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Abstract: Long-term (1982–2019) satellite climate data records (CDRs) of aerosols and clouds, reanaly-
sis data of meteorological fields, and machine learning techniques are used to study the aerosol effect
on deep convective clouds (DCCs) over the global oceans from a climatological perspective. Our
analyses are focused on three latitude belts where DCCs appear more frequently in the climatology:
the northern middle latitude (NML), tropical latitude (TRL), and southern middle latitude (SML).
It was found that the aerosol effect on marine DCCs may be detected only in NML from long-term
averaged satellite aerosol and cloud observations. Specifically, cloud particle size is more susceptible
to the aerosol effect compared to other cloud micro-physical variables (e.g., cloud optical depth).
The signature of the aerosol effect on DCCs can be easily obscured by meteorological covariances
for cloud macro-physical variables, such as cloud cover and cloud top temperature (CTT). From a
machine learning analysis, we found that the primary aerosol effect (i.e., the aerosol effect without
meteorological feedbacks and covariances) can partially explain the aerosol convective invigoration in
CTT and that meteorological feedbacks and covariances need to be included to accurately capture the
aerosol convective invigoration. From our singular value decomposition (SVD) analysis, we found
the aerosol effects in the three leading principal components (PCs) may explain about one third of
the variance of satellite-observed cloud variables and significant positive or negative trends are only
observed in the lead PC1 of cloud and aerosol variables. The lead PC1 component is an effective mode
for detecting the aerosol effect on DCCs. Our results are valuable for the evaluation and improvement
of aerosol-cloud interactions in the long-term climate simulations of global climate models.

Keywords: aerosol indirect effect (AIE); aerosol optical thickness (AOT); deep convective cloud (DCC);
aerosol-cloud interaction (ACI); satellite observation; machine learning (ML); artificial intelligence (AI)

1. Introduction

Deep convective clouds (DCCs) play an important role in the hydrological and energy
cycles associated with atmospheric circulations, as well as in regional and local weather
and climate systems [1,2]. The formation and development of DCCs involve complicated
and entangled dynamical, thermodynamic, and micro-physical processes. As such, the
potential impacts of globally increased anthropogenic aerosols on DCCs since preindustrial
times are extremely complex and widely debated and are still the most actively studied
subject of aerosol cloud interactions (ACIs) [3–9].

One of the long-standing challenges in ACI studies is to separate the aerosol effect on
DCCs from the covariance of meteorological conditions, especially from an observational

Remote Sens. 2024, 16, 2487. https://doi.org/10.3390/rs16132487 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16132487
https://doi.org/10.3390/rs16132487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6491-3907
https://doi.org/10.3390/rs16132487
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16132487?type=check_update&version=1


Remote Sens. 2024, 16, 2487 2 of 23

perspective. Model simulations are frequently used in the literature for disentangling
the aerosol effect from the dynamical and thermodynamic effects in aerosol and DCC
interactions, e.g., [10–12]. Recently, due to the fast development of artificial intelligence (AI)
technology, machine learning (ML) techniques have begun to be applied in the study of
aerosol cloud interactions. For example, Zang et al. [13] used the artificial neural network
technique to separate the primary aerosol convective invigoration (PAI) from the covarying
meteorology-aerosol invigoration (MAI) effect on tropical DCCs over land areas by quan-
tifying the sensitivity of DCC properties to aerosol changes under fixed meteorological
conditions. They found that PAI and MAI contribute comparably in magnitudes to the
aerosol invigoration effect on tropical DCCs over land.

In this paper, we use AI-based techniques along with nearly 40 years of global satellite
climate data records (CDRs) of DCC and aerosol index (AIX) to study the aerosol effect on
DCCs from a global and long-term observational perspective. The objective is to identify
potential signatures or imprints of the aerosol effect on DCCs over the global oceans
by disentangling the aerosol micro-physical effect from the covariance of meteorological
conditions, with the help of an artificial neural network technique, in the analysis of long-
term averaged (or climatology of) aerosol and cloud variables from operational satellite
observations. The results will be beneficial for validating global long-term climate model
simulations of the interactions between aerosols and DCCs, which are still plagued with
large uncertainties in the ACI treatment for DCCs in global climate models.

2. Data

This study uses three long-term data products with climate quality. The first is
version 4.0 (v4.0) of the Advanced Very High-Resolution Radiometer (AVHRR) aerosol
optical thickness (AOT) CDR from the National Oceanic and Atmospheric Administration
(NOAA) Polar Operational Environmental Satellites (POES) and the European Meteo-
rological Operational (MetOp) satellites. The second is version 6.0 (v6.0) of the NOAA
AVHRR + High-Resolution Infrared Sounder (HIRS) Pathfinder Atmospheres-Extended
(PATMOS-x) cloud CDR product. The third is the climate forecast system reanalysis (CFSR)
product of the National Centers for Environmental Prediction (NCEP). They are described
briefly in the following.

2.1. Satellite Data

AVHRR AOT CDR v4.0 is the first satellite data used. It is available from the NOAA
CDR website (https://www.ncei.noaa.gov/products/climate-data-records/avhrr-aerosol-
opticalthickness, accessed on 1 January 2022), which is maintained and archived by the
NOAA National Centers for Environmental Information (NCEI). AVHRR AOT is derived
over the global ocean surface for λ1 = 0.63 µm and λ2 = 0.86 µm channels using a two-
channel AVHRR aerosol retrieval algorithm [14] on AVHRR clear-sky daytime reflectance.
The clear-sky reflectance is determined by the PATMOS-x AVHRR + HIRS v6.0 all-sky
reflectance and cloud probability CDR products [15]. The data time period spans from 1982
to the present, and the spatial resolution is 0.1◦ × 0.1◦ on the equal-angle latitude/longitude
grid. AOTs derived for λ1 = 0.63 µm (τ1) and λ2 = 0.86 µm (τ2) channels are used to calculate
the aerosol Angström exponent α (α = −[ln(τ1/τ2)/ln(λ1/λ2)]), which is used to further
determine the aerosol index (AIX) defined as AIX = α × τ1. AIX from 1982 to 2019 will
be used in our analysis since it is a better proxy than AOT for column aerosol number
concentration [16–18].

The second satellite product used is AVHRR + HIRS PATMOS-x cloud CDR v6.0. It is
a level-2b product on 0.1◦ × 0.1◦ equal-angle latitude/longitude grid [19,20], which is re-
trieved using the inter-calibrated AVHRR global area coverage (GAC) radiances collocated
with the HIRS radiances on the same satellite platforms of NOAA POES and the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/MetOp [21–23].
The intercalibrated and collocated AVHRR + HIRS GAC radiances are also cross-calibrated
with more advanced National Aeronautics and Space Administration (NASA) moderate
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resolution imaging spectroradiometer (MODIS) radiances [24–26]. The data can be down-
loaded from the NOAA CDR website (https://www.ncei.noaa.gov/products/climate-
data-records/avhrr-hirs-cloud-properties-patmos, accessed on 5 January 2022). Six cloud
variables are available and used in our analysis: cloud particle effective radius (CPER),
cloud optical depth (COD), ice water path (IWP), cloud cover fraction (CCF), cloud top
height (CTH), and cloud top temperature (CTT). These variables are output together with
the inter- and cross-calibrated and collocated AVHRR + HIRS radiances along with selected
ancillary data (e.g., surface types) as the level-2b daily CDR products, which allow other
CDRs to be derived and generated from the PATMOS-x CDR data for more applications
(such as the AOT CDR introduced above). Ice phase clouds are identified by cloud type
flags in PATMOS-x cloud CDR [23,27]. In the current study, our focus is on DCCs which are
determined from PATMOS-x ice phase clouds through a two-step filtering [28]. Only the
data after 1982 is used in this study, as there are many missing observations in the first three
years (1979–1981) of collocated AVHRR + HIRS data records. Thirty-eight years (1982–2019)
of daily products from the AVHRR aerosol index and PATMOS-x AVHRR + HIRS cloud
CDRs are averaged to obtain both monthly and long-term mean values, which are used in
our study.

