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Abstract: The precise tie-points (TPs) on synthetic aperture radar (SAR) images are a critical corner-
stone in the global digital elevation model (DEM) and digital ortho map (DOM) production process.
While there are abundant studies on SAR TPs matching, improvement opportunities persist in large
areas. The correspondences have pixel-level errors during geocoding, which result in misalignment
between global products. Consequently, this paper proposed a robust method for SAR images TPs
matching, which consists of three key steps: (1) interest point extraction based on the dynamic
Harris area entropy (DHAE) grid; (2) adaptive determination of template size; (3) normalized cross
correlation (NCC) template matching. DHAE is a regional texture information grid based on the
SAR-Harris map, and it is achieved through dynamic block division. Generating the DHAE grid over
SAR images enables the extraction of interest points that have regional feature representation and
distribution uniformity. A variable-size matching template is adaptively determined based on DHAE
to enhance template quality while maintaining computational efficiency. Subsequently, the NCC
algorithm is employed to find subpixel-precise correspondences. The proposed method is applied
on TPs matching in 57 Terra-SAR images, which cover a large geographical area. Furthermore,
the overlapping area is partitioned into five segments according to different coverage types. The
experimental results demonstrate that the proposed method outperforms other template matching
methods. For all coverage types, the proposed method exhibits high-precision sub-pixel results that
reach up to 38.64% in terms of the relative positioning error (RPE), particularly in texture-weak and
large areas.

Keywords: SAR; image registration; tie-point matching; template matching; feature representation

1. Introduction

SAR plays a pivotal role in the observation of the Earth across the air, space, and sea
domains [1,2]. Its large-viewing angle satellite platform and strong penetrating microwave
provide a unique advantage in generating DEM, DOM, and other products [3–5]. In the
process of generating DEM and DOM, a localization error may occur, attributed to factors
such as variations in attitude, orbital positioning, and terrain undulation [6–8]. This can
result in misalignment and offsets when stitching large-scale products. To address this, TPs
matching is used to find homonymous points on adjacent products [9,10]. This ensures
high accuracy of DEM, DOM, and other products generated via SAR [11].

There are two types of method for TPs matching: DEM-aided and registration-based
methods [12]. DEM-aided methods utilize terrain constraints to improve the quality
of correspondences in areas of terrain relief [13]. Teo et al. [14] selected TPs directly
based on geocoded information on overlapping regions of SPOT 5 images with weakly
convergent geometric features. Huber et al. [15] validated a TPs selection scheme for the
block adjustment for DEM generated by TanDEM-X and proposed the TP chips method.
Wang et al. [16] used the DEM produced by TanDEM-X in the proposed CSS-based DEM
block adjustment model with a TP-chips approach to select TPs. However, the method
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of selecting TP-chips on the DEM highly depends on the accuracy of geocoding of SAR
images. Due to a variety of complex factors, the accuracy of geocoding is not always
accurate. Therefore, Ravanbakhsh et al. [17] used the NCC-DEM method to extract the TPs.
Wang et al. [18] developed a NCC-CSM method to solve the NCC-DEM mismatch problem
in flat areas.

In contrast to the DEM-aided method, the registration-based TPs matching technique
solely relies on the SAR intensity image’s attributes. This approach eliminates the errors
that could be caused by additional sources and is particularly ideal for TPs matching with
SAR orthoimages. Image registration methods fall into two categories: area-based and
feature-based methods [19]. The area-based approach, also known as template matching,
involves selecting a template on the reference image and selecting the corresponding sliding
window on the sensed image [20]. Area-based algorithms like NCC, phase correlation (PC),
mutual information (MI), sum of squared differences (SSD), and structure similarity index
measure (SSIM) have shown excellent matching results [21–23]. Feature-based matching
techniques are also extensively employed in TPs matching since they do not require a priori
coarse offset and are computationally efficient [24]. In general, compared with feature-
based methods, area-based methods have stronger terrain adaptability because they focus
more on the statistical characteristics of the image itself than structural features, which is
very desirable in TPs matching over large areas. The area-based method needs to start
from two established initial points, the location of which will directly affect the quality of
the matching results. The traditional template matching method uses regular grid points
as interest points, which are in locations that have no real matching meaning, reducing
the number of correct matches. Furthermore, due to the speckle noise on SAR images,
unstable image features are misused for template matching. Conventional interest point
detectors are not immune to speckle noise, which increases the number of mismatches [25].
Heinrich et al. [26] used the Harris corner point detector to select interest points in a
proposed modality-independent neighborhood descriptor (MIND) for multimodal image
registration. Ye et al. [27] used the block Harris method to extract feature points and ensure
their uniform distribution on optical and SAR images, and they matched them using a
histogram of orientated phase congruency (HOPC) similarity metrics.

However, the traditional template matching method does not consider the structural
features at the interest point or only considers the feature response at a single point, which
will bring many problems, such as uneven matching results, mismatching on the weak-
texture area, etc. Extracting the interest points which have regional feature representation
is one way to improve the quality of template matching.

After analyzing the current methods, it has been discovered that there are several
issues present. First, the interest points’ lack of regional feature representation. Second,
mismatching occurs in weak-texture regions. Almost all template matching methods use
fixed-size matching patches, which will not be applicable in weakly textured areas of the
image. Weakly textured areas require a larger perceptual range, while only a small patch
size is required at the obvious structural information to match successfully. Third, there are
still improvements in automaticity and computational efficiency. The template matching
method has high computational complexity, requiring hardware acceleration when applied
to large-scale image stitching.

