the total ET is:
ET = (1 − fv)Es + fvEv (A9)

where the fv is the fraction of vegetation cover, varying between 0 (bare soil) and 1 (fully
vegetated).

Here, the vegetation cover set is categorized into six dominant land use classes
(Figure A1) for smoothly characterizing the spatial error structure in AET products.
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between merged ET and flux tower sites data in different geographical zones: North America (NA),
Europe (EU), Asia (AS), and rest of the world (RW). Blue (red) tones indicate accuracy (inaccuracy) in
merged ET compared to in situ data.
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Figure A5. The weight of FLDAS product in evapotranspiration merging.

The monthly mean values of the four products from 2003 to 2018 are illustrated in
Figure A6. Generally, they exhibit similar seasonality, with lower ET values occurring in
November, December, January, and February, as well as a peak in July. ET values begin to
increase in February, reaching their highest point in July, reflecting peak vegetation activity
during summer and reduced activity in winter (Figure A6). It is observed that FLDAS
generally shows the highest values, except during summer, whereas MEP tends to have
the lowest values across different seasons (Figure A7). Seasonal variations show more
pronounced fluctuations in spring and summer compared to the relatively stable conditions
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in autumn and winter. The merged product demonstrates consistency with the three source
products throughout these seasonal dynamics.
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Table A1. Statistical analysis of GLEAM, FLDAS, MEP, and merged ET in comparison with flux tower
measurements.

Biome Types Dataset R2 MAE
(mm/mon)

RMSE
(mm/mon) SI

Tundra

GLEAM 0.4774 22.3898 30.8501 0.8916
FLDAS 0.5214 28.8692 38.4059 0.8228

MEP 0.5463 21.2863 30.9052 0.8731
Merged ET 0.5603 18.8669 27.8232 0.8704
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Table A1. Cont.

Biome Types Dataset R2 MAE
(mm/mon)

RMSE
(mm/mon) SI

Forest

GLEAM 0.1568 24.3116 29.2547 0.2556
FLDAS 0.1032 31.8802 38.9362 0.8553

MEP 0.0687 22.5617 29.9345 0.6543
Merged ET 0.2527 23.9891 29.0292 0.8614

Savanna

GLEAM 0.4279 23.5890 33.1950 0.8523
FLDAS 0.3318 29.7965 42.0997 0.9003

MEP 0.3565 28.4786 36.0082 0.8528
Merged ET 0.4352 23.7498 33.0523 0.8777

Grassland

GLEAM 0.5806 13.4673 21.2547 0.8039
FLDAS 0.6648 11.6636 19.0468 0.7642

MEP 0.5596 15.3106 21.4564 0.7289
Merged ET 0.6633 11.9154 19.1637 0.8070

Shrubland

GLEAM 0.0271 21.6798 51.5772 0.5767
FLDAS 0.6241 7.6778 11.4932 0.5064

MEP 0.2390 16.4039 22.6190 0.5252
Merged ET 0.6380 7.1514 11.0493 0.6290

Croplands

GLEAM 0.6664 15.1924 21.4366 0.8105
FLDAS 0.5567 24.7039 33.2429 0.8043

MEP 0.6836 17.8241 24.2335 0.8159
Merged ET 0.6002 16.5585 24.1886 0.8574

All types

GLEAM 0.5222 18.4798 27.3480 0.8418
FLDAS 0.5587 23.8607 32.9354 0.8281

MEP 0.5848 18.0764 25.8383 0.8541
Merged ET 0.5939 16.4510 24.5225 0.8743

References
1. Xue, J.; Lei, J.; Chang, J.; Zeng, F.; Zhang, Z.; Sun, H. A causal structure-based multiple-criteria decision framework for evaluating

the water-related ecosystem service tradeoffs in a desert oasis region. J. Hydrol. Reg. Stud. 2022, 44, 101226. [CrossRef]
2. Wang, S.; Chang, J.; Xue, J.; Sun, H.; Zeng, F.; Liu, L.; Liu, X.; Li, X. Coupling behavioral economics and water management

policies for agricultural land-use planning in basin irrigation districts: Agent-based socio-hydrological modeling and application.
Agric. Water Manag. 2024, 298, 108845. [CrossRef]

3. Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic
variability. Rev. Geophys. 2012, 50, RG2005. [CrossRef]