2.2. Reanalysis Data

The third dataset used in our analysis is the NCEP CFSR monthly mean product
(ftp://nomads.ncdc.noaa.gov/CFSR/HP_monthly_means/, accessed on 5 January 2022)
with a latitude and longitude resolution of 0.5◦ × 0.5◦. Specifically, we selected 19 meteoro-
logical fields from the CFSR reanalysis, which are relevant and important to the formation
and development of DCCs. The selected meteorological fields include surface convective
available potential energy (CAPE) in J/kg, precipitable water of atmospheric column (PW)
in kg/m2, relative humidity (RH) in percentage in atmospheric column (RHclm), at 850 mb
and 400 mb pressure levels (RH850 and RH400), and at 2 m altitude (RH2m), vertical velocity
(ω) in Pa/s at 850 mb and 400 mb pressure levels (ω850 and ω400) and at 0.995 sigma
vertical coordinate level (ωsig995), U and V components of horizontal wind vectors in m/s
at 10 m altitude (U10m and V10m), at 850 mb (U850 and V850), and 400 mb (U400 and V400)
pressure levels, and atmospheric temperature in K at 850 mb and 400 mb pressure levels
(T850 and T400) and at 2 m altitude (T2m). U and V components at 700 mb and 400 mb
pressure levels are used to compute the vertical shear of horizontal wind (VSHW) between
the two pressure levels for the middle troposphere using VSHW = [(U700 − U400)2 +
(V700 − V400)2]1/2/(700 − 400). NCEP CFSR was designed and executed as a global,
high-resolution, coupled atmosphere–ocean–land surface–sea ice system to provide the
best estimate of the state of these coupled domains over the period from 1979 to present [29].
The selected meteorological variables from CFSR monthly mean products are averaged
from January 1982 to December 2019 in order to obtain long-term mean values (or clima-
tology). Both monthly and long-term averaged values of these meteorological variables
are interpolated into the same spatial resolution (0.1◦ × 0.1◦) as the above satellite cloud
and aerosol CDR products. Twenty-six variables (1 aerosol, 6 cloud, and 19 meteorology)
introduced above and used in the following analysis are summarized in Table 1.

Table 1. One aerosol, six cloud, and nineteen meteorological variables used in our analyzing study.

Variables Note

Aerosol AIX Satellite Observation

Cloud CPER, COD, IWP, CCF, CTH, CTT Satellite Observation

Meteorology CAPE, PW, RHclm, RH850, RH400, RH2m, T850, T400, T2m, U850, U400,
U10m, V850, V400, V10m, ω850, ω400, ωsig995, VSHW CFSR Reanalysis

https://www.ncei.noaa.gov/products/climate-data-records/avhrr-hirs-cloud-properties-patmos
https://www.ncei.noaa.gov/products/climate-data-records/avhrr-hirs-cloud-properties-patmos
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3. Approaches of Analysis

First, we used the SHapley Additive exPlanation (SHAP) approach [30–32], an explain-
able machine learning technique, to explore the nonlinear correlation among the six cloud
variables (CPER, COD, IWP, CCF, CTH, and CTT) as well as their nonlinear correlation
with AIX and the selected 19 CFSR meteorological variables. Specifically, we used Python’s
Extreme Gradient Boosting (XGBoost) nonlinear regression model for prediction and used
the SHAP Python analysis package for interpretation [33–35]. This combination is powerful
for understanding machine learning-based nonlinear regression model prediction and can
tell us how each input variable has contributed to an individual prediction. By aggregating
SHAP values, we can also understand trends across multiple predictions. Here, SHAP
values refer to Shapley values applied to a conditional expectation function of a machine
learning regression mode. The essence of a Shapley value is to measure the contributions
to the final outcome from each player separately among the coalition while preserving
the sum of contributions as equal to the final collective outcome. For a machine learning
model, this means that SHAP values of all the input variables will always sum up to the
difference between the baseline (expected) model output and the current model output for
the prediction being explained.

The objective of our SHAP analysis is to identify the potential aerosol effect on DCCs
(simply called the aerosol indirect effect [AIE] hereafter). DCCs appear more frequently
over the three latitude belts over oceans as shown in Figure 1: the tropical latitude belt
(TRL) of 15◦S–15◦N, the northern middle latitude belt (NML) of 30◦N–60◦N, and the
southern middle latitude belt (SML) of 30◦S–60◦S. CCF shows the highest value over the
tropical convergence zones in TRL due to strong convections. There are also relatively high
CCF values in the NML and SML storm corridors over the Northern Pacific Ocean, the
Northern Atlantic Ocean, the Southern Indian Ocean, and the Southern Atlantic Ocean,
where mesoscale convective cloud systems (MCS) are active. CCF values are relatively low
in the subtropical latitudes of both hemispheres, prevailing with subsidence motions. Thus,
the SHAP analysis that is able to interpret the nonlinear dependence of correlated multiple
variables was applied first to the above three latitude belts over the oceans to find the AIE
signature of DCCs.
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Figure 1. Distributions of cloud variable cloud cover fraction (CCF) of deep convective clouds (DCCs)
for its long-term (1982–2019) averaged monthly mean values over the global oceans. The three
latitude belts, the tropical latitude belt (TRL) of 15◦S–15◦N, northern middle latitude belt (NML)
of 30◦N–60◦N, and southern middle latitude belt (SML) of 30◦S–60◦S, where DCCs appear more
frequently, are marked by the three long rectangle boxes in red color.
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A statistical analysis was then performed for the three latitude belts to derive the
relationships of cloud variables with AIX and meteorological variables and to find the
sensitive regime of AIX for the AIE of DCCs. To better explain the statistical relationships of
cloud variables with AIX and meteorological variables, a back-propagation neural network
(BPNN) model was employed to examine the AIE and the covariance of meteorological
conditions, which still plagues the ACI studies based on satellite observations. Specifically,
the BPNN model is used to perform nonlinear fitting in this study. At present, the BPNN
model is commonly used to resolve complicated and non-linear problems in many fields
due to its adaptive and self-learning abilities [13,36–38]. Thus, we developed this simple
BPNN model to fit the changing relationship of a cloud variable with the increase of AIX.
The relationship is determined by binning the cloud and meteorological variables according
to AIX with 0.01 incremental interval. Since the BPNN model is specifically used to fit
the changing relationship of a cloud variable with the increase of AIX, all the available
data are used for training. We invested considerable time into optimizing the BPNN
model, including selecting activation functions, tuning hyperparameters, and examining
overfitting. This BPNN model includes one input layer, one hidden layer, and one output
layer as shown in Figure 2. Tanh and Sigmoid activation functions are used for input and
output layers, respectively. The learning rate, which is a hyperparameter of the BPNN
model, is set at 0.5 based on optimal tests for minimizing the cost function of the nonlinear
fit. There are 20 input variables (AIX and the 19 CFSR meteorological fields introduced in
the above Section 2) and the predicted output is one of the six cloud variables of DCC. The
hidden layer includes eight nodes. The training was performed with 15,000 iterations to
achieve a mean squared error (MSE) of fitting less than 10−5.
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Figure 2. Schematic diagram of the three-layer (input, hidden, output) back-propagation neural
network (BPNN) model.