To address these issues, a new and robust SAR images TPs matching method has
been proposed in this paper. First, a dynamic block Harris area entropy (DHAE) method
has been introduced to identify the main structures on the image using the SAR-Harris
method. The dynamic division idea guarantees that the interest points have an overall
uniform distribution and parameter adaptivity. The information entropy approach ensures
the structural robustness of the region around the interest points. Second, an adaptive NCC
template matching window, based on the DHAE grid, has been developed to select the
TPs template window containing the closest neighboring structures. This enhances the
reliability of the matching results in the weak-texture region.
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The remainder of the paper is organized as follows: Section 2 outlines the proposed
methodology, specific operational details, and accuracy evaluation metrics; Section 3 describes
the experiments that were designed and carried out for validation; the proposed method is
discussed in Section 4; lastly, Section 5 summarizes the findings and draws conclusions.

2. TPs Extraction Strategy and NCC Matching
2.1. Overall Process

This paper proposed a new method for TPs matching that is different from the co-
registration used in InSAR processing. The method is designed for stitching large-scale
SAR images or DEMs produced by InSAR technology and aims to provide reliable planar
control TPs for subsequent block adjustment. To ensure the reliable operation of large-scale
image stitching, the method focuses on solving the mismatching problem caused by weak-
texture and complex terrain conditions, taking into account the robustness and efficiency
of large-scale computation.

The first step in the process is to extract overlapping regions from the geocoded
SAR images sequence. As shown in Figure 1. The images acquired by the along-track
and adjacent-track orbits of the SAR satellite cover a large area, and there is a certain
overlapping area between the neighboring images. The TPs’ matching work is carried out
on the overlapping area, and the positions of the homonymous point on different images
should be one-to-one correspondence after matching. The TPs must be evenly distributed
on the overlap area to provide accurate geometric constraints for the block adjustment.
Selecting regular grid points directly can maximize uniformity. However, this is not a
good choice in the case of complex terrain, because the matching effect is not ideal in
weakly textured areas and rugged surfaces due to the imaging modes of the SAR images.
After the geocoding step of the SAR images, each pixel has the corresponding latitude and
longitude coordinates under the geographic coordinate system. Although this result is
not very accurate due to the baseline error, terrain undulation, and simulated SAR images
error, we can still find the initial correspondence of the interest points with the help of this
positional relationship. In the initial fine matching of interest points, the same size of the
template window for all points is not suitable for large-scale matching applications because
for some structurally rich areas with large terrain undulations or SAR images acquired
from the same orbit, a smaller search window is usually able to achieve higher matching
accuracy. However, for the images from adjacent orbits, due to the long imaging interval,
inconsistent imaging angles geocoding distortions due to perspective shrinkage, etc., all
lead to the need for a larger search window in order to reach the reliable threshold of the
correlation coefficient.

The processing of the proposed SAR TPs matching method is represented as follows.
First, the overlapping region is extracted from geocoded SAR images, and subsequently, the
matching list of reference and sense image pairs is generated. For an image pair matching
process, the proposed robust TPs matching method is applied, which is represented as
follows. The TPs matching scheme is represented in Figure 2.

1. Extracting uniform interest points in the reference image, and the specific method is
introduced in Section 2.2.

2. Calculating a suitable template matching window for each interest point, and the
design scheme of the window is introduced in Section 2.3.

3. Applying the NCC sub-pixel offset search method for each overlap. After all image
matching is executed, a list of correspondences for the overall region is generated.
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2.2. Extraction of Interest Points

Currently, most of the template matching methods use a regular grid to generate
interest points. Although they are uniformly distributed, they may fall in some weakly
textured areas without actual features inevitably, and these interest points will then bring
errors to the subsequent matching process.

2.2.1. SAR-Harris Detector

SAR-Harris detector can effectively suppress speckle noise. Reference [28] has shown
that corner points on images can be accurately extracted using Harris features. However,
this method is not necessarily applicable to SAR images, and its main problems are as
follows: First, compared to regular grid points, the Harris method makes it difficult to
control the uniform distribution of the extracted interest points on the image space and can
achieve good results in some respects, such as specific target detection, but it is difficult to
ensure the stability of the accuracy in calculating the overall offset of the image. Second, the
widespread multiplicative scattering noise brings great trouble for Harris corner detection,
and the detected corners are often localized at the noise points. In their proposed SAR-SIFT
algorithm, Dellinger et al. [29] redefined the computation of Harris values by horizontal
and vertical gradient as {

Gx,α = log(R1,α)

Gy,α = log(R3,α),
(1)

where Gx,α is the vertical gradient and Gy,α is the horizontal gradient. R1,α and R3,α
denote the ROA on the vertical and horizontal gradients, and α is the scale parameter in
the ROEWA operator proposed by Fjortoft [30]. The SAR-Harris matrix C(x, y, α), after
redefining the gradient, with the detection function R(x, y, α), is denoted as

C(x, y, α) = Gs√2α ?

[
(Gx,α)

2 (Gx,α)·
(
Gy,α

)
(Gx,α)·

(
Gy,α

) (
Gy,α

)2

]
R(x, y, α) = det(C(x, y, α))− d·tr(C(x, y, α))2,

(2)

where Gs√2α is a Gaussian convolution kernel with
√

2α as standard deviation, the operator
? denotes convolution, and d is an empirical parameter.

