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Abstract: The cross-dimensional matching of 2D images and 3D point clouds is an effective method by
which to establish the spatial relationship between 2D and 3D space, which has potential applications
in remote sensing and artificial intelligence (AI). In this paper, we propose a novel multi-task network,
2D3D-DescNet, to learn 2D and 3D local feature descriptors jointly and perform cross-dimensional
matching of 2D image patches and 3D point cloud volumes. The 2D3D-DescNet contains two
branches with which to learn 2D and 3D feature descriptors, respectively, and utilizes a shared
decoder to generate the feature maps of 2D image patches and 3D point cloud volumes. Specifically,
the generative adversarial network (GAN) strategy is embedded to distinguish the source of the
generated feature maps, thereby facilitating the use of the learned 2D and 3D local feature descriptors
for cross-dimensional retrieval. Meanwhile, a metric network is embedded to compute the similarity
between the learned 2D and 3D local feature descriptors. Finally, we construct a 2D-3D consistent
loss function to optimize the 2D3D-DescNet. In this paper, the cross-dimensional matching of 2D
images and 3D point clouds is explored with the small object of the 3Dmatch dataset. Experimental
results demonstrate that the 2D and 3D local feature descriptors jointly learned by 2D3D-DescNet are
similar. In addition, in terms of 2D and 3D cross-dimensional retrieval and matching between 2D
image patches and 3D point cloud volumes, the proposed 2D3D-DescNet significantly outperforms
the current state-of-the-art approaches based on jointly learning 2D and 3D feature descriptors; the
cross-dimensional retrieval at TOP1 on the 3DMatch dataset is improved by over 12%.

Keywords: cross-dimensional matching; local feature descriptors; 2D image patch; 3D point cloud
volume

1. Introduction

Two-dimensional images and three-dimensional point clouds, captured by different
sensors, are complementary spatial data, referred to as cross-domain data. The 2D images
are represented by 2D grids in 2D space but are limited to reflecting the real scene of the 3D
world fully. Meanwhile, 3D point clouds are represented by discrete points with real-point
coordinates to perceive the 3D space. Essentially, if the matching relationship between 2D
images and 3D point clouds is established, the spatial relationship between 2D and 3D
space can be established, which has potential application prospects in AI, e.g., augmented
reality [1], robot navigation [2], autonomous driving [3], etc.

In fact, there is large discrepancy between 2D images and 3D point clouds; the data
modals are quite different, e.g., cross-modal, cross-dimension, cross-space, such that a

Remote Sens. 2024, 16, 2493. https://doi.org/10.3390/rs16132493 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16132493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5934-1139
https://doi.org/10.3390/rs16132493
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16132493?type=check_update&version=1


Remote Sens. 2024, 16, 2493 2 of 17

domain gap exists between the 2D images and 3D point clouds. Currently, although the 2D
and 3D feature descriptors are widely available, we lack the unified feature descriptors to
represent both the 2D images and the 3D point clouds.

In particular, the definitions of mature handcrafted feature descriptors for 2D images
and 3D point clouds are extremely different [4], such as the 2D feature descriptors SIFT [5]
and SURF [6] and the 3D feature descriptors FPFH [7], SHOT [8], and ROPS [9]. In
addition, with the recent advent of deep learning, there are robust 2D and 3D feature
descriptors learned automatically through the use of deep neural networks [10–12], such as
the 2D learned feature descriptors in DeepDesc [13], L2-Net [14], SOSNet [15], DISK [16],
RDLNet [17], and Lightglue [18] and the 3D learned feature descriptors in PointNet++ [19],
PointCNN [20], PPFNet [21], D3feat [22], Spinnet [23], and Pointnext [24]. The above
learned feature descriptors have demonstrated their robustness and advantages over their
mature handcrafted counterparts. However, similar to the issues of 2D and 3D handcrafted
feature descriptors, the 2D feature descriptors learned on the 2D domain may not be
applicable in 3D space and vice versa.