4. Du, S.; Liang, C.; Sun, H.; Wang, K.; Wang, J.; Li, H.; Xue, J.; Chen, F.; Tuo, Y.; Disse, M. Evaluating the potential benefits of float
solar photovoltaics through the water footprint recovery period. J. Clean. Prod. 2024, 446, 141399. [CrossRef]

5. Lu, M.; Sun, H.; Cheng, L.; Li, S.; Qin, H.; Yi, S.; Zhang, H.; Zhang, W. Heterogeneity in vegetation recovery rates post-flash
droughts across different ecosystems. Environ. Res. Lett. 2024, 19, 074028. [CrossRef]

6. Miralles, D.G.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.; Hirschi, M.; Martens, B.; Dolman, A.J.; Fisher, J.B. The
WACMOS-ET project–Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842.
[CrossRef]

7. Xue, B.-L.; Wang, L.; Li, X.; Yang, K.; Chen, D.; Sun, L. Evaluation of evapotranspiration estimates for two river basins on the
Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [CrossRef]

8. Huang, Q.; Qin, G.; Zhang, Y.; Tang, Q.; Liu, C.; Xia, J.; Chiew, F.H.S.; Post, D. Using Remote Sensing Data—Based Hydrological
Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments. Water Resour. Res. 2020, 56, e2020WR028205.
[CrossRef]

9. Zhang, Y.; Chiew, F.H.S.; Liu, C.; Tang, Q.; Xia, J.; Tian, J.; Kong, D.; Li, C. Can Remotely Sensed Actual Evapotranspiration
Facilitate Hydrological Prediction in Ungauged Regions Without Runoff Calibration? Water Resour. Res. 2020, 56, e2019WR026236.
[CrossRef]

10. Blöschl, G.; Bierkens MF, P.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.G.;
Sivapalan, M.; et al. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrol. Sci. J. 2019, 64,
1141–1158. [CrossRef]

11. Li, Z.W.; Yu, Q.G.; Jiu, X.Y.; Tha, P.U.K.; Pierre, G.; Yu, C.B. Uncertainties Caused by Resistances in Evapotranspiration Estimation
Using High-Density Eddy Covariance Measurements. J. Hydrometeorol. 2020, 21, 1349–1365.

https://doi.org/10.1016/j.ejrh.2022.101226
https://doi.org/10.1016/j.agwat.2024.108845
https://doi.org/10.1029/2011RG000373
https://doi.org/10.1016/j.jclepro.2024.141399
https://doi.org/10.1088/1748-9326/ad5570
https://doi.org/10.5194/hess-20-823-2016
https://doi.org/10.1016/j.jhydrol.2013.04.005
https://doi.org/10.1029/2020WR028205
https://doi.org/10.1029/2019WR026236
https://doi.org/10.1080/02626667.2019.1620507


Remote Sens. 2024, 16, 2484 23 of 25

12. Yin, L.; Wang, X.; Feng, X.; Fu, B.; Chen, Y. A Comparison of SSEBop-Model-Based Evapotranspiration with Eight Evapotranspi-
ration Products in the Yellow River Basin, China. Remote Sens. 2020, 12, 2528. [CrossRef]

13. Li, X.; Long, D.; Han, Z.; Scanlon, B.R.; Sun, Z.; Han, P.; Hou, A. Evapotranspiration estimation for Tibetan Plateau headwaters
using conjoint terrestrial and atmospheric water balances and multisource remote sensing. Water Resour. Res. 2019, 55, 8608–8630.
[CrossRef]

14. Ma, N.; Szilagyi, J.; Zhang, Y. Calibration-Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally.
Water Resour. Res. 2021, 57, e2021WR029691. [CrossRef]

15. Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P.; Sitch, S.; Shi, H.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E. Evaluation of global
terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling.
Hydrol. Earth Syst. Sci. 2020, 24, 1485–1509. [CrossRef]

16. Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res.
Ocean. 1998, 103, 7755–7766. [CrossRef]

17. McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors
and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [CrossRef]

18. Awange, J.L.; Ferreira, V.G.; Forootan, E.; Khandu; Andam-Akorful, S.; Agutu, N.; He, X. Uncertainties in remotely sensed
precipitation data over Africa. Int. J. Climatol. 2016, 36, 303–323. [CrossRef]

19. Dong, J.; Lei, F.; Wei, L. Triple collocation based multi-source precipitation merging. Front. Water 2020, 2, 498793. [CrossRef]
20. Wu, Y.; Guo, L.; Zheng, H.; Zhang, B.; Li, M. Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau.