The SAR-Harris features in the form of multi-scale parameters are expressed in (2).
Multi-scale feature points are critical in processing SAR images in a radar coordinate
system or with different zoom and rotation characteristics. However, for SAR image
stitching in the geographic coordinate system, the scale parameter is not necessary, which
introduces matching errors and brings additional computational burden. Therefore, we
use the single-scale form of the SAR-Harris. It is expressed as

C(x, y) = Gsσ ?

[
(Gx,σ)

2 (Gx,α)·
(
Gy,σ

)
(Gx,σ)·

(
Gy,σ

) (
Gy,σ

)2

]
R(x, y) = det(C(x, y))− d·tr(C(x, y))2,

(3)

where Gsσ denotes the standard Gaussian convolution kernel with standard deviation σ,
where σ is a constant. Similarly, the ROEWA operator for horizontal and vertical gradients
uses the constant σ as the scale parameter.

2.2.2. Dynamic Block Division

For conventional SAR-Harris corner point detectors based on gradient amplitude
variation, interest points appear at locations with large gradients in the response values.
However, the distribution of these points is spatially correlated. Consequently, the direct
application of the SAR-Harris detector does not foster the uniform extraction of interest
points. This non-uniform distribution of interest points frequently leads to localized
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distortions within the transformed model. In their work [31], Ye et al. introduced the
concept of block Harris on optical remote sensing images. This approach involves dividing
the Harris results of the original image into m × n blocks. Within each block, the top
k results are selected based on their ascending order of Harris response values. These
selected results serve as the interest points for feature matching, aiming to achieve a more
uniform distribution effect. Nonetheless, when applying this blocking method in the
practical context of large-scale SAR image stitching, controlling the parameters becomes
a challenging task. Additionally, this method may not effectively distinguish against the
presence of abnormal reflection values within SAR images. These abnormalities often
manifest as the aggregation of local control points.

Therefore, we adopt the following scheme: First, fix the parameter k, take only the
most regionally representative SAR-Harris response point in each block, i.e., k = 1, and the
judging method of regional representativeness will be introduced in Section 2.2.3. Second,
set the number of blocks m× n according to the size of overlapping regions, and usually,
we set the initial size of the block to invert m and n; the initial size of block is set to a smaller
value Bs × Bs so that the initial number of interest points in overlap area is m× n. Third,
when extracting the regionally representative interest points in the block, if there are no
interest points in the block that satisfy the condition, the block merges with the neighboring
l block and inherits the l × k of interest points.

By adopting the dynamic division approach, we can effectively enhance the uniformity
of the initial distribution of interest points and the representation of regional features.
Simultaneously, this approach leads to a reduction in the number of parameters, rendering
it better suited for adaptive operation in large-scale SAR image TPs matching programs.
This refined approach is especially valuable for managing the complexities inherent in
handling a substantial volume of SAR images.

2.2.3. Area Entropy

While the block Harris method provides feature representation, it remains rooted in
capturing gradients in the vicinity of a given point. However, in image template matching,
achieving a higher success rate relies on the diversity of features and textures within the
template. To address this, we propose that with dynamic block division processing, the
extraction of interest points should prioritize template surface features over point-based
features. The quantity of information within an image serves as an indicator of the template
region’s complexity. Consequently, when identifying a template window with increased
information in the SAR-Harris map, we can consider the center point of that window as
the focal point for matching. This approach ensures a more comprehensive consideration
of features, potentially enhancing the effectiveness of the matching process.

An effective metric for calculating the amount of information in the image is entropy.
Image entropy is a discrete 2D expression of Shannon entropy, which represents a measure
of the degree of information present in a target image by defining the probability of a pixel
appearing in the image [32]. In a 2D image, the greater the information uncertainty, the
greater the entropy value, and the more information the image may contain.

For an n state system, its Shannon entropy is defined as

H = −
n

∑
i=1

pilog(pi), (4)

where pi denotes the random probability that event i occurs. There is

n

∑
i=1

pi = 1, 0 ≤ pi ≤ 1. (5)
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Image entropy is the discrete Shannon entropy in two dimensions. For a digital image
of size m× n, suppose its gray level is L. Then, there exists

pl = Pr(X = l) =
nl
T,

(6)

where pl denotes the probability of occurrence of a pixel in a digital image, l is a certain
gray value in an image with gray level L (l ∈ {0, 1, · · · , L, L− 1}), nl denotes the number
of pixels with pixel intensity level l in this image, and T denotes the total number of pixels
in the image (T = m× n). According to (4), there is

Him = −
L−1

∑
i=1

pllog(pl), (7)

where Him denotes the information entropy of the digital image, obtained by bringing (6)
into (7). There is

Him = −
L−1

∑
i=1

nl
T

log
(nl

T

)
. (8)

Image entropy is widely used in the field of image information quantity estimation,
uncertainty measure, and image encryption [33]. Therefore, based on applying block Harris
processing to the image, the image entropy is calculated by selecting a sub-window of
matching template size in each block. Combined with the idea of dynamically dividing
blocks mentioned in Section 2.2.1, this DHAE grid can accurately respond to the amount of
information in the vicinity of the target and improve the feature representativeness of the
interest points. The step of the sliding window on the block determines the resolution of
the DHAE grid.

2.3. Adaptive NCC Template Matching
2.3.1. Principle of NCC Algorithm

As a classical homologous image matching algorithm, NCC is characterized by high
accuracy, simple structure, and strong robustness, especially in the task of image registration
with only planar position offset. Whether in the block adjustment of InSAR-DEM or SAR-
DOM, the task of relative position correction between intensity images requires accurate and
stable sub-pixel level matching results. Therefore, we adopt the NCC algorithm to perform
relative position correction between overlapping regions of homologous SAR images.