Last, we performed singular value decomposition (SVD) analysis [39–41] on six cloud
variables (CPER, COD, IWP, CCF, CTH, and CTT) versus AIX, respectively. SVD decom-
poses a matrix into three matrices: U (left singular vectors), Σ (singular values), and V
(right singular vectors), revealing the principal components (PCs) which are the directions
of maximum variance in the data. These components are used for dimensionality reduction,
noise reduction, and data interpretation. Since SVD examines the coupled variability of
two fields (e.g., CPER and AIX), it will identify those modes of behavior in which the
variations of the two fields are strongly coupled. Thus, the aerosol effect of cloud variables
can be examined for the major coupled modes, which are also named as the major principal
components of SVD analysis. Although SVD analysis has been widely used in the study
of large-scale climate dynamics e.g., [39–41], to our knowledge, this is the first time it has
been used to analyze the climate effects of aerosol and cloud interactions primarily at a
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small scale. The annual mean values of AIX and the six cloud variables from 1982 to 2019
over the global oceans were used in the SVD analysis.

4. Results
4.1. Correlation Relationship

Figure 3 shows a nonlinear correlation matrix from the SHAP analysis for the annual
mean values of six DCC variables (CPER, COD, IWP, CCF, CTH, and CTT) from 1982 to
2019 over the three latitude belts defined in Figure 1. We use the annual mean values of the
cloud variables rather than the monthly mean values because the former is much less noisy
than the latter. The three micro-physical variables (CPER, COD, IWP) show the highest
positive/negative correlation (or P-/N-Corr. hereafter) in TLR, which is slightly reduced
in NML and is further reduced in SML. The N-Corr. of COD and IWP in TRL and NML
turns to small P-Corr. in SML. For the three macro-physical variables (CCF, CTH, CTT),
CTH and CTT show extremely high (−1.0), high (−0.9), and moderate (−0.7) N-Corr. in
TRL, NML, and SML, respectively, which suggests that convection is the strongest in TRL
and gradually reduced in NML and SML since a stronger convection results in a higher
DCC convective tower which has a colder cloud top. CCF shows relatively low P-/N-
Corr. with CTH/CTT, and the absolute values of the correlation coefficients are generally
less than 0.4 and gradually decrease from TRL to SML and NML. Between the micro-
and macro-physical cloud variables, CPER, COD, and IWP show moderate P-/N-Corr.
with CCF in TLR but low P-/N-Corr. in SML and NML, and the absolute values of the
correlation coefficients are generally less than 0.5. CPER and IWP show relatively high,
moderate, and low P-/N-Corr. with CTH/CTT in SML, NML, and TLR, respectively. The
correlation coefficients of COD with CTH/CTT are −0.3/0.3 in TLR, 0.1/−0.2 in NML, and
0.2/0.07 in SML. These correlation information between the cloud variables will facilitate
our interpretation of the subsequent results from the SHAP, BPNN, and SVD analyses.
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Figure 3. Nonlinear correlation matrix of six deep convective cloud (DCC) variables (cloud particle
effective radius [CPER], cloud optical depth [COD], ice water path [IWP], cloud cover fraction [CCF],
cloud top height [CTH], and cloud top temperature [CTT]) in the three latitude belts defined in
Figure 1. The numbers are correlation coefficients.

For the prediction of a cloud variable (e.g., CPER) from the XGBoost nonlinear regres-
sion predictive model with 20 input variables (AIX and the 19 meteorological variables
listed in Table 1), we calculated SHAP value for each input variable (which can be negative
or positive for each of the variables) across all the grid points for their annual mean data
from 1982 to 2019. Then, we took the mean of the absolute SHAP values, as we did not
want positive and negative values to offset each other, and plotted them in Figure 4, which
shows three bar plots of absolute SHAP values of 20 input variables for CPER prediction
in the three latitude belts defined in Figure 1. There is one bar for each input variable.
A longer bar means that its corresponding variable is more important for the prediction
of cloud variable CPER. For NML (Figure 4a), the three most important variables for the
CPER prediction are AIX, VSHW, and RH850. The most significant contribution is from
AIX, which suggests that AIE should be able to manifest easily in the changes of CPER for
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marine DCCs of MCS and should not be obscured by meteorological covariances. For TRL
(Figure 4b), the three most important variables are CAPE, ω400, and RH400, which suggests
that AIE has difficulty manifesting in the changes of CPER for tropical marine DCCs, as the
meteorological covariances associated with strong tropical convections can easily conceal
the aerosol effect on the DCCs. For SML (Figure 4c), the three most important variables
are PWclm, VSHW, and CAPE, which also suggests that AIE has difficulty manifesting in
the changes of CPER for marine DCCs of MCS over the southern middle latitude oceans,
where moisture is abundant and aerosol loading is lower than in the northern hemisphere
(NH), its counterpart. Thus, meteorological covariances may easily obscure AIE on the
CPER of DCCs over SML.
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Since AIE may only manifest in NML, we will focus our following analyses on NML.
We also performed SHAP analysis for the other five cloud variables (COD, IWP, CCF,
CTH, and CTT) in addition to CPER, and the three most important input variables for the
prediction of the five cloud variables on NML are summarized in Table 2 together with
those for CPER. We can see that the AIE signature may still be able to manifest for the other
two observed cloud micro-physical variables (COD and IWP), albeit not as evidently as it
does for CPER, since AIX is the second and third important variable for the prediction of
COD and IWP, respectively. AIE can be easily obscured by meteorological covariances for
the three macro-physical cloud variables (CCF, CTH, and CTT) since AIX is not even one
of the three most important variables. Wind and moisture fields in the upper troposphere
(UT) are most important for the prediction of CCF. Temperature, wind, and moisture fields
in UT are critical for the prediction of CTH. Temperature field in UT, convective energy and
moisture supply near the surface are critical for the CTT prediction.

Figure 5 shows the waterfall plot of SHAP values for the CPER in NML, which adds
more information compared to the bar plot of Figure 4. The 20 arrow bars represent E[f(x)]
− f(x) for the 20 individual variables. For example, AIX increased the predicted CPER
SHAP value by +0.66 but T400 reduced the predicted CPER by −0.38. The difference
between E[f(x)] and f(x) equals the summation of the SHAP values of the 20 variables.
The differences between the SHAP values tell us how the variables have contributed
collectively to the prediction of CPER when compared to their averaged prediction. A large
positive/negative SHAP value difference indicates that the corresponding variable had a
significant positive/negative impact on the CPER prediction. We can see AIX and CAPE
have the most important positive contribution to the predicted CPER while T400 provides
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the most important negative contribution, which is newly added information compared to
Figure 4.

Table 2. The three most important input aerosol and meteorological variables in the SHapley Additive
exPlanation (SHAP) analysis and their corresponding absolute mean SHAP values for the six cloud
variables in the northern middle latitude (NML). The aggregated SHAP value of the 20 variables for
each cloud variable is also listed.