In this paper, we aim to narrow the domain gap between 2D and 3D feature descriptors
by using a learning strategy such that the learned unified feature descriptors can be worked
on both 2D and 3D domains. In detail, we propose a novel network, 2D3D-DescNet, to
learn 2D and 3D local feature descriptors jointly, which bridges the domain gap between
2D images and 3D point clouds. The 2D3D-DescNet contains three parts: feature extractor,
cross-domain image-wise feature map extractor, and metric network. First, the feature
extractor with two branches receives raw paired 2D image patches and 3D point cloud
volumes to learn 2D and 3D local feature descriptors. Second, the cross-domain image-wise
feature map extractor utilizes a shared decoder to generate the feature maps of 2D image
patches and 3D point cloud volumes. Meanwhile, and most importantly, the cross-domain
image-wise feature map extractor embeds a GAN [25] strategy to distinguish the source
of the generated feature maps (essentially a binary classification) so that, in turn, it can
promote the consistency of the learned 2D and 3D local feature descriptors. Third, the
metric network is constructed to compute the similarity to determine whether the 2D image
patches and 3D point cloud volumes match. Finally, the 2D3D-DescNet is optimized by
a constructed 2D-3D consistent loss function, which consists of a chamfer, a hard triplet
margin, and adversarial and cross-entropy losses. In this paper, the cross-dimensional
matching of 2D images and 3D point clouds is explored with the small object of the 3Dmatch
dataset. We conduct extensive experiments to demonstrate the invariant of 2D and 3D
local feature descriptors learned by the 2D3D-DescNet on the 2D image patch and the 3D
point cloud volume dataset. In addition, based on the 2D and 3D local feature descriptors
learned by 2D3D-DescNet, the 2D-3D retrieval and 2D-3D matching between 2D image
patches and 3D point cloud volumes achieve state-of-the-art performance.

The contributions of this paper include the following:

• A novel end-to-end network, 2D3D-DescNet, is proposed to learn 2D and 3D local
feature descriptors, which can work on both 2D and 3D domains.

• The constructed 2D-3D consistent loss balances the 2D and 3D local feature descriptors
between 2D and 3D domains and bridges the domain gap between 2D images and 3D
point clouds.

• Compared with the current approaches based on jointly learning 2D and 3D feature
descriptors, the 2D and 3D local feature descriptors learned by 2D3D-DescNet achieve
state-of-the-art performance on 2D-3D retrieval and 2D-3D matching.

2. Related Works
2.1. 2D and 3D Feature Descriptor

The 2D and 3D feature descriptors are widely applied in 2D and 3D computer vi-
sion, such as in image matching, image registration, and point cloud registration, etc.
The 2D and 3D feature descriptors can be divided into handcrafted and learning-based
feature descriptors.
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For the handcrafted 2D and 3D feature descriptors, they are often dependent on prior
knowledge and constructed from low-level features. On the one hand, the description
strategies of 2D handcrafted feature descriptors are usually classified into gradient statistics
(SIFT [5], SURF [6]), local binary pattern statistics (LBP [26], RLBP [27]), local intensity
comparison (BRIEF [28], ORB [29]), and local-intensity-order-statistics-based methods
(LIOP [30,31]). On the other hand, the 3D handcrafted feature descriptors are usually
divided into spatial-distribution-histogram-based and geometric-attribute-histogram-based
descriptors [32,33], such as FPFH [7], SHOT [8], and ROPS [9].

As for the learning-based 2D and 3D feature descriptors, they are usually learned
by the framework of the Siamese network or the triplet network, such as the 2D learned
feature descriptors DeepDesc [13], L2-Net [14], SOSNet [15], etc., and the 3D learned
feature descriptors in PointNet++ [19], PointCNN [20], PPFNet [21], etc. SOE-Net [34]
proposed a self-attention and orientation encoding network to learn the 3D features for
point-cloud-based place recognition. CASSPR [35] proposed the fuse-point-based and
voxel-based approaches, using cross attention transformers to the learn 3D feature for the
place recognition. Text2Loc [36] proposed a novel matching-free fine localization method
to learn the 3D feature.

These learned 2D and 3D feature descriptors have demonstrated their robustness and
advantages over the mature handcrafted feature descriptors; the deep learning techniques can
easily distinguish the same structures, despite the fact that images or point clouds suffer from
apparent variance and geometrical transformation [33]. For a comparison of handcrafted and
learning feature descriptors for 2D and 3D features, please refer to [33,37–39] for details.