In the image registration algorithm, the NCC algorithm is essentially an area-based
searching algorithm, which calculates the NCC coefficients between two templates, slides
the template window over the search area to obtain the location where the largest NCC
coefficient is located, and considers the center point of the window with the largest NCC
coefficient value as the pixel-level matching result.

NCC coefficient representation is

NCC =
1
n∑

x,y

1
σf σt

(
f (x, y)− u f

)
(t(x, y)− ut), (9)

where n denotes the number of window pixels, σf and σt denote the standard deviation
of the template window and the search window, respectively, u f and ut denote the mean
value of the template window and the search window, respectively, and f (x, y) and t(x, y)
are the pixel values of the template window and the search window at the (x, y) position.

2.3.2. Template Size Adaptive Determination

In Section 2.2.3, we give the computation method of the DHAE grid and select an
example region to show its DHAE grid results. In the NCC matching phase of the proposed
method in this paper, we determine the size of the matching template based on the DHAE
grid. The interest points extracted via DHAE do not necessarily have a very strong structure
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in a flat area, although it has been considered as the most representative area in this block,
at this point, the variable template window size is very favorable for the computational
accuracy of NCC matching. The process of determining this window is fully adaptive,
relying only on the DHAE grid.

The specific operation method is as follows. First, calculate the position of the largest
value in the DHAE of a block and record. Second, calculate the position of the next largest
value in this block and record. Third, if the ratio of largest value and next largest value is
smaller than the peak-side-lobe ratio (PSLR) proposed in reference [18], re-adjust the size
of the window to be the smallest window that can include the largest value and the next
largest value.

2.3.3. Subpixel Localization

Subpixel results for template matching methods can generally be obtained via either
interpolation or fitting, where interpolation is achieved by targeting a small window
(usually 3 × 3 or 5 × 5) in the region near the peak of the NCC in the template matching
and up-sampling it to the target accuracy of the subpixel matching [34]. The fitting method
obtains the subpixel location of the extreme value of the subpixel NCC by fitting a quadratic
surface to the 2D plane where the NCC value is located using, for example, a known regular
grid point. The method of obtaining subpixel alignment results using quadratic surface
fitting has a great efficiency improvement compared with interpolation, and when the
subpixel accuracy is required to be high, for example, 0.1 pixel for a 3 × 3 window, it
needs to be interpolated to a size of 30 × 30, which makes the interpolation results very
imprecise. Therefore, we use quadratic surface fitting to obtain the subpixel-level offsets.
The corresponding fitting function is denoted as

P(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2. (10)

The extreme points of the surface P(x, y) are satisfied as follows:
∂P(x,y)

∂x = a1 + 2a3x + a4x = 0

∂P(x,y)
∂y = a2 + 2a4x + a5y = 0.

(11)

Solving (11) yields the location of the extreme point of the NCC coefficients on the
surface, expressed as ∆x = 2a1a5−a2a4

a4
2−4a3a5

∆y = 2a2a3−a1a4
a4

2−4a3a5

. (12)

Thus, the final sub-pixel level alignment offset is expressed asnx = x0 + ∆x = x0 +
2a1a5−a2a4
a4

2−4a3a5

ny = y0 + ∆y = y0 +
2a2a3−a1a4
a4

2−4a3a5,

(13)

where x0 and y0 are the initial pixel-level offsets, and nx and ny are the final sub-pixel-level
alignment offsets, respectively. Since the NCC values are known for the regular positions
on the extracted window, such as (1, 1), (2, 2), etc., the surface fitting coefficients a0, a1 · · · a5
can be obtained using the least squares method to fit the surface equations in (10).

2.4. Evaluation Criterion of TP Matching

For the needs of subsequent block adjustment and the stitching of large-scale SAR
images, it is worth paying attention to the following in the TPs matching:

1. Reliability: The refined correspondences obtained via template matching can be used
to initially measure the quality of matching based on the peak value of the similarity
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map and the standard deviation except for the peak value, and the threshold value of
the correlation coefficient in NCC similarity matching is usually 0.2.

2. Accuracy: In InSAR-DEM or SAR-DOM production, it is difficult to ensure that each
image area has a stable ground control point on the surface. The manual selection
of control point check will be affected by factors such as point selection error and
radiation error. It cannot achieve sub-pixel accuracy check, so usually, it calculates the
least squares polynomial fitting accuracy to match the relative accuracy of the results.

3. Uniformity of distribution: Since the TPs need to provide robust plane position
constraint relations for the neighboring images with overlapping regions where they
are located, distribution uniformity needs to be ensured over the overlapping regions
at the TPs in order to avoid the impact of local distortion on the transformation
relations of the overall region.

According to the above requirements, this paper will evaluate the accuracy of the
matching results of the TPs through four metrics: stable ratio (SR), stable uniformity (SU),
standard deviation (STD), and relative positioning error (RPE), as proposed in [35]. SR
represents the proportion of reliable match points (determined by the cross-correlation
threshold) to the total number of match points on an overlapping image pair, calculated as

SR =
Ns

N
, (14)

where Ns is the number of correspondences with a correlation coefficient threshold greater
than 0.2, and N is the total number of TPs. This ratio can represent the reliability of
matching TPs.

SU stands for distribution uniformity of stable correspondences. This is reflected by
the distribution of reliable TPs over overlapping areas. Here, the method proposed in [35]
is adapted in this paper to divide the overlapping area into 10 × 10 blocks, and if more
than one stable correspondence exists on each block, the number of stable blocks is counted.
The specific calculation method is

SU =
Bs

B
, (15)

where Bs is the number of more than 1 stable TP contained in the divided block, and B is
the total number of blocks.