Cloud Variable
(Aggregated SHAP Value)

1st Important
(SHAP Value)

2nd Important
(SHAP Value)

3rd Important
(SHAP Value) Notes

CPER
(3.26)

AIX
(0.72)

VSHW
(0.35)

RH850
(0.24) AIE may manifest easily

COD
(5.07)

T850
(1.04)

AIX
(0.44)

RH400
(0.43) AIE may not manifest easily

IWP
(60.49)

RH400
(7.87)

VSHW
(7.51)

AIX
(6.20) AIE may not manifest easily

CCF
(0.02307)

V400
(0.00406)

RH400
(0.00403)

U400
(0.00395) AIE may be concealed

CTH
(0.63)

T400
(0.52)

U400
(0.11)

RH400
(0.10) AIE may be concealed

CTT
(2.93)

T400
(0.53)

CAPE
(0.44)

RH2m
(0.31) AIE may be concealed
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Figure 5. Waterfall plot of SHapley Additive exPlanation (SHAP) values for cloud particle effective
radius (CPER) prediction in the northern middle latitude (NML). E[f(x)] = 20.458 is the average (or
baseline value) of predicted values of CPER from 20 variables for their individual mean values (given
in the caption of vertical coordinate) over all grid points. f(x) = 21.524 is the collectively predicted
value of CPER from 20 variables over all grid points. The arrow bars show the differences between
E[f(x)] and f(x) for individual variables. The difference between E[f(x)] and f(x) equals the summation
of 20 SHAP value differences of the variables.
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Figure 6 presents a heatmap of SHAP values of the 20 variables over all the grid
points in NML for CPER prediction, which provides information for individual grid points
(instances) as well as the mean value of all the grids (dark bars on the right side). The
f(x) curve is the predicted CPER over all the grid points. We can see that AIX makes the
most important positive contribution for CPER prediction over all the grid points in NML.
There seem to exist two regimes, with the first one on the left side at about instance 800 and
the second one on the right. The SHAP values for the meteorological variables are very
different in these two regimes (most of their positive/negative signs are even reversed),
but AIX is nearly always the most important positive contributor in these two regimes,
which suggests that the AIE of DCCs should be able to manifest easily in the CPER change
over the oceans of NML. Even though we still do not know why there are two regimes
for most of the meteorological variables, this feature suggests that the effect of most of the
meteorological variables on CPER is not monotonic and can be positive or negative, while
the effects of AIX on CPER are mainly positive. Further in-depth analysis is needed in our
future work to find out the exact causes of the two regimes.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 24 
 

 

between E[f(x)] and f(x) for individual variables. The difference between E[f(x)] and f(x) equals the 
summation of 20 SHAP value differences of the variables. 

Figure 6 presents a heatmap of SHAP values of the 20 variables over all the grid 
points in NML for CPER prediction, which provides information for individual grid 
points (instances) as well as the mean value of all the grids (dark bars on the right side). 
The f(x) curve is the predicted CPER over all the grid points. We can see that AIX makes 
the most important positive contribution for CPER prediction over all the grid points in 
NML. There seem to exist two regimes, with the first one on the left side at about instance 
800 and the second one on the right. The SHAP values for the meteorological variables are 
very different in these two regimes (most of their positive/negative signs are even re-
versed), but AIX is nearly always the most important positive contributor in these two 
regimes, which suggests that the AIE of DCCs should be able to manifest easily in the 
CPER change over the oceans of NML. Even though we still do not know why there are 
two regimes for most of the meteorological variables, this feature suggests that the effect 
of most of the meteorological variables on CPER is not monotonic and can be positive or 
negative, while the effects of AIX on CPER are mainly positive. Further in-depth analysis 
is needed in our future work to find out the exact causes of the two regimes. 

 
Figure 6. Heatmap of SHapley Additive exPlanation (SHAP) values of 20 variables over all the grid 
points (instances) in the northern middle latitude (NML) for cloud particle effective radius (CPER) 
prediction, which provides information for individual instances as well as their mean value for all 
the instances (dark bars on the right side). f(x) line is the predicted CPER over all the grids. Color 
bar on the right-hand side indicates the sign and magnitude of SHAP values. 

4.2. Separating Entangled Effects in the Sensitive Regime of AIE 
To find out how cloud variables change with the increase of aerosol loading, we 

binned the six cloud variables (CPER, IWP, COD, CCF, CTT, and CTT) according to AIX 
with 0.01 incremental intervals. The first AIX bin, which is different from the other AIX 

Figure 6. Heatmap of SHapley Additive exPlanation (SHAP) values of 20 variables over all the grid
points (instances) in the northern middle latitude (NML) for cloud particle effective radius (CPER)
prediction, which provides information for individual instances as well as their mean value for all
the instances (dark bars on the right side). f(x) line is the predicted CPER over all the grids. Color bar
on the right-hand side indicates the sign and magnitude of SHAP values.

4.2. Separating Entangled Effects in the Sensitive Regime of AIE

To find out how cloud variables change with the increase of aerosol loading, we
binned the six cloud variables (CPER, IWP, COD, CCF, CTT, and CTT) according to AIX
with 0.01 incremental intervals. The first AIX bin, which is different from the other AIX
bins, is specifically set from 0 to 0.05 in order to contain sufficient sample numbers. The
mean values for individual bins are computed and displayed as the black line with dots
for CPER, CCF, and CTH in Figure 7 for NML as an example. The black vertical bars on
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the black dots are the corresponding standard errors for each bin. The sampling numbers
for individual bins are also displayed with a dashed black curve in Figure 7a. We can see
the sample numbers are large enough that the standard errors are very small, except in
the bins at the two end sides, where the sample numbers are smaller than about 200 and
caution needs to be taken when interpreting the observed features. However, the standard
deviation (not shown here to avoid a busy plot) of individual bins can be much larger than
its standard error. This is because the standard deviation in a bin represents the spread
of the large sample numbers in the bin while the corresponding standard error shows the
range in which the average value falls with high probability. We can see the large variations
of the cloud variables are mainly observed between 0.05 and 0.32 of AIX and most of the
sample numbers also fall in this AIX range. Thus, the range of AIX from 0.05 to 0.32 is the
potential regime (or sensitive regime) where the aerosol effect on DCCs might manifest.
We can also see there is an AIX threshold (~0.18), below which CPER increases with AIX
increase and above which CPER decreases with AIX increase until reaching AIX~0.32. Then,
CPER levels off with fluctuations due to relatively small sample numbers. The variation
tendency of IWP with AIX increase is very similar to that of CPER due to their strong
positive correlation in the NML as shown in Figure 3b. For a similar reason, the variation
tendency of COD with AIX increase is inversely similar to that of CPER, as COD and CPER
are clearly anticorrelated (see Figure 3b). For CCF, it decreases from a peak at AIX~0.06 to a
minimum at AIX ~ 0.12. It then increases to the second peak at AIX~0.21 and decreases
to the second minimum at AIX~0.32. It gradually levels off with fluctuations beyond
AIX~0.32. For CTH, there is also an AIX threshold (~0.20) that CTH increases with AIX
increase below this threshold, then decreases with AIX increase after passing this threshold
until it reaches AIX~0.32. Afterwards, CTH levels off with fluctuations and relatively large
standard errors. CTT also has similar, albeit reversed variations to CTH due to their strong
negative correlation as observed in Figure 3b.
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The above changing tendency of the cloud variables with AIX increase in the sensitive 
regime of aerosol effect is entangled with meteorological feedbacks and covariances (see 
Zhao and Foster [28]). Here, we used the machine learning BPNN model introduced in 
Section 3 for a regression analysis in order to separate the entangled effects. First, for each 
of the cloud variables, we use AIX and 19 meteorological variables listed in Table 1 as the 

Figure 7. Statistic relationships (black curves) of (a) cloud particle effective radius (CPER), (b) cloud
cover fraction (CCF), and (c) cloud top height (CTH) with aerosol index (AIX) derived from their
long-term (1982–2019) averaged values in the northern middle latitude (NML) along with the fitting
curves from the machine learning back-propagation neural network (BPNN) model with different
input variables: AIX + 19 meteorological variables (red curves), AIX + 6 meteorological variables
(brown curves), AIX + constant 19 meteorological variables (green curves), and solely the AIX variable
(blue curves). Black dots and the vertical bars are the mean values and the standard errors of cloud
variables, respectively, for individual AIX bins.