In addition, whether they are handcrafted or learned 2D and 3D feature descriptors,
they all face the issue that the 2D feature descriptors learned on the 2D domain may not be
applicable in 3D space and vice versa.

2.2. Unified 2D and 3D Feature Descriptor

More recently, there have been several networks used for jointly learning the unified
2D and 3D feature descriptors which can be used both in 2D and 3D domains. 2D3D-
MatchNet [40] was the first to propose a deep learning approach to learning the descriptors
that allow for direct matching of the keypoints across a 2D image and a 3D point cloud.
Siam2D3D-Net [41] use a Siamese network framework to learn the 2D and 3D feature
descriptors between camera image patches and LiDAR point cloud volumes which were
captured by a mobile laser scanning system. Similarly, H-Net++ [42] embeds the au-
toencoder into the Siamese network, and LCD [43] embeds the 2D autoencoder and 3D
autoencoder into the Siamese network for learning 2D and 3D feature descriptors, respec-
tively. 2D3D-GAN-Net [44] employs the GAN strategy to distinguish the source of the
learned feature 2D and 3D descriptors, facilitating the extraction of invariant local cross-
domain feature descriptors. HAS-Net [45] introduces the spatial transformer network (STN)
module to overcome the translation, scale, rotation, and more generic warping of 2D image
patches. 2D3D-MVPNet [46] use a point cloud branch and an image branch to learn the 2D
and 3D feature, and the point cloud branch uses multi-view projected images to extract the
3D feature. However, although these learned unified 2D and 3D feature descriptors can be
used for retrieval, their robustness is limited and may lead to a mismatch.

3. Method

In this section, we introduce the network structure, the constructed 2D-3D consistent
loss function and training strategy of the proposed 2D3D-DescNet in detail.
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3.1. 2D3D-DescNet

To learn the 2D and 3D local feature descriptors for 2D images and 3D point clouds,
we propose a novel network, 2D3D-DescNet (shown in Figure 1), consisting of a feature
extractor, a cross-domain image-wise feature map extractor, and a metric network. It
should be noted that the inputs of 2D3D-DescNet are matching 2D image patches (P) and
3D point cloud volumes (V), while the non-matching samples are generated during the
training process.
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Figure 1. The network architecture of 2D3D-DescNet, which contains the feature extractor, the
cross-domain image-wise feature map extractor, and the metric network. The goal of the proposed
2D3D-DescNet is to extract the 2D and 3D local feature descriptors with consistent similarity from
the 2D images and the 3D point cloud.

The pipeline of the GAN strategy and the consistent loss function are as follows:
Step 1: Input 3D point cloud volume V and 2D image patch P. The matching and

non-matching 2D and 3D pairs are constructed by the hard triplet margin loss LHardSOS
(Equation (2)).

Step 2: Use the 3D encoder and 2D encoder (feature extractor module) to extract the
3D feature vi and 2D feature pi.

Step 3: Use the 3D decoder to reconstruct the 3D feature vi as V̄. The loss function is
chamfer loss LCham f er (Equation (1)).
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Step 4: Concatenate 3D feature vi and 2D feature pi and then send it into the metric
network to compute the similarity of the 3D point cloud volume V and the 2D image patch
P. The loss function of the metric network is cross-entropy loss LCE (Equation (6)).

Step 5: Use the feature map decoder to reconstruct the 3D feature vi and 2D feature pi
as an image-wise feature map Fvi and Fpi.

Step 6: Use the discriminator to compute the similarity of the image-wise feature map
Fvi and Fpi.

Step 7: Compute the adversarial loss, which consists of the discriminator LD (Equation (4))
and the generator LG (Equation (5)).

Step 8: Finally, obtain the cross-dimensional 2D and 3D feature descriptors fvi and fpi.

3.1.1. Feature Extractor

The feature extractor contains a 2D encoder and a 3D autoencoder to learn the
128-dimensional 2D and 3D feature descriptors between the input paired matching 2D
image patches and the 3D point cloud volumes. The size of the input 2D image patches
is 64 × 64 × 3, and the input 3D point cloud volumes are sampled to 1024 points with
coordinate information and color information, i.e., 1024 × 6.