STD represents the standard deviation of the fit result of the least squares polynomial
of TPs and is often used to measure the relative accuracy. Here, in order to increase the
robustness of the accuracy of the results, we choose to extract half of the correspondences
to participate in the least squares polynomial fitting, and the other half will be substituted
into the fitting polynomial to calculate the RPE of the offset result. The polynomial fit is
expressed as {

Olat = T×Plat
Olon = T × Plon,

(16)

where Olat and Olon represent the latitude and longitude direction offsets column vector,
and the dimension is n× 1; Plat and Plon represent the fitted polynomial coefficient matrix of
latitude and longitude, and the dimension is MA× 1; and MA is the number of coefficients
of the polynomial. T is the corresponding coordinate matrix in polynomial fitting, and the
dimension is n×MA, when MA = 4. It is expressed as

T =

0
...
0

x1
...

xn

y1
...

yn

x1y1
...

xnyn

. (17)
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The STD of the fitted offsets is expressed as
Elat =

√
∑n

i=1(O f f lati−Olat i)
2

n−1

Elon =

√
∑n

i=1(O f f loni−Oloni)
2

n−1,

(18)

where Elat and Elon represent the standard deviation of latitude and longitude direction,
and O f f lat and O f f lon are the latitude and longitude offsets of match the original result.

We bring the other half of the matching offset into the polynomial parameters calcu-
lated in (16) and calculate the RPE, which is expressed as

Rlat =

√
∑n

i=1(O f f lat′ i−Olat
′
i)

2

n

Rlon =

√
∑n

i=1(O f f lon′ i−Olon
′
i)

2

n,

(19)

where Rlat and Rlon represent the RPE of latitude and longitude direction, and O f f lat′,
O f f lon′ are the latitude and longitude direction offsets of the other half of the check points.
Olat

′ and Olon
′ are the fitting offsets calculated by bringing the other half of the checkpoints

into the fitted polynomial coefficient.

3. Experiment Results
3.1. Research Areas and Experimental Environments

To test the performance of the proposed method for TPs matching in large-scale
SAR images, 57 SAR images acquired by the TanDEM/TerraSAR dual-star X-band SAR
are selected in this paper, which roughly covers 5◦ × 5◦, as shown in Figure 3. Image
parameters are listed in Table 1. Due to the large number of selected images, the large
coverage area, and the wide distribution of feature types, it is possible to more effectively
test the performance of the proposed method in texture-rich areas (mountainous areas,
cities) as well as weakly textured areas (plains, farmlands). There are both along-track and
adjacent-track images, and the latter requires more robust matching algorithms than the
former to solve the distortion after geocoding from different viewpoints. Moreover, the
large scale of the images poses a great challenge to computational efficiency, which is very
suitable for testing the efficiency and feasibility of the GPU-parallel NCC algorithm used in
this paper.



Remote Sens. 2024, 16, 2491 11 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 3. Coverage of 57 Terra-SAR images in the experimental area. 

In terms of the experimental environment, the CPU of the workstation for data pro-
cessing in this paper is the AMD Ryzen Threadripper 3970X 32-Core Processor with 256 
GB of RAM, and the GPU is Nvidia RTX 2080Ti with 11 GB of Global RAM. The external 
DEM used for geocoding is the 30 m × 30 m resolution SRTM global DEM provided by 
NASA. 

3.2. Analysis of Matching Accuracy and Distribution Uniformity of TPs 
3.2.1. Experiment Settings 

The geocoded SAR images in this experiment have a total of 79 valid overlap areas. 
In order to determine the matching robustness of the proposed method in different re-
gions and facilitate the display of the experimental results, this paper divides the overlap-
ping regions with reliable matching numbers into five parts according to the characteris-
tics of overlapping regions. A: steep area; B: flat area; C: mixed area; D: small area; E: large 
area. The areas illustrate overlapping pairs of imagery, as shown in Figure 4. 

We select the NCC and MI algorithms that are usually used with regular grid (ex-
pressed as RG) points as the interest points, and the NCC method that uses the block Har-
ris (expressed as BH) method to select interest points and compare them with the DHAE-
NCC method proposed in this paper. To ensure that the number of points of interest in 
the four methods is as consistent as possible, the experimental parameters are set as fol-
lows. The regular grid point interval is 256 pixels, the block size of the BH method is 512 
× 512 pixels, five points of interest are extracted from each block, the Harris response 
threshold is 0.5, the size of the DHAE grid is 256 × 256 pixels, and the regional entropy 
template size is 64 × 64 pixels. The threshold for NCC peaks is 0.2, and for MI peaks, it is 
7.0. 

Figure 3. Coverage of 57 Terra-SAR images in the experimental area.

Table 1. Parameters of Terra-SAR images in this experiment.

Items Parameter

Sensor TSX-1
Sensing area Spain Baleares

Image number 57
Coordinate Geo Lat/Lon
Data format Geotiff

Datatype Float
Coverage 0◦54′ to 4◦31′E, 38◦30′ to 40◦16′N
Time span 21 March 2011 to 6 November 2013

In terms of the experimental environment, the CPU of the workstation for data pro-
cessing in this paper is the AMD Ryzen Threadripper 3970X 32-Core Processor with 256 GB
of RAM, and the GPU is Nvidia RTX 2080Ti with 11 GB of Global RAM. The external DEM
used for geocoding is the 30 m × 30 m resolution SRTM global DEM provided by NASA.