The above changing tendency of the cloud variables with AIX increase in the sensitive
regime of aerosol effect is entangled with meteorological feedbacks and covariances (see
Zhao and Foster [28]). Here, we used the machine learning BPNN model introduced in
Section 3 for a regression analysis in order to separate the entangled effects. First, for each
of the cloud variables, we use AIX and 19 meteorological variables listed in Table 1 as the
input of the BPNN model to fit the black curves displayed in Figure 7 for AIX bins (red
curves). Then, we reduced 19 meteorological variables to six variables (CAPE, PW, RHclm,
T850, ω400, and VSHW), which are the most important for DCC formation and development,
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and repeated the BPNN fitting (brown curves). We also fixed 19 meteorological variables
to their values in the first AIX bin (0.0–0.05, the cleanest scenario) of Figure 7 to perform
BPNN fitting as a case with AIX increasing in a constant meteorological condition (green
curves). Last, only AIX was used as the input variable to perform BPNN fitting as the most
extreme case without the feedbacks and covariances of the meteorological condition (blue
curves). The selection of 20 input variables for the BPNN model is based on our experience
and previous studies, e.g., [3,10,13]. The selection of the six most important aerosol and
meteorological variables used in one of our study cases follows Zang et al. [13], which
suggests these six variables are critical for studying the aerosol indirect effect on DCCs.

Only the results for CPER, CCF, and CTH from the BPNN fitting are shown in
Figure 7 as examples, since the results of IWP (or COD) are similar (or reversely simi-
lar) to CPER and the results of CTT are reversely similar to CTH due to their strong positive
or negative correlations, as observed in Figure 3. We can see that for the cloud micro-
physical variable CPER (Figure 7a), the cases of aerosol-only (blue curve) and aerosol with
constant meteorological condition (green curve) can generally capture the basic variation
(such as the hump-type shape centered at AIX~0.18) observed in the original data but
miss the exact magnitude and the detailed variations. When 6 meteorological variables
are added, the resulting fitting curve (brown) becomes much closer to the original curve.
When 19 meteorological variables are included, the fitting curve (red) almost completely
overlaps with the original curve. This suggests the primary aerosol effect (the aerosol effect
without meteorological feedback) may capture basic CPER variation with AIX increase.
The meteorological feedbacks to the primary aerosol effect and the covariances of meteoro-
logical condition need to be included to capture the detailed CPER variations accurately.
For the macro-physical cloud variable CCF (Figure 7b), the primary aerosol effect cannot
reproduce the first peak of CPER at AIX~0.06 but partially captures the second CPER peak
at AIX~0.21 and the follow-on variations. This suggests that the first peak is probably
solely due to the meteorological covariance, or it may be a spurious feature due to limited
sample numbers at the low end of the AIX bins. Further study is warranted in a future
work to find out the real cause. The second peak is due to both the primary aerosol effect
and the corresponding meteorological feedback and covariance. For CTH (Figure 7c), the
convective invigoration peaked at AIX~0.20 can only be partially captured by the primary
aerosol effect (blue and green curves). The corresponding meteorological feedback and
covariance need to be included for a more complete capture of the CTH variations (brown
and red curves).

4.3. Coupled Analysis of Aerosol Effect on Cloud Variables

The above SHAP correlation analysis suggests that the aerosol effect on DCCs man-
ifests more easily in NML than in the other two latitude belts (TRL and SML). Thus, we
specifically selected two rectangular regions in NML, where aerosol loadings are influenced
by the continental aerosols transported by offshore winds (see Figure 8), to perform SVD
analysis for the six cloud variables versus AIX. The first region (120◦E–180◦E; 30◦N–60◦N)
over the Western Pacific Ocean (WPO) is influenced by industrial pollutants and dust
particles originating from China in addition to marine aerosols, and the second region
(60◦W–0◦W; 30◦N–60◦N) over the North Atlantic Ocean (NAO) is influenced by industrial
pollutants originating from the USA and Europe along with marine aerosols.

Figure 9 shows the time series of principal components (PCs) for the first, second,
and third mode of SVD analysis in WPO for AIX versus the three cloud micro-physical
variables (CPER, COD, and IWP). For CPER versus AIX, the three leading PCs (PC1, PC2,
and PC3) explain ~34%, ~5%, and ~4% (total: 44%) of the variance, respectively, and they
are dominated by a mixture of interannual and interdecadal fluctuations. PC1 of CPER
and AIX shows a significant positive trend, PC2 shows a minor positive trend, and PC3
shows a somewhat negative trend. Pearson’s correlation coefficients between PC1 of CPER
and AIX is r = 0.70, r = 0.68 for PC2, and r = 0.74 for PC3. For COD versus AIX, PC1, PC2,
and PC3 explain ~20%, ~7%, and ~6% (total: 33%) of the variance, respectively. They also
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show a mixture of interannual and interdecadal fluctuations. PC1 of COD and AIX shows
a significant positive trend while PC2 and PC3 show a minor negative and positive trend,
respectively. The correlation coefficients of COD and AIX in PC1, PC2, and PC3 are r = 0.78,
0.73, and 0.84, respectively, and they are slightly higher than the values of the three leading
PCs of CPER versus AIX. For IWP versus AIX, PC1, PC2, and PC3 explain ~28%, ~5%, and
~4% (total: 37%) of the variance, respectively. They are also dominated by a mixture of
interannual and interdecadal oscillations. PC1 of IWP and AIX also shows a significant
and congruous negative trend while PC2 and PC3 barely show a trend. The correlation
coefficients of IWP and AIX in PC1, PC2, and PC3 are r = 0.90, 0.91, and 0.97, respectively,
and they are higher than the values of the three leading PCs of CPER (or COD) versus AIX.
Thus, the aerosol effect on DCC in WPO accounts for more variance of CPER (~44%) than
IWP (~37%) and COD (~33%). However, the signature of the aerosol effect likely manifests
more easily in the three PCs modes of IWP than in the corresponding modes of COD and
CPER, especially in the PC3 mode, due to the highest correlation coefficients of IWP and
AIX in PC1, PC2, and PC3 compared to COD and CPER. Therefore, IWP should be a more
effective cloud micro-physical variable for detecting aerosol effects on DCCs in the PC
modes of satellite observation.
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Figure 8. Long-term (1982–2019) averaged monthly mean aerosol index (AIX) over the global oceans,
which is overlaid with long-term averaged horizontal wind vectors (m/s) on the 850 mb pressure
level. Two blue rectangle boxes marked for WPO (Western Pacific Ocean) and NAO (North Atlantic
Ocean) are the two regions selected for singular value decomposition (SVD) analysis.
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Figure 9. Time series of principal components (PCs) of the first (top row), second (middle row), and
third (bottom row) singular value decomposition (SVD) mode in the Western Pacific Ocean (WPO)
region for aerosol index (AIX) and three cloud micro-physical variables: cloud particle effective
radius (CPER, left column), cloud optical depth (COD, middle column), and ice water path (IWP,
right column). The two linear trends are given by the two dash lines, and the corresponding trend
values are given by s with three, two, one, and no asterisks to indicate 99%, 95%, 90%, and less than
90% confidence levels, respectively. r values are the Pearson’s correlation coefficients between the
PCs of cloud variables and AIX. The corresponding trend values are given by s with three, two, one,
and no asterisks to indicate 99%, 95%, 90%.