Sci. Total Environ. 2019, 660, 1555–1564. [CrossRef]
21. Khan, M.S.; Liaqat, U.W.; Baik, J.; Choi, M. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotran-

spiration products using an extended triple collocation approach. Agric. For. Meteorol. 2018, 252, 256–268. [CrossRef]
22. Kim, S.; Pham, H.T.; Liu, Y.Y.; Marshall, L.; Sharma, A. Improving the combination of satellite soil moisture data sets by

considering error cross correlation: A comparison between triple collocation (TC) and extended double instrumental variable
(EIVD) alternatives. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7285–7295. [CrossRef]

23. Guo, L.; Wu, Y.; Zheng, H.; Zhang, B.; Fan, L.; Chi, H.; Yan, B.; Wang, X. Consistency and uncertainty of gridded terrestrial
evapotranspiration estimations over China. J. Hydrol. 2022, 612, 128245. [CrossRef]

24. Xu, T.; Guo, Z.; Xia, Y.; Ferreira, V.G.; Liu, S.; Wang, K.; Yao, Y.; Zhang, X.; Zhao, C. Evaluation of twelve evapotranspiration
products from machine learning, remote sensing and land surface models over conterminous United States. J. Hydrol. 2019,
578, 124105. [CrossRef]

25. Peel, M.C.; McMahon, T.A.; Finlayson, B.L. Vegetation impact on mean annual evapotranspiration at a global catchment scale.
Water Resour. Res. 2010, 46, W09508. [CrossRef]

26. Xia, Y.; Hobbins, M.T.; Mu, Q.; Ek, M.B. Evaluation of NLDAS-2 evapotranspiration against tower flux site observations. Hydrol.
Process. 2015, 29, 1757–1771. [CrossRef]

27. Volk, J.M.; Huntington, J.L.; Melton, F.S.; Allen, R.; Anderson, M.; Fisher, J.B.; Kilic, A.; Ruhoff, A.; Senay, G.B.; Minor, B. Assessing
the accuracy of OpenET satellite-based evapotranspiration data to support water resource and land management applications.
Nat. Water 2024, 2, 193–205. [CrossRef]

28. Hong, S.; Deng, H.; Zheng, Z.; Deng, Y.; Chen, X.; Gao, L.; Chen, Y.; Liu, M. The influence of variations in actual evapotranspiration
on drought in China’s Southeast River basin. Sci. Rep. 2023, 13, 21336. [CrossRef] [PubMed]

29. Ippolito, M.; De Caro, D.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Estimating crop coefficients and actual evapotranspiration
in citrus orchards with sporadic cover weeds based on ground and remote sensing data. Irrig. Sci. 2023, 41, 5–22. [CrossRef]

30. Qingming, W.; Shan, J.; Jiaqi, Z.; Guohua, H.; Yong, Z.; Yongnan, Z.; Xin, H.; Haihong, L.; Lizhen, W.; Fan, H. Effects of vegetation
restoration on evapotranspiration water consumption in mountainous areas and assessment of its remaining restoration space. J.
Hydrol. 2022, 605, 127259. [CrossRef]

31. Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest,
N.E. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [CrossRef]

32. Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather
Rev. 1972, 100, 81–92. [CrossRef]

33. McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data
assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 170012. [CrossRef]

34. Hajji, I.; Nadeau, D.F.; Music, B.; Anctil, F.; Wang, J. Application of the maximum entropy production model of evapotranspiration
over partially vegetated water-limited land surfaces. J. Hydrometeorol. 2018, 19, 989–1005. [CrossRef]

35. Yang, Y.; Sun, H.; Zhu, M.; Wang, J.; Zhang, W. An R package of maximum entropy production model to estimate 41 years of
global evapotranspiration. J. Hydrol. 2022, 614, 128639. [CrossRef]

36. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85.
[CrossRef]

37. Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of global actual evapotranspiration from 1982 to 2019. Earth Syst. Sci.
Data 2021, 13, 447–480. [CrossRef]

https://doi.org/10.3390/rs12162528
https://doi.org/10.1029/2019WR025196
https://doi.org/10.1029/2021WR029691
https://doi.org/10.5194/hess-24-1485-2020
https://doi.org/10.1029/97JC03180
https://doi.org/10.1002/2014GL061322
https://doi.org/10.1002/joc.4346
https://doi.org/10.3389/frwa.2020.00001
https://doi.org/10.1016/j.scitotenv.2019.01.119
https://doi.org/10.1016/j.agrformet.2018.01.022
https://doi.org/10.1109/TGRS.2020.3032418
https://doi.org/10.1016/j.jhydrol.2022.128245
https://doi.org/10.1016/j.jhydrol.2019.124105
https://doi.org/10.1029/2009WR008233
https://doi.org/10.1002/hyp.10299
https://doi.org/10.1038/s44221-023-00181-7
https://doi.org/10.1038/s41598-023-48663-8
https://www.ncbi.nlm.nih.gov/pubmed/38049499
https://doi.org/10.1007/s00271-022-00829-4
https://doi.org/10.1016/j.jhydrol.2021.127259
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.1175/1520-0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2
https://doi.org/10.1038/sdata.2017.12
https://doi.org/10.1175/JHM-D-17-0133.1
https://doi.org/10.1016/j.jhydrol.2022.128639
https://doi.org/10.5194/hess-6-85-2002
https://doi.org/10.5194/essd-13-447-2021


Remote Sens. 2024, 16, 2484 24 of 25

38. Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier,
A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved
algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [CrossRef]

39. Koppa, A.; Rains, D.; Hulsman, P.; Poyatos, R.; Miralles, D.G. A deep learning-based hybrid model of global terrestrial evaporation.
Nat. Commun. 2022, 13, 1912. [CrossRef]

40. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [CrossRef]

41. Badgley, G.; Fisher, J.B.; Jiménez, C.; Tu, K.P.; Vinukollu, R. On uncertainty in global terrestrial evapotranspiration estimates from
choice of input forcing datasets. J. Hydrometeorol. 2015, 16, 1449–1455. [CrossRef]

42. Liu, H.; Xin, X.; Su, Z.; Zeng, Y.; Lian, T.; Li, L.; Yu, S.; Zhang, H. Intercomparison and evaluation of ten global ET products at site
and basin scales. J. Hydrol. 2023, 617, 128887. [CrossRef]

43. Dong, Z.; Hu, H.; Wei, Z.; Liu, Y.; Xu, H.; Yan, H.; Chen, L.; Li, H.; Khan, M.Y.A. Estimating the actual evapotranspiration of
different vegetation types based on root distribution functions. Front. Earth Sci. 2022, 10, 893388. [CrossRef]

44. Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water
Resour. Res. 2001, 37, 701–708. [CrossRef]

45. Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation
by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [CrossRef]

46. Gash, J. An analytical model of rainfall interception by forests. Q. J. R. Meteorolog. Soc. 1979, 105, 43–55. [CrossRef]
47. Valente, F.; David, J.; Gash, J. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using

reformulated Rutter and Gash analytical models. J. Hydrol. 1997, 190, 141–162. [CrossRef]
48. Ek, M.; Mitchell, K.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of Noah land surface

model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos.
2003, 108, 8851. [CrossRef]

49. Fang, H.; Wei, S.; Jiang, C.; Scipal, K. Theoretical uncertainty analysis of global MODIS, CYCLOPES, and GLOBCARBON LAI
products using a triple collocation method. Remote Sens. Environ. 2012, 124, 610–621. [CrossRef]

50. Cao, M.; Wang, W.; Xing, W.; Wei, J.; Chen, X.; Li, J.; Shao, Q. Multiple sources of uncertainties in satellite retrieval of terrestrial
actual evapotranspiration. J. Hydrol. 2021, 601, 126642. [CrossRef]

51. Isabelle, P.E.; Viens, L.; Nadeau, D.; Anctil, F.; Wang, J.; Maheu, A. Sensitivity analysis of the maximum entropy production
method to model evaporation in boreal and temperate forests. Geophys. Res. Lett. 2021, 48, e2020GL091919. [CrossRef]

52. Halim, M.A.; Chen, H.Y.; Thomas, S.C. Stand age and species composition effects on surface albedo in a mixedwood boreal forest.
Biogeosciences 2019, 16, 4357–4375. [CrossRef]