3.2. Analysis of Matching Accuracy and Distribution Uniformity of TPs
3.2.1. Experiment Settings

The geocoded SAR images in this experiment have a total of 79 valid overlap areas. In
order to determine the matching robustness of the proposed method in different regions
and facilitate the display of the experimental results, this paper divides the overlapping
regions with reliable matching numbers into five parts according to the characteristics of
overlapping regions. A: steep area; B: flat area; C: mixed area; D: small area; E: large area.
The areas illustrate overlapping pairs of imagery, as shown in Figure 4.



Remote Sens. 2024, 16, 2491 12 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 4. SAR images of five data pairs: (a) reference image of pair A; (b) sense image of pair A; (c) 
reference image of pair B; (d) sense image of pair B; (e) reference image of pair C; (f) sense image of 
pair C; (g) reference image of pair D; (h) sense image of pair D; (i) reference image of pair E; (j) sense 
image of pair E. 

3.2.2. Experimental Results 
Since the DHAE grid method dynamically adjusts the window size of template 

matching when determining the interest point, the influence of template size on matching 
accuracy is analyzed first. Matching experiments were performed on the SAR images of 
data pair A with overlapping areas, which incorporates more image texture detail so that 
the matching template can range from small to large. Four methods—RG-NCC, RG-MI, 
BH-NCC, and DHAE-NCC—were used for comparative experiments, which changed the 
template size. SAR images of matching experimental areas under different template sizes 
are shown in Figure 5. The matching error is represented by the STD of the fitted polyno-
mial, and Figure 6 shows the matching accuracy of the methods at different template sizes. 

As shown in Figure 6, the accuracy of the matching methods gradually increases 
when the matching template gradually increases and tends to stabilize when the template 
size achieves 64. The matching accuracy of the overall longitude direction is better than 
the latitude direction because the azimuth direction of SAR satellite imaging resolution is 
better than the range direction. Since DHAE is a matching TPs selection framework for 
variable templates, the DHAE method shown here does not change as the window is 
raised.  

The DHAE method is calculated only once in the window experiment, so it is repre-
sented as a constant. Observing the distribution of DHAE windows ratio, it is easy to find 
that windows of different sizes are distributed in matching, and 64 is the peak of window 
size. Compared with the NCC method, the accuracy of the MI method is poor, and the 
interest points selected via the block Harris criterion show little difference in NCC match-
ing accuracy from the NCC matching of regular grid points. However, the DHAE method 
accurately selects the interest points with actual matching significance and reasonably de-
termines the matching template according to the real feature information near the TPs. 
Therefore, in the case of relatively small templates used, the accuracy that can only be 
achieved by other methods under large matching templates is achieved. The matching 
accuracy and distribution of the proposed DHAE-NCC method in the overlapping region 
were analyzed in detail via SR, SU, STD, and RPE. And we compared RG-NCC, RG-MI, 
and BH-NCC. Based on the results of the window experiment, all algorithms, except 

Figure 4. SAR images of five data pairs: (a) reference image of pair A; (b) sense image of pair A;
(c) reference image of pair B; (d) sense image of pair B; (e) reference image of pair C; (f) sense image
of pair C; (g) reference image of pair D; (h) sense image of pair D; (i) reference image of pair E;
(j) sense image of pair E.

We select the NCC and MI algorithms that are usually used with regular grid (ex-
pressed as RG) points as the interest points, and the NCC method that uses the block Harris
(expressed as BH) method to select interest points and compare them with the DHAE-NCC
method proposed in this paper. To ensure that the number of points of interest in the four
methods is as consistent as possible, the experimental parameters are set as follows. The
regular grid point interval is 256 pixels, the block size of the BH method is 512 × 512 pixels,
five points of interest are extracted from each block, the Harris response threshold is 0.5,
the size of the DHAE grid is 256 × 256 pixels, and the regional entropy template size is
64 × 64 pixels. The threshold for NCC peaks is 0.2, and for MI peaks, it is 7.0.

3.2.2. Experimental Results

Since the DHAE grid method dynamically adjusts the window size of template match-
ing when determining the interest point, the influence of template size on matching accuracy
is analyzed first. Matching experiments were performed on the SAR images of data pair A
with overlapping areas, which incorporates more image texture detail so that the matching
template can range from small to large. Four methods—RG-NCC, RG-MI, BH-NCC, and
DHAE-NCC—were used for comparative experiments, which changed the template size.
SAR images of matching experimental areas under different template sizes are shown
in Figure 5. The matching error is represented by the STD of the fitted polynomial, and
Figure 6 shows the matching accuracy of the methods at different template sizes.
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As shown in Figure 6, the accuracy of the matching methods gradually increases when
the matching template gradually increases and tends to stabilize when the template size
achieves 64. The matching accuracy of the overall longitude direction is better than the
latitude direction because the azimuth direction of SAR satellite imaging resolution is better
than the range direction. Since DHAE is a matching TPs selection framework for variable
templates, the DHAE method shown here does not change as the window is raised.