For the 2D encoder, the detailed structure is C(32,4,2)-BN-ReLU-C(64,4,2)-BN-ReLU-
C(128,4,2)-BN-ReLU-C(256,4, 2)-BN-ReLU-C(256,128,4), where C(n,k,s) denotes a convolu-
tion layer with n filters of kernel size k × k with stride s, BN is batch normalization, and
ReLU is the non-linear activate function.

As for the 3D autoencoder, the 3D encoder is PointNet [47], and the last fully connected
layer is changed to a 128-dimensional layer. The detailed structure of the 3D decoder is
FC(128,1024)-BN-ReLU-FC(1024,1024)-BN-ReLU-FC(1024,1024×6)-Tanh, where FC(p,q)
represents the input p-dimensional feature vector map to the q-dimensional feature vector
through a fully connected network, and Tanh is the non-linear activate function.

3.1.2. Cross-Domain Image-Wise Feature Map Extractor

To overcome the dimension differences between 2D images and 3D point clouds, we
proposed to map the 2D images and 3D point clouds to a unified two-dimensional feature
space, called cross-domain image-wise feature maps. (1) The 2D and 3D feature descriptors
are learned by the feature extractor. (2) The cross-domain image-wise feature maps are
generated by a constructed shared decoder, named the feature map decoder, as shown
in Figure 1. Essentially, there are two steps here: first, the 2D image passes through a 2D
encoder to extract features, then a 2D decoder is performed to obtain a 2D feature map;
second, the 3D point cloud passess through a 3D encoder to extract features, then a 3D
decoder is performed to obtain a 3D feature map. The 2D feature map and 3D feature map
are collectively referred to as the cross-domain image-wise feature map. (3) The GAN is
embedded into the 2D3D-DescNet, and the discriminator distinguishes the source of the
image-wise feature maps. Thus, during training, the paired matching image-wise feature
maps of the paired matching 2D image patches and 3D point cloud volumes will become
similar such that through the shared feature map decoder, we can conclude that the 2D and
3D feature descriptors learned by 2D3D-DescNet are similar.

Three-dimensional point clouds encapsulate a wealth of intricate two-dimensional
information, making them a valuable resource for feature extraction. Through the use of
deep neural networks, 2D images can facilitate the transfer of these features, enhancing our
overall understanding and analysis of the data. Specifically, the image-wise feature map
derived from 3D data is capable of extracting 2D features that correspond closely to those
obtained from 2D data. This ensures that the image-wise feature maps generated from both
3D and 2D datasets encapsulate the same feature information, promoting consistency and
accuracy in data representation.

In the process, 2D image-wise feature maps are generated from 2D image patches.
These patches undergo processing by a shared feature map decoder, which uses 2D feature
descriptors as inputs. This decoder effectively translates the 2D characteristics into a
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comprehensive feature map. Similarly, 3D image-wise feature maps are extracted from the
volumetric data of 3D point clouds. The shared feature map decoder, utilizing 3D feature
descriptors as inputs, processes these volumetric data points to produce a detailed and
accurate feature map. Thus, the use of a shared feature map decoder for both 2D and 3D
data ensures that the resulting image-wise feature maps are consistent and comparable,
facilitating robust feature transfer and integration across different data types.

In detail, the cross-domain image-wise feature map extractor contains a shared feature
map decoder and a discriminator, as follows:

For the feature map decoder, the inputs are the paired 2D and 3D feature descriptors
learned from the feature extractor, and the outputs are image-wise feature maps, for which
the size is 64 × 64 × 3. The detailed structure is C(256,4,4)-BN-ReLU-C(128,4,2)-BN-ReLU-
C(64,4,2)-BN-ReLU-C(32,4,2)-Sgimoid, where Sgimoid is the non-linear activate function.

The discriminator, consisting of a 2D encoder and a fully connected network (FCN),
receives the extracted image-wise feature maps to distinguish which domain data the
extracted image-wise feature maps come from. In detail, the structure of 2D encoder
is the same as the 2D encoder of feature extractor, and the detailed structure of FCN
is FC(128,256)-ReLU-BN-Dropout-FC(256,128)-ReLU-BN-Dropout-FC(128,64)-ReLU-BN-
Dropout-FC(64,32)-ReLU-BN-Dropout-FC(32,2)-SoftMax.

