A Robust Tie-Points Matching Method with Regional Feature Representation for Synthetic Aperture Radar Images
Abstract
:1. Introduction
2. TPs Extraction Strategy and NCC Matching
2.1. Overall Process
- Extracting uniform interest points in the reference image, and the specific method is introduced in Section 2.2.
- Calculating a suitable template matching window for each interest point, and the design scheme of the window is introduced in Section 2.3.
- Applying the NCC sub-pixel offset search method for each overlap. After all image matching is executed, a list of correspondences for the overall region is generated.
2.2. Extraction of Interest Points
2.2.1. SAR-Harris Detector
2.2.2. Dynamic Block Division
2.2.3. Area Entropy
2.3. Adaptive NCC Template Matching
2.3.1. Principle of NCC Algorithm
2.3.2. Template Size Adaptive Determination
2.3.3. Subpixel Localization
2.4. Evaluation Criterion of TP Matching
- Reliability: The refined correspondences obtained via template matching can be used to initially measure the quality of matching based on the peak value of the similarity map and the standard deviation except for the peak value, and the threshold value of the correlation coefficient in NCC similarity matching is usually 0.2.
- Accuracy: In InSAR-DEM or SAR-DOM production, it is difficult to ensure that each image area has a stable ground control point on the surface. The manual selection of control point check will be affected by factors such as point selection error and radiation error. It cannot achieve sub-pixel accuracy check, so usually, it calculates the least squares polynomial fitting accuracy to match the relative accuracy of the results.
- Uniformity of distribution: Since the TPs need to provide robust plane position constraint relations for the neighboring images with overlapping regions where they are located, distribution uniformity needs to be ensured over the overlapping regions at the TPs in order to avoid the impact of local distortion on the transformation relations of the overall region.
3. Experiment Results
3.1. Research Areas and Experimental Environments
3.2. Analysis of Matching Accuracy and Distribution Uniformity of TPs
3.2.1. Experiment Settings
3.2.2. Experimental Results
4. Discussion
4.1. Discussion on Interest Points Generation and Template Size Determination
4.2. Discussion on DHAE Parameter Values
4.3. Discussion on Limitations of DHAE
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Xiao, R.; Jiang, M.; Li, Z.; He, X. New Insights into the 2020 Sardoba Dam Failure in Uzbekistan from Earth Observation. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102705. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Zhang, G.; Lin, M.; Deng, M.; Cui, H.; Jiang, B.; Wang, Y.; Zhu, Y.; Wang, H.; et al. Large-Scale Orthorectification of GF-3 SAR Images Without Ground Control Points for Chinas Land Area. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5221617. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Cao, C.; Zhang, Y.; Han, K.; Du, X.; Li, P.; Fu, H. Robust Helmert Variance Component Estimation for InSAR DSM Block Adjustment. IEEE Geosci. Remote Sens. Lett. 2024. [Google Scholar] [CrossRef]
- Toutin, T.; Chénier, R.; Schmitt, C.; Zakharov, I. Calibration of Radargrammetric DEMs from RADARSAT-2 High-Resolution and Fine-Quad Modes. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 5, pp. V-41–V-43. [Google Scholar]
- Zhao, R.; Zhang, G.; Deng, M.; Xu, K.; Guo, F. Geometric Calibration and Accuracy Verification of the GF-3 Satellite. Sensors 2017, 17, 1977. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Wessel, B.; Huber, M.; Roth, A. Operational TanDEM-X DEM Calibration and First Validation Results. ISPRS J. Photogramm. Remote Sens. 2012, 73, 39–49. [Google Scholar] [CrossRef]