The DHAE method is calculated only once in the window experiment, so it is repre-
sented as a constant. Observing the distribution of DHAE windows ratio, it is easy to find
that windows of different sizes are distributed in matching, and 64 is the peak of window
size. Compared with the NCC method, the accuracy of the MI method is poor, and the
interest points selected via the block Harris criterion show little difference in NCC matching
accuracy from the NCC matching of regular grid points. However, the DHAE method
accurately selects the interest points with actual matching significance and reasonably
determines the matching template according to the real feature information near the TPs.
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Therefore, in the case of relatively small templates used, the accuracy that can only be
achieved by other methods under large matching templates is achieved. The matching
accuracy and distribution of the proposed DHAE-NCC method in the overlapping region
were analyzed in detail via SR, SU, STD, and RPE. And we compared RG-NCC, RG-MI, and
BH-NCC. Based on the results of the window experiment, all algorithms, except DHAE-
NCC, used a template size of 64× 64 pixel and searched on the sliding area of 64× 64 pixel.
The specific experimental results are shown in Figures 7 and 8 and Table 2. According to
the matching experimental results of the five image pairs of the dataset, the DHAE-NCC
algorithm proposed in this paper shows a good matching effect. In all terrains, the average
matching accuracy can reach the subpixel level. The overall matching results performed
better in steep areas, with lower STD and RPE, which is caused by the high geocoding
accuracy in mountainous areas. However, flat areas have relatively poor matching results.
This is due to the lack of texture in the simulated SAR images generated via DEM.
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Table 2. Reliability, accuracy, and distribution uniformity results of four matching methods on
different datasets.

Pair Number Method SR (%) SU (%) STD (pixel) RPE (pixel) Time (s)

Pair A 29

RG-NCC 99.66 75.73 0.2649 0.3039 170.25
RG-MI 77.67 71.16 0.2863 0.3252 226.75

BH-NCC 99.93 47.47 0.2537 0.2770 394.25
DHAE-NCC 99.89 65.87 0.2163 0.2639 132.51

Pair B 23

RG-NCC 79.06 84.99 0.4124 0.6535 145.38
RG-MI 41.73 76.90 0.6464 0.9046 195.70

BH-NCC 76.40 68.28 0.4055 0.6345 327.89
DHAE-NCC 81.85 77.14 0.3393 0.5550 108.96

Pair C 27

RG-NCC 87.42 83.44 0.3482 0.4727 220.56
RG-MI 63.67 79.11 0.4728 0.5760 303.55

BH-NCC 85.06 60.23 0.3556 0.4527 418.14
DHAE-NCC 88.57 73.15 0.2805 0.4807 143.15

Pair D 45

RG-NCC 97.21 80.97 0.2854 0.3268 397.02
RG-MI 66.22 72.38 0.3330 0.3747 562.26

BH-NCC 96.28 56.15 0.2621 0.2782 705.84
DHAE-NCC 97.78 69.62 0.2264 0.3237 244.25

Pair E 34

RG-NCC 79.25 81.19 0.4036 0.6441 279.64
RG-MI 57.39 79.75 0.6161 0.8508 483.82

BH-NCC 77.03 60.20 0.4262 0.6568 595.24
DHAE-NCC 81.49 74.31 0.3372 0.5538 212.93

During the geocoding process, flat areas lead to a shift in matching with the SAR
images in the radar coordinate system. When looking for the interest points, the DHAE-
NCC algorithm selects the interest point with relatively strong characteristics based on the
SAR-Harris map and increases the number of reliable matches without greatly changing
the number of TPs; so, it has a high SR.

DHAE uses the principle of dynamic regional entropy to ensure the uniform dis-
tribution of TPs under the overall image coordinate system, and the SU is significantly
improved compared with the block Harris method. However, compared with the regular
grid method, the DHAE method has a slight disadvantage. In terms of internal and external
accuracy checking, the MI method belonging to the RG selection strategy has a large error
between STD and RPE due to the limitation that the mutual information entropy is greatly
affected by the speckle noise of SAR. The performance of RG-NCC and BH-NCC is the
same because the BH selection idea only relies on the Harris response value of a single
interest point, so the template matching where the interest point is located is not necessarily
the regional optimal matching template. The variable template size of DHAE plays a key
role in weak-texture areas such as flat areas, which solves the problem that it is difficult to
balance matching accuracy and matching efficiency with traditional fixed-size templates.
Therefore, the STD and RPE errors in Pair B and Pair E are small. However, we noticed that
BH-NCC slightly outperformed our method on RPE on datasets C and D. It is speculated
that BH-NCC is able to extract feature information more accurately in small regions where
features are more concentrated. In terms of computational consumption, the regular grid
method does not need to spend too much time on point selection, and the MI method takes
more time than the NCC method because the joint histogram of the template is calculated
in the matching template. The BH method constructs the SAR-Harris space to increase the
computational cost, and in DHAE, the regional entropy is calculated to build the matching
point selection framework. Fortunately, since most of the SAR image matching operations
can be run independently, the coupling calculation amount is small, which is very suitable
for GPU-CUDA parallel computing. Therefore, in the proposed DHAE-NCC method, we
use the GPU to accelerate the construction of the DHAE grid and NCC matching operation,
which has been greatly improved in computational efficiency.
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4. Discussion

In this section, the generation of interest points is discussed first. Then, the parameter
values of DHAE and the distribution of variable templates are discussed. Finally, the
limitations of DHAE are discussed.

4.1. Discussion on Interest Points Generation and Template Size Determination

We analyze the generation of TPs for a real SAR image in the dataset. A farmland
area containing structural information was selected, and the feature extraction effects of
different methods were compared, as shown in Figure 9.
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Figure 9. (a) SAR intensity image; (b) Harris map of (a); (c) SAR-Harris map of (a).