3.1.3. Metric Network

The metric network receives the concatenation of the 2D and 3D feature descriptors
learned by the feature extractor and computes their similarity. Specifically, the structure of
metric network is the same as the FCN of the discriminator in the cross-domain image-wise
feature map extractor, and the non-linear activation function is Softmax. The detailed struc-
ture of the metric network is as follows: FC(128,256)-ReLU-BN-Dropout-FC(256,128)-ReLU-
BN-Dropout-FC(128,64)-ReLU-BN-Dropout-FC(64,32)-ReLU-BN-Dropout-FC(32,2)-SoftMax.

3.2. 2D-3D Consistent Loss Function

To optimize the 2D3D-DesNet, we construct a 2D-3D consistent loss function, which
consists of the chamfer, hard triplet margin, adversarial and cross-entropy losses.

3.3. Chamfer Loss

To optimize the 3D autoencoder and keep the structure information of the learned 3D
features, the 3D decoder is used for reconstructing the point cloud from the learned 3D
feature descriptors. In detail, we measure point sets via chamfer distance to optimize the
3D autoencoder:

LChamfer = max
{

1
|V| ∑v∈V minq∈V̄ ∥v − q∥2

1
|V̄| ∑q∈V̄ minv∈V ∥v − q∥2

}
,

(1)

where V and V̄ are the input point cloud volumes and output reconstructed point cloud
volumes with 1024 points, respectively.

3.3.1. Hard Triplet Margin Loss

To narrow the domain gap between the 2D images and 3D point clouds, we aim to
make the learned 2D and 3D feature descriptors as close as possible in the Euclidean space
so that they can be used for retrieval. Inspired by HardNet [48] and SOSNet [15], we use
the hard triplet margin loss with a second-order similarity (SOS) regularization to constrain
the 2D and 3D feature descriptors learned by 2D3D-DescNet.

Essentially, the hard triplet loss enables the matching 2D feature descriptors and 3D
feature descriptors to become similar in high-dimensional space, while the non-matching
pairs become alienated. Moreover, the hard triplet loss solves the problem of unstable
performance caused by the randomness of negative sample sampling. In addition, the
second-order similarity regularization can be used to expand the inter-class distance be-
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tween descriptors of the same domain, thus improving the invariance of the jointly learned
2D and 3D local feature descriptors.

In detail, for a batch of the training data B = (Pi, Vi)
n
i=1, where P and V are matching

2D image patches and 3D point cloud volumes, n is the number of samples in B. Then,
through the 2D3D-DescNet, the matching 2D and 3D local feature descriptors (pi, vi) are
computed; meanwhile, the closest non-matching 2D and 3D local descriptors, namely,(

pi, vjmin
)

and (pk min, vi), are constructed. Finally, the hard triplet margin loss with an SOS
regularization is defined as follows:

LHardSOS =
1
n

n

∑
i=1

max{0, 0.25 + d(pi, vi)

− min[d(pi, vjmin), d(pkmin , vi)]}

+
1
n

n

∑
i=1

√√√√ n

∑
j ̸=i

(d(pi, pj)− d(vi, vj))2,

(2)

where d(x, y) =
√

2 − 2xy, and x and y denote the D-dimensional feature descriptors.

3.3.2. Adversarial Loss

The 2D3D-DescNet is optimized using the mini-max two-player game framework,
a foundational concept in generative adversarial networks (GANs), which is composed
of two neural networks: the generator and the discriminator. These networks are trained
simultaneously in a competitive setting. The generator’s goal is to produce data that is as
realistic as possible, while the discriminator’s task is to distinguish between real data and
data generated by the generator. This adversarial process drives both networks to improve
continuously, leading to the generation of highly realistic data.