53. Wu, J.; Feng, Y.; Zheng, C.; Zeng, Z. Dense flux observations reveal the incapability of evapotranspiration products to capture the
heterogeneity of evapotranspiration. J. Hydrol. 2023, 622, 129743. [CrossRef]

54. Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Colliander, A.; Halverson, G.; Tu, K.; Famiglietti, J.S. SMAP soil moisture improves global
evapotranspiration. Remote Sens. Environ. 2018, 219, 1–14. [CrossRef]

55. Stettz, S.; Zaitchik, B.F.; Ademe, D.; Musie, S.; Simane, B. Estimating variability in downwelling surface shortwave radiation in a
tropical highland environment. PLoS ONE 2019, 14, e0211220. [CrossRef] [PubMed]

56. He, Y.; Wang, C.; Hu, J.; Mao, H.; Duan, Z.; Qu, C.; Li, R.; Wang, M.; Song, X. Discovering Optimal Triplets for Assessing the
Uncertainties of Satellite-Derived Evapotranspiration Products. Remote Sens. 2023, 15, 3215. [CrossRef]

57. Jongmin, P.; Jongjin, B.; Minha, C. Triple collocation-based multi-source evaporation and transpiration merging. Agric. For.
Meteorol. 2023, 331, 109353.

58. Jie, Y.; Qin, H.; Jia, B.; Tian, M.; Lou, S.; Liu, G.; Huang, Y. A multiscale attribution framework for separating the effects of cascade
and individual reservoirs on runoff. Sci. Total Environ. 2024, 933, 172784. [CrossRef]

59. Shahid, M.; Cong, Z.; Zhang, D. Understanding the impacts of climate change and human activities on streamflow: A case study
of the Soan River basin, Pakistan. Theor. Appl. Climatol. 2018, 134, 205–219. [CrossRef]

60. Li, X.; Zhang, W.; Vermeulen, A.; Dong, J.; Duan, Z. Triple collocation-based merging of multi-source gridded evapotranspiration
data in the Nordic Region. Agric. For. Meteorol. 2023, 335, 109451.

61. Sun, H.; Sun, X.; Chen, J.; Deng, X.; Yang, Y.; Qin, H.; Chen, F.; Zhang, W. Different types of meteorological drought and their
impact on agriculture in Central China. J. Hydrol. 2023, 627, 130423.

62. Ershadi, A.; McCabe, M.; Evans, J.; Wood, E.F. Impact of model structure and parameterization on Penman–Monteith type
evaporation models. J. Hydrol. 2015, 525, 521–535. [CrossRef]

63. Melo, D.; Anache, J.; Borges, V.; Miralles, D.; Martens, B.; Fisher, J.; Nóbrega, R.; Moreno, A.; Cabral, O.; Rodrigues, T. Are remote
sensing evapotranspiration models reliable across South American ecoregions? Water Resour. Res. 2021, 57, e2020WR028752.
[CrossRef]

64. Michel, D.; Jiménez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.; Fisher, J.B.; Mu, Q. The
WACMOS-ET project–Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth
Syst. Sci. 2016, 20, 803–822. [CrossRef]

65. Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and
global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [CrossRef]

https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1038/s41467-022-29543-7
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1175/JHM-D-14-0040.1
https://doi.org/10.1016/j.jhydrol.2022.128887
https://doi.org/10.3389/feart.2022.893388
https://doi.org/10.1029/2000WR900325
https://doi.org/10.1029/95JD02165
https://doi.org/10.1002/qj.49710544304
https://doi.org/10.1016/S0022-1694(96)03066-1
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1016/j.rse.2012.06.013
https://doi.org/10.1016/j.jhydrol.2021.126642
https://doi.org/10.1029/2020GL091919
https://doi.org/10.5194/bg-16-4357-2019
https://doi.org/10.1016/j.jhydrol.2023.129743
https://doi.org/10.1016/j.rse.2018.09.023
https://doi.org/10.1371/journal.pone.0211220
https://www.ncbi.nlm.nih.gov/pubmed/30802255
https://doi.org/10.3390/rs15133215
https://doi.org/10.1016/j.scitotenv.2024.172784
https://doi.org/10.1007/s00704-017-2269-4
https://doi.org/10.1016/j.jhydrol.2015.04.008
https://doi.org/10.1029/2020WR028752
https://doi.org/10.5194/hess-20-803-2016
https://doi.org/10.1016/j.rse.2007.04.015


Remote Sens. 2024, 16, 2484 25 of 25

66. Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspira-
tion from 1983 to 2006. Water Resour. Res. 2010, 46, W09522. [CrossRef]

67. Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich,
M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [CrossRef]

68. Ezenne, G.I.; Eyibio, N.U.; Tanner, J.L.; Asoiro, F.U.; Obalum, S.E. An overview of uncertainties in evapotranspiration estimation
techniques. J. Agrometeorol. 2023, 25, 173–182.