Based on the comparison results in Figure 9, it is clear that SAR-Harris is more effective
than Harris feature extraction on SAR images feature extraction. SAR-Harris suppresses
speckle noise by redefining the gradient calculation method, which is sensitive to Harris.
Although SAR-Harris is accurate in the expression of image point features, in template
matching, it is difficult to ensure sufficient matching information in the template area by
relying only on the gradient of pixel. Figure 10 illustrates different feature representations
of SAR intensity images with structure. In Figure 10a, the original SAR image is corrupted
by multiplicative speckle noise with blurred feature outlines. The SAR-Harris plot demon-
strated in Figure 10b retains the stabilized structural information. In Figure 10c, the location
of the largest response value in the dense DHAE grid reflects the most representative
region of the feature. In fact, we usually set the calculation step size to the size of the
template window, as shown in Figure 10d. The DHAE grid with template window size as
the resolution reduces the computational effort.
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As shown in Figure 11, in (a) and (d), it is easy to find out based on the intensity
information of the SAR image that in the weak-texture region, the DHAE grid determines a
larger matching template that encompass the most representative boundary features in the
area. In Figure 11b,e, there are almost no noteworthy feature points on the SAR image, and
the DHAE grid selects the optimal local small template. In Figure 11c,f, it is obvious that
the pond region is the most suitable matching template on the SAR image, and the DHAE
grid adaptively adjusts the template size to fit the region and minimize computational
consumption. The complete DHAE grid on the SAR image is shown in Figure 12, which
can provide a robust reference framework for the extraction of interest points.
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In the block Harris method, it is essential to configure various parameters, including
block size in both row and column directions, the quantity of points to be extracted from
each block, the threshold for identifying interest points, and other related parameters.
Accurately predicting the expected number of interest points remains challenging within
this approach. Conversely, with the DHAE method, the is focus primarily on extracting a
predetermined number of interest points solely within specified rows and columns.

As illustrated in Figure 13, where the regular grid interval is 512 pixels, the block size of
the block Harris method is 512 × 512 pixels, the number of points per block is 5, the Harris
threshold is 0.5, and the dynamic block SAR-Harris is expected to have 16 × 24 points.
According to the comparison results, it is easy to find that interest points extracted via
DHAE have uniformity and fall on the textured area, while the regular grid only maintains
uniformity, and block Harris only guarantees the strong texture where the interest points
are located.
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4.2. Discussion on DHAE Parameter Values

According to the results of the experiment in Section 3, DHAE has higher accuracy than
other commonly used template matching methods, but the uniformity of distribution at TPs
is inferior to that of the regular grid. The effect of parameter selection on the experimental
results for other matching methods involved in the comparison is the size of the template
window and the search window. For large-scale TPs matching and accuracy analysis of five
data pairs, we used the template patch and search window with a size of 64 × 64. This is
due to the fact that the sizes of the DHAE block and entropy are calculated to be 256 × 256
and 64 × 64 for the same image match, respectively. This leads to the adaptive template
size distribution of the interest points extracted via DHAE on the interval [32, 128], while
64 is the peak of the template size distribution. The DHAE method brings an adaptive
variable-size matching template, which makes the matching results more focused on areas
with rich textures. In the selection of parameters for the accuracy evaluation, the number
of coefficients of a polynomial is generally 3, 4, or 6. Here, we take 4 as the polynomial
coefficient. This is because too many or too few parameters will cause the polynomial to
be distorted.
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4.3. Discussion on Limitations of DHAE

For SAR images with particularly uneven image feature distribution, the matching
effect still has certain deficiencies. Although the advantages of the DHAE method are obvi-
ous, there are still some limitations in multi-view images. In the matching of multi-view
and ascending and descending orbits images, the selection of TPs is not the most important
factor affecting the results. Due to the significantly different structural characteristics, the
matching quality improvement brought by DHAE is very limited. Different imaging angles
cause different degrees of foreshortening and shadows, and the traditional template match-
ing methods, like NCC, SSID, MI, etc., make it difficult to resolve such structural differences.
It can be improved by robust structural extraction methods such as phase consistency.

Another limitation is that due to the lack of ground control points, it is difficult to
verify the absolute accuracy of the proposed method in the experiments. However, the SAR
TPs matching task will serve the block adjustment of large-scale SAR products; so in most
cases, only the relative accuracy of the tie-points on the SAR images needs to be guaranteed.
The absolute accuracy can be verified from the subsequent regional block adjustment task.

In addition, the calculation of the entropy of the regional image is also a very expensive
step for computing resources. Computational efficiency can be improved by constructing
fast region descriptors. Information entropy provides feature representation to a certain
extent, but it also brings limitations. Since DHAE represents feature information in a
certain spatial range and ignores the feature value of the point itself, it is only suitable
for template matching. For feature matching, key-points require higher positioning accu-
racy, so the interest points determined via the DHAE method have no actual matching
significance in this case. Furthermore, due to the limitations of template matching, DHAE-
NCC also needs to perform rough registration or geocoding in advance to provide initial
correspondence information.

5. Conclusions

In this paper, a robust method for large-scale SAR image TPs matching is proposed,
which is divided into two parts: DHAE grid and adaptive template window. First, accord-
ing to the SAR-Harris criterion, the local area entropy is calculated and the DHAE grid is
generated according to the dynamic block selection strategy, and the interest points that
are more representative of the regional template compared with the traditional regular grid
are extracted to control the uniformity of distribution and reduce the mismatching rate. In
the second stage, the optimal matching template size is adaptively calculated on the DHAE
grid, which improves the matching accuracy of key areas and optimizes the calculation
efficiency. Through the experimental results on a large range of SAR image datasets, it is
shown that the accuracy and run time of the DHAE-NCC algorithm are better than those
of the existing SAR image template matching methods, especially on the overlapping area
images of flat areas and large areas.
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