In the context of 2D3D-DescNet, the generator and discriminator work together to
align 2D image patches with 3D point cloud volumes. The binary cross entropy (BCE)
loss is used as the loss function to judge the performance of both networks. BCE is
particularly suited for binary classification tasks, where the output is a probability value
between 0 and 1. It measures the performance of the generator in producing realistic data
and the discriminator’s ability to distinguish between real and generated data. Although
MSE is easy to calculate, it is very sensitive to outliers, which means that if there are outliers
in the data, MSE may be dominated by these values and ignore other data points, resulting
in an increase in the loss value, which affects the training of the model. In summary, in the
context of this paper, if MSE loss is used, it only makes a simple pixel value comparison
and cannot determine the similarity of 2D and 3D image-wise feature maps from a global
perspective. We use the discriminator method to solve this problem effectively. Thus,
binary cross entropy (BCE) is used for judging the generation ability of the generator and
the discriminatory ability of the discriminator. The 2D and 3D image-wise feature maps
are evaluated by a discriminator instead of mean square error, as follows:

LD = LBCE
(

Dβ(Gθ(P), 1)
)
+ LBCE

(
Dβ(Gθ(V), 0)

)
, (3)

where P and V are the inputs of the paired matching 2D image patches and 3D point
cloud volumes; G and D are the generator and the discriminator, respectively; β denotes
parameters of D, and θ denotes parameters of network framework, except D; label 1 denotes
the image-wise feature of V; label 0 denotes the image-wise feature of P.

In this setting, the generator aims to create feature maps from 2D images that are
so realistic that the discriminator cannot distinguish them from feature maps derived
from 3D point clouds. The discriminator, on the other hand, strives to accurately identify
whether the feature maps are from the 2D images or the 3D point clouds. This adversarial
relationship pushes the generator to produce increasingly realistic feature maps, improving
its ability to generate data that mimic the real 3D features.
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The generator in 2D3D-DescNet also functions as a feature extractor. It includes a
feature extractor, a feature map decoder, and a 2D encoder in the discriminator, as illustrated
in Figure 1. The optimization objective for the generator is to generate feature maps that
can deceive the discriminator. The loss function for the generator is as follows:

LG = LBCE
(

Dβ(Gθ(P), 0)
)
+ LBCE

(
Dβ(Gθ(V), 1)

)
+ d( fvi, fpi), (4)

where fvi and fpi are the 128-dimensional features output by the 2D encoder in the discrim-
inator D; and the definition of d( fvi, fpi) is the same to the hard triplet margin loss. The
triplet margin loss ensures that the features extracted from matching 2D and 3D data are
closely aligned, while features from non-matching pairs are pushed apart. This helps in
learning discriminative features for accurate matching.

The hard triplet margin loss d( fvi, fpi) is defined as follows:

d( fvi, fpi) =
1
n

n

∑
i=1

max{0, 0.25 + d( fvi, fpi)− min[d( fvi, fpjmin), d( fvkmin , fpi)]}. (5)

This loss function encourages the network to minimize the distance between the features
and matching pairs while maximizing the distance from the hardest negative samples. By
incorporating this loss, the generator is encouraged to produce feature maps that are not
only realistic but also well-aligned with their corresponding 3D features.

To summarize, 2D3D-DescNet leverages the adversarial training strategy of GANs
to optimize the feature extraction process for matching 2D images and 3D point clouds.
The use of BCE loss for both the generator and discriminator ensures that the network can
effectively distinguish between real and generated data. The additional triplet margin loss
helps in aligning features from 2D and 3D data, improving the discriminative power of
the learned features. This combination of adversarial training and feature alignment tech-
niques allows 2D3D-DescNet to achieve robust and accurate matching between 2D images
and 3D point clouds, making it a powerful tool for tasks that require cross-dimensional
data integration.

3.3.3. Cross-Entropy Loss

For the embedded metric network, metric learning is used for measuring similarity
between the learned local 2D and 3D feature descriptors. Specifically, since the input
samples of 2D3D-DescNet are all matching 2D image patches and 3D point cloud volumes,
we introduce a strategy by which to construct the positive and negative samples for
the training of the metric network. For a mini-batch, when fixing a batch of 2D feature
descriptors, first, the corresponding matching batch of 3D feature descriptors is constructed
to provide positive samples; second, the non-matching batch of 3D feature descriptors is
constructed to provide negative samples, which are sampled from the other’s mini-batch.
Based on this strategy, the same number of positive and negative samples are constructed
for metric learning.