- Farrow, N.A.; Ottensmeyer, E.P. A Posteriori Determination of Relative Projection Directions of Arbitrarily Oriented Macromolecules. J. Opt. Soc. Am. A JOSAA 1992, 9, 1749–1760. [Google Scholar] [CrossRef]
- Hueso Gonzalez, J.; Bachmann, M.; Krieger, G.; Fiedler, H. Development of the TanDEM-X Calibration Concept: Analysis of Systematic Errors. IEEE Trans. Geosci. Remote Sens. 2010, 48, 716–726. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, G.; Zhao, R.; Li, S.; Li, J. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration. Sensors 2017, 17, 2903. [Google Scholar] [CrossRef]
- Li, Z.; Bethel, J. DEM registration, alignment and evaluation for sar interferometry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 11–116. [Google Scholar]
- Streutker, D.R.; Glenn, N.F.; Shrestha, R. A Slope-Based Method for Matching Elevation Surfaces. Photogramm. Eng. Remote Sens. 2011, 77, 743–750. [Google Scholar] [CrossRef]
- Teo, T.-A.; Chen, L.-C.; Liu, C.-L.; Tung, Y.-C.; Wu, W.-Y. DEM-Aided Block Adjustment for Satellite Images With Weak Convergence Geometry. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1907–1918. [Google Scholar] [CrossRef]
- Huber, M.; Gruber, A.; Wessel, B.; Breunig, M.; Wendleder, A. Validation of Tie-Point Concepts by the DEM Adjustment Approach of TanDEM-X. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, USA, 25–30 July 2010; pp. 2644–2647. [Google Scholar]
- Wang, R.; Chai, H.; Guo, B.; Zhang, L.; Lv, X. A Novel DEM Block Adjustment Method for Spaceborne InSAR Using Constraint Slices. Sensors 2022, 22, 3075. [Google Scholar] [CrossRef] [PubMed]
- Ravanbakhsh, M.; Fraser, C.S. A Comparative Study of DEM Registration Approaches. J. Spat. Sci. 2013, 58, 79–89. [Google Scholar] [CrossRef]
- Wang, R.; Lv, X.; Zhang, L. A Novel Three-Dimensional Block Adjustment Method for Spaceborne InSAR-DEM Based on General Models. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 3973–3987. [Google Scholar] [CrossRef]
- Tondewad, P.S.; Dale, M.P. Remote Sensing Image Registration Methodology: Review and Discussion. Procedia Comput. Sci. 2020, 171, 2390–2399. [Google Scholar] [CrossRef]
- Sarvaiya, J.N.; Patnaik, S.; Bombaywala, S. Image Registration by Template Matching Using Normalized Cross-Correlation. In Proceedings of the 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, Trivandrum, India, 28–29 December 2009; pp. 819–822. [Google Scholar]
- Tong, X.; Ye, Z.; Xu, Y.; Gao, S.; Xie, H.; Du, Q.; Liu, S.; Xu, X.; Liu, S.; Luan, K.; et al. Image Registration With Fourier-Based Image Correlation: A Comprehensive Review of Developments and Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4062–4081. [Google Scholar] [CrossRef]
- Chen, H.-M.; Varshney, P.K.; Arora, M.K. Performance of Mutual Information Similarity Measure for Registration of Multitemporal Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2445–2454. [Google Scholar] [CrossRef]
- Lewis, J.P. Fast Template Matching. Vis. Interface 1995, 95, 15–19. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Xiang, D.; Xu, Y.; Cheng, J.; Xie, Y.; Guan, D. Progressive Keypoint Detection With Dense Siamese Network for SAR Image Registration. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 5847–5858. [Google Scholar] [CrossRef]
- Heinrich, M.P.; Jenkinson, M.; Bhushan, M.; Matin, T.; Gleeson, F.V.; Brady, S.M.; Schnabel, J.A. MIND: Modality Independent Neighbourhood Descriptor for Multi-Modal Deformable Registration. Med. Image Anal. 2012, 16, 1423–1435. [Google Scholar] [CrossRef]
- Ye, Y.; Shan, J.; Bruzzone, L.; Shen, L. Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2941–2958. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Schmid, C. Indexing Based on Scale Invariant Interest Points. In Proceedings of the Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 525–531. [Google Scholar]
- Dellinger, F.; Delon, J.; Gousseau, Y.; Michel, J.; Tupin, F. SAR-SIFT: A SIFT-Like Algorithm for SAR Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 453–466. [Google Scholar] [CrossRef]