69. Wenbin, Z.; Shengrong, T.; Jiaxing, W.; Shaofeng, J.; Zikun, S. Multi-scale evaluation of global evapotranspiration products
derived from remote sensing images: Accuracy and uncertainty. J. Hydrol. 2022, 611, 127982.

70. Gu, C.; Ma, J.; Zhu, G.; Yang, H.; Zhang, K.; Wang, Y.; Gu, C. Partitioning evapotranspiration using an optimized satellite-based
ET model across biomes. Agric. For. Meteorol. 2018, 259, 355–363. [CrossRef]

71. He, Y.; Yu, H.; Ozaki, A.; Dong, N.; Zheng, S. Influence of plant and soil layer on energy balance and thermal performance of
green roof system. Energy 2017, 141, 1285–1299. [CrossRef]

72. Lian, X.; Piao, S.; Huntingford, C.; Li, Y.; Zeng, Z.; Wang, X.; Ciais, P.; McVicar, T.R.; Peng, S.; Ottlé, C. Partitioning global land
evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Chang. 2018, 8, 640–646. [CrossRef]

73. Hobeichi, S.; Abramowitz, G.; Evans, J.; Ukkola, A. Derived Optimal Linear Combination Evapotranspiration (DOLCE): A global
gridded synthesis ET estimate. Hydrol. Earth Syst. Sci. 2018, 22, 1317–1336. [CrossRef]

74. Shao, X.; Zhang, Y.; Liu, C.; Chiew, F.H.; Tian, J.; Ma, N.; Zhang, X. Can indirect evaluation methods and their fusion products
reduce uncertainty in actual evapotranspiration estimates? Water Resour. Res. 2022, 58, e2021WR031069. [CrossRef]

75. Yao, Y.; Liang, S.; Li, X.; Chen, J.; Liu, S.; Jia, K.; Zhang, X.; Xiao, Z.; Fisher, J.B.; Mu, Q. Improving global terrestrial evapotranspi-
ration estimation using support vector machine by integrating three process-based algorithms. Agric. For. Meteorol. 2017, 242,
55–74. [CrossRef]

76. Wang, J.; Bras, R. A model of evapotranspiration based on the theory of maximum entropy production. Water Resour. Res. 2011,
47, W03521. [CrossRef]

77. Wang, J.; Bras, R.L. A model of surface heat fluxes based on the theory of maximum entropy production. Water Resour. Res. 2009,
45, W11422. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1029/2009WR008800
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1016/j.agrformet.2018.05.023
https://doi.org/10.1016/j.energy.2017.08.064
https://doi.org/10.1038/s41558-018-0207-9
https://doi.org/10.5194/hess-22-1317-2018
https://doi.org/10.1029/2021WR031069
https://doi.org/10.1016/j.agrformet.2017.04.011
https://doi.org/10.1029/2010WR009392
https://doi.org/10.1029/2009WR007900

	Introduction 
	Materials and Methods 
	Data Sources 
	Extended Triple Collocation (ETC) Method 
	Evapotranspiration Merging 
	Statistical Analysis 
	Flowchart 

	Results 
	Uncertainties in AET Datasets based on ETC Approach 
	Spatial Consistency of AET Products Globally 
	Correlation Coefficient Distribution of AET Products 
	Best Performing ET Products on Each Grid 
	Uncertainty under Different Vegetation Coverages 

	Merged ET Dataset and the Trends 
	Assessment of AET Products and Merged ET 
	Assessment of AET Products 
	Uncertainties Compared to In Situ Data under Different Vegetation Covers 


	Discussion 
	Evaluation of Merged ET and Individual Products 
	The Effect of the Uncertainty 
	Comparison with Other Studies and Application 
	Limitations and Future Works 

	Conclusions 
	Appendix A
	References