The cross-entropy loss is used for optimizing the metric network. In detail, n pairs
of 2D-3D samples are fed into the network in one batch. yi is the 0/1 label that indicates
whether the input pair xi, which is the concatenation of the 3D feature descriptor vi and
the 2D feature descriptor pi, is matching or not. Label 1 means matching and label 0
means non-matching. ŷi is the output of metric network. The cross-entropy loss is defined
according to the following formula:

LCE = − 1
n ∑n

i=1[yi log(ŷi) + (1 − yi) log(1 − ŷi) ]. (6)

For the input xi, two-dimensional vector
(

g0(xi)
g1(xi)

)
is computed as the similarity of the input

pair xi:
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ŷi =
eg1(xi)

eg0(xi) + eg1(xi)
. (7)

3.3.4. Total Loss

Finally, the 2D3D-DescNet is optimized according to the constructed 2D-3D consistent
loss function, which has been described in detail above.

In detail, the 2D-3D consistent loss function is further divided into two categories
during optimization. First, for 2D and 3D local feature descriptor learning, we include
chamfer loss, hard triplet margin loss with SOS, cross-entropy loss, and the generator of
adversarial loss; thus, these 4 losses are optimized together, as follows:

L1 = λ1LChamfer + λ2LHardSOS + λ3LCE + λ4LG, (8)

where λ1, λ2, λ3, and λ4 denote the proportion of the loss functions and have been set as
1, 1, 0.5, and 0.25, respectively, in our experiments. Second, to ensure the performance
of the discriminator, the parameters of the discriminator are updated in 5 steps, and
other parameters of the 2D3D-DescNet are updated every step; thus, the discriminator is
optimized individually, as follows:

L2 = LD. (9)

3.4. Training Strategy

2D3D-DescNet uses the Pytorch framework to build on a cluster equipped with a
NVIDIA 3090Ti and 36 GB of memory. The training process is stopped after 200 epochs. In
our framework, all parameters of the network are trained with the same implementation
details. The optimizer SGD is used as the optimizer, and the momentum is set as 0.9.
Initially, the learning rates of the generator and discriminator are set at 0.001 and 0.001,
respectively, and the decrease by 0.0005 after each step.

4. Experiments

In this section, we first introduce the 2D image patch and 3D point cloud volume
dataset used in this paper. Second, we demonstrate state-of-the-art retrieval performance
of the 2D and 3D local feature descriptors learned by 2D3D-DescNet. Third, we show the
performance of the metric learning in 2D3D-DescNet. Fourth, we show several point cloud
registration results by using the 3D feature descriptors learned from the 2D3D-DescNet.
Finally, we conduct ablation studies with analyses and discussions.

4.1. Dataset

The matching 2D image patch and 3D point cloud volume dataset used in this paper is
generated from the 3DMatch [49] dataset, which contains 600,000 pairs of 2D-3D correspon-
dences. For 2D3D-DescNet and all comparative networks, 580,000 correspondence pairs
are used for training, and 20,000 pairs are used to evaluate the performance of the learned
2D and 3D feature descriptors. All the training data and testing data do not intersect with
each other.

4.2. Similarity of 2D and 3D Feature Descriptors
4.2.1. 2D-3D Retrieval

To demonstrate the similarity of the 2D and 3D local feature descriptors learned by
the proposed 2D3D-DescNet, we use the TOP1 and TOP5 retrieval accuracy on the 2D-3D
retrieval task. In detail, each 2D feature descriptor retrieves the nearest and the 5-nearest
neighbors in the 3D feature descriptor. A successful TOP1 retrieval is defined as the nearest
retrieval result of the 2D feature descriptor which contains its corresponding 3D feature
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descriptor, and a successful TOP5 retrieval is defined as the 5-nearest retrieval result of the
2D feature descriptor which contains its corresponding 3D feature descriptor.

The retrieval performance of 2D3D-DescNet is compared with the existing state-of-
the-art networks based on jointly learning 2D and 3D feature descriptors, namely, 2D3D-
MatchNet [40], Siam2D3D-Net [41], 2D3D-GAN-Net [44], LCD [43], HAS-Net [45], and
2D3D-MVPNet [46], which are the state-of-art methods for jointly learning 2D and 3D
feature descriptors. As shown in Table 1, compared with the comparative networks, the
2D and 3D local feature descriptors learned by 2D3D-DescNet demonstrate significant im-
provement in TOP1 and TOP5 retrieval accuracy and achieve state-of-the-art performance.