Figure 10 shows the time series of SVD PCs in the WPO region for AIX versus the
three macro-physical variables (CCF, CTH, and CTT). For CCF versus AIX, PC1, PC2, and
PC3 explain ~24%, ~7%, ~5% (total: 36%) of the variance, respectively. PC1 and PC2
show a mixture of interannual and interdecadal fluctuations, while PC3 is dominated by
interannual oscillations. PC1 of CCF and AIX shows a significant and congruous negative
trend, while PC2 and PC3 barely show a trend. The correlation coefficients of CCF and
AIX in PC1, PC2, and PC3 are r = 0.83, 0.73, and 0.83, respectively. For CTH versus AIX,
PC1, PC2, and PC3 explain ~24%, ~6%, ~4% (total: 34%) of the variance, respectively. PC1
and PC2 also show a mixture of interannual and interdecadal fluctuations while PC3 is
dominated by interannual oscillations. PC1 of CTH and AIX shows a significant negative
trend while PC2 and PC3 barely show a trend. The correlation coefficients of CTH and AIX
in PC1, PC2, and PC3 are r = 0.84, 0.86, and 0.91, respectively. For CTT versus AIX, PC1,
PC2, and PC3 explain ~22%, ~6%, ~4% (total: 32%) of the variance, respectively. PC1 and
PC2 show a mixture of interannual and interdecadal fluctuations while PC3 is dominated
by interannual oscillations. PC1 of CTT and AIX shows a significant positive trend, while
PC2 and PC3 barely show a trend. The correlation coefficients of CTT and AIX in PC1,
PC2, and PC3 are r = 0.88, 0.92, and 0.89, respectively. The relatively higher correlation
coefficients of CTT (or CTH) and AIX in PC1, PC2, and PC3 than that of CCF and AIX
suggest that the signature of the aerosol effect on DCC in the three PC modes may manifest
somewhat clearer in the three PC modes of CTT (or CTH) than in the corresponding PC
modes of CCF even though the aerosol effect on DCC in WPO accounts for more variance
of CCF (~36%) than CTH (~34%) and CTT (~32%).
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Figure 10. Similar to Figure 10 but for AIX and three cloud macro-physical variables: cloud cover
fraction (CCF, left column), cloud top height (CTH, middle column), and cloud top temperature
(CTT, right column). The corresponding trend value is given by s with three and no asterisks to
indicate 99%.

Since the PC1 of AIX and the six cloud variables over the WPO displays evident
positive or negative trends in Figures 9 and 10, it is worth having a further analysis on this
changing tendency of mode 1 (or PC1 component) from SVD analysis. Table 3 summarizes
the changing tendencies of mode 1 from SVD analysis for the six DCC variables versus
AIX over the WPO. The sign of positive or negative trends of PC1 for AIX and the six
DCC variables displayed in Figures 9 and 10 are extracted and listed in rows 1 and 4 of
Table 3, respectively. The positive or negative sign of the PC1 eigenvector for AIX and the
corresponding six DCC variables are given in rows 2 and 5, respectively. As examples to
show the real meaning of a positive or negative sign of PC1 eigenvector for AIX versus
the six DCC variables, Figure 11 shows three scenarios of PC1 eigenvector distribution
over the WPO for CPER versus AIX (Figure 11a,d), CCF versus AIX (Figure 11b,e), and
COD versus AIX (Figure 11c,f). We can see the eigenvectors of CPER and AIX are positive
(the 1st scenario) over the WPO, the eigenvectors of CCF and AIX are mainly negative (the
2nd scenario), and the eigenvector of COD can be negative or positive (the 3rd scenario)
while the corresponding eigenvector of AIX is positive.

Multiplying row 4 with row 5, we can determine the changing tendency of mode 1
variance for the DCC variables (row 6), while the corresponding mode 1 changing tendency
of AIX (row 3) can be determined by multiplying row 1 with row 2. Actually, the sign of
row 1 (or 4) and row 2 (or 5) does not matter; what matters is the sign of their product in
row 3 (or row 6). We can see mode 1 of AIX (corresponding to the six DCC variables) show
consistent and congruous positive changing trend over the WPO (row 3). Correspondingly,
in row 6, CPER, IWP, CCF, and CTH show positive changing trend but the corresponding
changing trend of COD and CTT can be negative or positive. Thus, the aerosol effect on
CPER, IWP, CCF, and CTH of DCC are positive in PC1 component but can be negative or
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positive for COD and CTT (see row 7). Aerosol DCC invigoration (CTH and CCF increase in
row 6) in PC1 component is enhanced gradually due to the increase of AIX PC1 component
(in row 3) from 1982 to 2019 over the WPO.

Table 3. Summary of the linear changing tendencies of PC1 component (or mode 1) from SVD
analysis for the six DCC variables versus AIX over the Western Pacific Ocean (WPO), which indicate
if the aerosol indirect effect (AIE) on the six DCC variables is positive (enhancement/increase) or
negative (weakening/decrease) or both.

No
AIX/DCC PC1

Properties
Six DCC Variables

Comments
CPER COD IWP CCF CTH CTT

1 AIX PC1 Trend (−) P (+) (−) P (+) (+) N (−) (+) N (−) (+) N (−) (−) P (+)

(−) P (+): (from negative
to positive) Positive

trend
(+) N (−): (from positive

to negative) Negative
trend

2 AIX PC1
Eigenvector + + − − − + +: positive value

−: negative value

3 AIX PC1
Variance (−) P (+) (−) P (+) (−) P (+) (−) P (+) (−) P (+) (−) P (+) row1 × row2

4 DCC PC1 Trend (−) P (+) (−) P (+) (+) N (−) (+) N (−) (+) N (−) (−) P (+)

(−) P (+): (from negative
To positive) Positive

trend
(+) N (−): (from positive

to negative) Negative
trend

5 DCC PC1
Eigenvector + −/+ − − − −/+

+: positive value
−: negative value

−/+: negative or positive

6 DCC PC1
Variance (−) P (+)

(+) N
(−)/(−) P

(+)
(−) P (+) (−) P (+) (−) P (+)

(+) N
(−)/(−) P

(+)
row4 × row5

7 Summary P-AIE N-/P-AIE P-AIE P-AIE P-AIE N-/P-AIE N/P-AIE:
negative/positive AIE

Notes: (1) (−) P (+) means changing from negative value to positive value with a positive trend and (+) N (−) is
reversed. (2) −/+, (+) N (−)/(−) P (+), and N-/P-AIE mean can be negative or positive but negative is somewhat
dominant in the studying region. (3) Rows 1 and 4 are the PC1 trend of AIX and cloud variables extracted from
the linear regression (blue and red dish lines) in Figures 9 and 10. (4) Rows 2 and 5 are determined by examining
the distribution of PC1 Eigenvector for AIX and cloud variables as in Figure 11. (5) Sign and trend tendency of
mode 1 variance for AIX (row 3) is determined from multiplying AIX PC1 eigenvalues (row 1) with AIX PC1
eigenvectors (row 2). Similarly, sign and trend tendency of mode 1 variance for the DCC variables (row 6) is
determined from multiplying their PC1 eigenvalues (row 4) with PC1 eigenvectors (row 5).