- Fjortoft, R.; Lopes, A.; Marthon, P.; Cubero-Castan, E. An Optimal Multiedge Detector for SAR Image Segmentation. IEEE Trans. Geosci. Remote Sens. 1998, 36, 793–802. [Google Scholar] [CrossRef]
- Ye, Y.; Shan, J. A Local Descriptor Based Registration Method for Multispectral Remote Sensing Images with Non-Linear Intensity Differences. ISPRS J. Photogramm. Remote Sens. 2014, 90, 83–95. [Google Scholar] [CrossRef]
- Narayan, R.; Nityananda, R. Maximum Entropy Image Restoration in Astronomy. Annu. Rev. Astron. Astrophys. 1986, 24, 127–170. [Google Scholar] [CrossRef]
- Xi, L.; Guosui, L.; Ni, J. Autofocusing of ISAR Images Based on Entropy Minimization. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 1240–1252. [Google Scholar] [CrossRef]
- Eastman, R.D.; Le Moigne, J.; Netanyahu, N.S. Research Issues in Image Registration for Remote Sensing. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Xiang, Y.; Jiao, N.; Wang, F.; You, H. A Robust Two-Stage Registration Algorithm for Large Optical and SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5218615. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Items | Parameter |
---|---|
Sensor | TSX-1 |
Sensing area | Spain Baleares |
Image number | 57 |
Coordinate | Geo Lat/Lon |
Data format | Geotiff |
Datatype | Float |
Coverage | 0°54′ to 4°31′E, 38°30′ to 40°16′N |
Time span | 21 March 2011 to 6 November 2013 |
Pair | Number | Method | SR (%) | SU (%) | STD (pixel) | RPE (pixel) | Time (s) |
---|---|---|---|---|---|---|---|
Pair A | 29 | RG-NCC | 99.66 | 75.73 | 0.2649 | 0.3039 | 170.25 |
RG-MI | 77.67 | 71.16 | 0.2863 | 0.3252 | 226.75 | ||
BH-NCC | 99.93 | 47.47 | 0.2537 | 0.2770 | 394.25 | ||
DHAE-NCC | 99.89 | 65.87 | 0.2163 | 0.2639 | 132.51 | ||
Pair B | 23 | RG-NCC | 79.06 | 84.99 | 0.4124 | 0.6535 | 145.38 |
RG-MI | 41.73 | 76.90 | 0.6464 | 0.9046 | 195.70 | ||
BH-NCC | 76.40 | 68.28 | 0.4055 | 0.6345 | 327.89 | ||
DHAE-NCC | 81.85 | 77.14 | 0.3393 | 0.5550 | 108.96 | ||
Pair C | 27 | RG-NCC | 87.42 | 83.44 | 0.3482 | 0.4727 | 220.56 |
RG-MI | 63.67 | 79.11 | 0.4728 | 0.5760 | 303.55 | ||
BH-NCC | 85.06 | 60.23 | 0.3556 | 0.4527 | 418.14 | ||
DHAE-NCC | 88.57 | 73.15 | 0.2805 | 0.4807 | 143.15 | ||
Pair D | 45 | RG-NCC | 97.21 | 80.97 | 0.2854 | 0.3268 | 397.02 |
RG-MI | 66.22 | 72.38 | 0.3330 | 0.3747 | 562.26 | ||
BH-NCC | 96.28 | 56.15 | 0.2621 | 0.2782 | 705.84 | ||
DHAE-NCC | 97.78 | 69.62 | 0.2264 | 0.3237 | 244.25 | ||
Pair E | 34 | RG-NCC | 79.25 | 81.19 | 0.4036 | 0.6441 | 279.64 |
RG-MI | 57.39 | 79.75 | 0.6161 | 0.8508 | 483.82 | ||
BH-NCC | 77.03 | 60.20 | 0.4262 | 0.6568 | 595.24 | ||
DHAE-NCC | 81.49 | 74.31 | 0.3372 | 0.5538 | 212.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, Y.; Liu, L.; Du, X.; Han, K.; Wu, J.; Li, Z.; Kong, L.; Lin, Q. A Robust Tie-Points Matching Method with Regional Feature Representation for Synthetic Aperture Radar Images. Remote Sens. 2024, 16, 2491. https://doi.org/10.3390/rs16132491
Zhang Y, Zhu Y, Liu L, Du X, Han K, Wu J, Li Z, Kong L, Lin Q. A Robust Tie-Points Matching Method with Regional Feature Representation for Synthetic Aperture Radar Images. Remote Sensing. 2024; 16(13):2491. https://doi.org/10.3390/rs16132491
Chicago/Turabian StyleZhang, Yifan, Yan Zhu, Liqun Liu, Xun Du, Kun Han, Junhui Wu, Zhiqiang Li, Lingshuai Kong, and Qiwei Lin. 2024. "A Robust Tie-Points Matching Method with Regional Feature Representation for Synthetic Aperture Radar Images" Remote Sensing 16, no. 13: 2491. https://doi.org/10.3390/rs16132491
APA StyleZhang, Y., Zhu, Y., Liu, L., Du, X., Han, K., Wu, J., Li, Z., Kong, L., & Lin, Q. (2024). A Robust Tie-Points Matching Method with Regional Feature Representation for Synthetic Aperture Radar Images. Remote Sensing, 16(13), 2491. https://doi.org/10.3390/rs16132491