Results in NAO are shown in Figure 12 for the three cloud micro-physical cloud
variables and AIX. The three leading PC modes for CPER versus AIX explain ~34%, ~6%,
and ~4% (total: 44%) of the variance, respectively. The corresponding values for the three
leading PC modes of IWP versus AIX are ~24%, ~6%, and ~5% (total: 35%), respectively.
Their temporal variations are similar, with interdecadal oscillations dominating in PC1 and
PC2, but interannual fluctuations are evident in PC3. Their PC1 shows a significant negative
trend, while their PC2 and PC3 show minor trends. Since the correlation coefficient of PC3
of CPER (or IWP) and AIX is above 0.95 and the corresponding values of PC1 and PC2 are
below 0.90, the aerosol effect on DCC should be easier to detect in the third SVD mode than
in the first and second modes for CPER and IWP. For COD versus AIX, the three leading
PC modes explain ~22%, ~6%, and ~5% (total: 33%) of the variance, respectively. PC1 of
AIX shows a much more significant positive trend than that of COD. Their PC2 shows a
negative trend, and PC3 shows a positive trend. The corresponding correlation coefficients
are r = 0.64, 0.89, and 0.74 for PC1, PC2, and PC3, respectively, which are generally lower
than the values of IWP (or CPER) versus AIX. Thus, the aerosol effect on DCC should be
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easier to manifest in the three leading PC modes of IWP and CPER than in those of COD
over the NAO.
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Figure 11. Examples of eigenvector distribution of empirical orthogonal function (EOF) mode 1 (or
PC1 component) from the SVD analysis over the Western Pacific Ocean (WPO) for (a) CPER versus
(d) AIX, (b) CCF versus (e) AIX, and (c) COD versus (f) AIX.

Figure 13 shows the results of SVD analysis in the NAO for the three cloud macro-
physical variables versus AIX. The three leading PC modes for CCF versus AIX explain
~19%, ~8%, and ~6% (total: 33%) of the variance, respectively. Interdecadal oscillations are
dominated in PC1 and PC2 while a mixture of interannual and interdecadal fluctuations
is the major feature in PC3. PC1 of CCF and AIX shows a much more significant positive
trend than PC2 and PC3. The correlation coefficients are r = 0.83, 0.77, and 0.88 for PC1,
PC2, and PC3, respectively. For CTH versus AIX, PC1, PC2, and PC3 explain ~24%, ~7%,
and ~6% (total: 37%) of the variance, respectively, and the corresponding values for CTT
are ~18%, ~7%, and ~6% (total: 31%). Temporal oscillations of PC1 for CTH and CTT are
similar but reversed in sign for PC2 and PC3. PC1 of CTH and AIX show a significant
negative trend but their PC2 and PC3 show a minor positive trend. PC1 of CTT and AIX
shows a much more significant negative trend than PC2 and PC3. The signature of the
aerosol effect on DCC should manifest somewhat clearer in the three leading PCs of CTT
compared to that of CTH (or CCF) since the corresponding correlation coefficients of PC1,
PC2, and PC3 for CTT versus AIX are generally above 0.9 but below 0.9 for CTH and CCF.
Thus, CTT should be a more effective cloud macro-physical variable for detecting aerosol
invigoration on DCCs in the PC modes of satellite observation over the NAO.
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shows a much more significant negative trend than PC2 and PC3. The signature of the 
aerosol effect on DCC should manifest somewhat clearer in the three leading PCs of CTT 
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Thus, CTT should be a more effective cloud macro-physical variable for detecting aerosol 
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Figure 12. Time series of principal components (PCs) of the first (top row), second (middle row), and
third (bottom row) singular value decomposition (SVD) mode in the North Atlantic Ocean (NAO)
region for aerosol index (AIX) and three cloud micro-physical variables: cloud particle effective
radius (CPER, left column), cloud optical depth (COD, middle column), and ice water path (IWP,
right column). The two linear trends are given by the two dash lines and the corresponding trend
values are given by s with three, two, one, and none asterisks to indicate 99%, 95%, 90% and less than
90% confidence level, respectively. r values are the Pearson’s correlation coefficients between PCs of
cloud variables and AIX.

We furtherly studied the changing tendency of mode 1 for AIX and the six DCC
variables over the NAO, since they also display evident positive or negative trends in
Figures 12 and 13 as in Figures 9 and 10 for WPO. The results are summarized in Table 4
for the NAO as in Table 3 for the WPO. We can see mode 1 of AIX (versus the six DCC
variables) shows a consistent positive changing tendency (row 3) from 1982 to 2019 over
the NAO. Correspondingly in row 6, CPER, IWP, and CTH show positive changing trends,
COD and CTT show negative trends, and the changing trend of CCF can be positive or
negative. As a result (row 7), the AIE of CPER, IWP and CTH of DCC are positive in PC1
component and negative for COD and CTT and can be positive or negative for CCF. DCC
invigoration (CTH increase while CTT decrease) is enhanced in PC1 component due to the
increase of AIX PC1 component from 1982 to 2019 over the NAO. Thus, the PC1 component
is an effective mode for detecting the aerosol effect on DCCs over both WPO and NAO.

By comparing the summary row 7 of Table 3 for the WPO and 4 for the NAO, we can
see that the major difference in the aerosol effect on DCCs in the PC1 component of these
two regions are in COD, CCF, and CTT. The effect on COD in the WPO can be negative or
positive but dominated by a negative effect in the NAO. The effect on CCF is positive in
the WPO but can be positive or negative in the NAO. The effect on CTT can be negative or
positive in the WPO but dominated by a negative effect in the NAO. These differences may
indicate that COD and CTT in the WPO are more sensitive to the changes in aerosols, while
CCF is more sensitive to the change of aerosols in the NAO. Further in-depth studies are
needed in the future to find out the causes of different sensitivity of COD, CCF, and CTT to
the aerosol changes in two DCC regions.
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Figure 13. Similar to Figure 13 but for aerosol index (AIX) and three cloud macro-physical variables:
cloud cover fraction (CCF, left column), cloud top height (CTH, middle column), and cloud top
temperature (CTT, right column). The corresponding trend values are given by s with three, two,
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Table 4. Similar to Table 3 but for the North Atlantic Ocean (NAO).

No
AIX/DCC PC1

Properties
6 DCC Variables

Comments
CPER COD IWP CCF CTH CTT

1 AIX PC1 Trend (+) N (−) (−) P (+) (+) N (−) (−) P (+) (+) N (−) (+) N (−)

(−) P (+): (from negative
to positive) Positive trend
(+) N (−): (from positive

to negative) Negative trend

2 AIX PC1
Eigenvector − + − + − − +: positive value

−: negative value

3 AIX Mode1
Variance (−) P (+) (−) P (+) (−) P (+) (−) P (+) (−) P (+) (−) P (+) row1 × row2

4 DCC PC1 Trend (+) N (−) (−) P (+) (+) N (−) (−) P (+) (+) N (−) (+) N (−)

(−) P (+): (from negative
to positive) Positive trend
(+) N (−): (from positive

to negative) Negative trend

5 DCC PC1
Eigenvector − − − +/− − +

+: positive value
−: negative value

+/−: positive or negative
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Table 4. Cont.

No
AIX/DCC PC1

Properties
6 DCC Variables

Comments
CPER COD IWP CCF CTH CTT

6 DCC Mode1
Variance (−) P (+) (+) N (−) (−) P (+)

(−) P
(+)/(+) N

(−)
(−) P (+) (+) N (−) Row4 × row5

7 Summary P-AIE N-AIE P-AIE P-/N-AIE P-AIE N-AIE P/N-AIE: positive/negative
AIE

Notes: (1) (−) P (+) means changing from negative value to positive value with a positive trend and (+) N (−) is
reversed. (2) +/−, (−) P (+)/(+) N (−), and P-/N-AIE mean can be positive or negative but positive is somewhat
dominant in the studying region. (3) Rows 1 and 4 are the PC1 trend of AIX and cloud variables extracted from the
linear regression as in Table 3. (4) Rows 2 and 5 are determined by examining the distribution of PC1 Eigenvector
for AIX and cloud variables as in Table 3. (5) Sign and trend tendency of Mode 1 variance for AIX (row 3) is
determined from multiplying AIX PC1 Eigenvalues (row 1) and AIX PC1 eigenvectors (row 2). Similarly, sign
and trend tendency of mode 1 variance for the DCC variables (row 6) is determined from multiplying their PC1
eigenvalues (row 4) and PC1 eigenvectors (row 5).

5. Summary and Conclusions

We performed studies of aerosol effects on DCCs over the global oceans from a
climatological perspective by using machine learning techniques and long-term (1982–2019)
satellite CDRs of aerosols and clouds and CFSR reanalysis of meteorological fields. We
combined the Python XGBoost nonlinear regression model and Python SHAP analysis
package to identify the potential AIE of DCCs in three ocean latitude belts (NML, TRL, and
SML) where DCCs appear more frequently in the climatology. It was found that AIE of
DCCs may be detected only in NML from long-term averaged satellite aerosol and cloud
observations. Specifically, the cloud micro-physical variable CPER is more susceptible to
the aerosol effect than the other two cloud micro-physical variables (COD and IWP) in NML.
At the same time, AIE signature is more easily obscured by meteorological covariances for
the three macro-physical cloud variables (CCF, CTH, and CTT) in NML. Wind and moisture
fields in the upper troposphere are most important for the prediction of cloud coverage.
Temperature, wind, and moisture fields in the UT are critical for the prediction of CTH.
Temperature field in the UT, convective energy, and moisture supplies near the surface are
critical for the CTT prediction.

Statistical relationships of cloud variables with AIX were computed to find the sensitive
regime of AIX for the AIE of DCCs, which is from AIX~0.05 to ~0.32. With the help of the
BPNN machine learning model, we tried to separate the aerosol effect from the covariances
of the meteorological feedbacks in the AIX sensitive regime. It was found that the primary
aerosol effect (the aerosol effect without meteorological feedback) only partially contributes
to the observed variations in the three cloud micro-physical variables when AIX increases.
The meteorological feedback and covariance need to be included in order to accurately
capture the observed changing tendency of the cloud micro-physical variables. There are
two peaks in the AIX sensitive regime for the cloud macro-physical variable CCF. The first
peak at AIX~0.06 is probably due to meteorological covariance or a spurious feature due to
limited sample size, whereas the second peak at AIX~0.21 is due to entangled influence of
the primary aerosol effect and the corresponding meteorological feedback and covariance.
For the cloud macro-physical variables CTH and CTT, the convective invigoration peaked
at AIX~0.20 can only be partially captured by the primary aerosol effect. The corresponding
meteorological feedback and covariance need to be included for a more complete capture
of the CTH and CTT variations. The meteorological variables CAPE, PW, RHclm, T850, ω400,
and VSHW along with aerosol variable AIX are the minimum needs to accurately capture
the observed AIE and associated meteorological feedback and covariance of DCCs.

From the SVD analysis for the six cloud variables versus AIX in the WPO and NAO
regions, we found that the aerosol effects in the three leading PC modes may explain about
one third of the variance of the six cloud variables. Significant positive or negative trends
are only observed in the PC1 of cloud and aerosol variables. In the Western Pacific Ocean
region, aerosol effect on DCCs should manifest more easily in the three PC modes of IWP
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than in the corresponding modes of CPER and COD, especially in PC3 mode, even though
the aerosol effect on DCCs accounts for more variance of CPER (~44%) than IWP (~37%)
and COD (~33%). IWP is a more effective cloud micro-physical variable for detecting
aerosol effects on DCCs in the PC modes of satellite observation. Aerosol effect on DCC
may manifest somewhat more easily in the three PC modes of CTT (or CTH) than in the
corresponding PC modes of CCF. For the Northern Atlantic Ocean region, the aerosol effect
on DCC should be manifest more easily in the three leading PC modes of IWP and CPER
than that of COD. Moreover, the aerosol effect on DCC manifests more easily in the three
leading PC modes of CTT than those of CTH (or CCF), and CTT is a more effective cloud
macro-physical variable for detecting aerosol invigoration on DCCs in the PC modes of
satellite observation. Aerosol DCC invigoration over the Western Pacific Ocean (CTH and
CCF increase) and over the Northern Atlantic Ocean (CTH increase but CTT decrease) is
enhanced in the PC1 component due to the increase of AIX PC1 component from 1982 to
2019, and the PC1 component is an effective mode for detecting the aerosol effect on DCCs.

Understanding the climate effect of aerosols on deep convective clouds is challenging
due to the nonlinear relationship between aerosols and cloud variables, as well as the
influence of meteorological factors. Existing climatological studies on the aerosol effects
on DCCs primarily rely on climate model simulations that compare a control scenario
(excluding aerosol effects) with an aerosol scenario (including aerosol effects). In contrast,
observational studies typically focus on regional, local, and instantaneous interactions
between aerosols and clouds. Assessing how these regional/local and instantaneous in-
teractions impact the long-term mean state (or climate) of clouds from an observational
perspective remains a significant challenge. In this paper, we employ three different
approaches—SHAP analysis, nonlinear fitting with a BPNN model, and SVD analysis—to
identify the signatures of aerosol effects on DCCs in long-term averaged satellite obser-
vations. This multifaceted approach is necessary because no single method is sufficient
to capture the complex picture of aerosol impacts on DCCs. By combining the insights
from these three methods, we aim to gain a better understanding of aerosol effects on
DCCs from a climatological observational perspective. We chose to focus our study on
the analysis and results rather than the three analytical tools, thus omitting many of the
optimization procedures performed for the BPNN model, SHAP analysis, and SVD anal-
ysis. We acknowledge that there is still a long way to go to achieve a comprehensive
and integrated understanding of aerosol impacts on DCCs based on long-term satellite
observations. However, our current analysis represents an initial step towards this goal.
Our results are valuable for the evaluation and improvement of aerosol-cloud interactions
in the long-term climate simulations of global climate models.
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Abbreviations
ACI(s) aerosol cloud interaction(s)
AI artificial intelligence
AIE aerosol indirect effect
AIX aerosol index
AOT aerosol optical thickness
AVHRR Advanced Very High-Resolution Radiometer
BPNN back-propagation neural network
CAPE convective available potential energy
CCF cloud cover fraction
CDR(s) climate data record(s)
CFSR climate forecast system reanalysis
COD cloud optical depth
CPER cloud particle effective radius
CTH cloud top height
CTT cloud top temperature
DCC(s) deep convective cloud(s)
EOF Empirical Orthogonal Function
EUMETSAT European Organization for the Exploitation of Meteorological Satellites
GAC global area coverage
HIRS High-resolution Infra-Red Sounder
IWP ice water path
NASA National Aeronautics and Space Administration
MCS mesoscale convective systems
MetOp Meteorological Operational Satellites
MAI covarying meteorology-aerosol invigoration
ML machine learning
MODIS Moderate-resolution Imaging Spectroradiometer
MSE mean squared error
NAO Northern Atlantic Ocean
NCEI National Centers for Environmental Information
NCEP National Centers for Environmental Prediction
NESDIS National Environmental Satellite, Data, and Information Service
NH northern hemisphere
NML northern middle latitude
NOAA National Oceanic and Atmospheric Administration
PAI primary aerosol convective invigoration
PATMOS-x Pathfinder Atmospheres-Extended
PC(s) principal component(s)
POES Polar Operational Environmental Satellites
PW precipitable water
RH relative humidity
SHAP SHapley Additive exPlanation
SML southern middle latitude
STAR Center for Satellite Applications and Research
SVD singular value decomposition
TRL tropical latitude
UT upper troposphere
VSHW vertical shear of horizontal wind
WPO Western Pacific Ocean
XGBoost extreme gradient boosting (XGBoost)
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