Table 1. TOP1 and TOP5 retrieval accuracy on 3DMatch dataset.

Method TOP1 TOP5

2D3D-MatchNet [40] 0.2097 0.4318
Siam2D3D-Net [41] 0.2123 0.4567
2D3D-GAN-Net [44] 0.5842 0.8811
LCD [43] 0.7174 0.9412
HAS-Net [45] 0.7565 0.9623
2D3D-MVPNet [46] 0.8011 0.9482
2D3D-DescNet (Ours) 0.9271 0.9916

In addition, to show the effect of 2D-3D retrieval, based on the learned local 2D and
3D feature descriptors, we use the 2D image patches as the queries to retrieve the 5-nearest
retrieval 3D point cloud volumes in the testing data. The TOP5 ranking retrieval results
are shown in Figure 2, the correct TOP1 retrievals are labeled with red bounding boxes. It
can be seen that all the retrieved 3D point cloud volumes have similar colors and structure
information to the queried 2D image patches, which demonstrates that the local 2D and 3D
feature descriptors learned by 2D3D-DescNet are similar.

Patch TOP5 ranking results of 3D point cloud volumes

Figure 2. The TOP5 2D-3D retrieval results on the 3Dmatch dataset using the 2D and 3D local feature
descriptors learned by 2D3D-DescNet. The correct TOP1 retrievals are labeled with red bounding
boxes. It can be seen that all the retrieved 3D point cloud volumes have similar colors and structure
information to the queried 2D image patches, which demonstrates that the local 2D and 3D feature
descriptors learned by 2D3D-DescNet are similar.
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4.2.2. Histogram Visualization of 2D & 3D Feature Descriptors

To further demonstrate that the 2D and 3D local feature descriptors learned by 2D3D-
DescNet are similar, for the matching 2D image patches and 3D point cloud volumes in
Figure 2, we visualize the histogram of the learned 2D and 3D feature descriptors, as shown
in Figure 3. It can be observed that the distributions of the histogram in the figure are
extremely similar, and the values of each dimension are also similar. Thus, the histogram
visualization in Figure 3 demonstrates that the 2D and 3D local feature descriptors learned
by 2D3D-DescNet are robust and similar.

(a) 2D-3D pairs 1

(b) 2D-3D pairs 2

(c) 2D-3D pairs 3

1.00 

0.75 

0.50 

0.25 

0.00 

0 20 40 60 80 100 120 

1.00 

0.75 

0.50 

0.25 

0.00 
0 20 40 60 80 100 120 

(d) 2D-3D pairs 4

Figure 3. The histogram visualization of the 2D and 3D local feature descriptors learned by 2D3D-
DescNet between the matching 2D image patches and the 3D point cloud volumes in Figure 2. It can
be observed that the distributions of the histogram in the figure are extremely similar, and the values
of each dimension are also similar.



Remote Sens. 2024, 16, 2493 12 of 17

4.3. 2D-3D Matching

The 2D-3D matching is implemented by the metric network, which is designed to
distinguish between matching pairs and non-matching pairs. On the basis of the sampling
strategy working on testing dataset, we generate 20,000 pairs of matching samples and
20,000 pairs of non-matching samples. The 2D-3D matching results are evaluated by the
false positive rate at 95% recall (FPR95) and precision. Specifically, for FPR95, the lower the
better, and higer precision means better performance. We report the FPR95 and precision
for the evaluation of 2D-3D matching in Table 2. The high precision and low FPR95 show
the excellent performance of the 2D-3D matching metric network of 2D3D-DescNet in
measuring similarity.

Table 2. Evaluation of 2D-3D matching on 3DMatch dataset.

Method FPR95 Precision

2D3D-DescNet 0.1891 99.605

In fact, the learned 2D and 3D feature descriptors can be used for both TOP1 retrieval
and the measurements of the metric network. Obviously, the 2D-3D matching by the
metric network (Table 1) demonstrates better performance than the 2D-3D retrieval by
TOP1 retrieval (Table 2), but this comes at the cost of very expensive computation during
the process of measuring the similarity of cross-domain descriptors because the network
architecture of the metric network is FCN, which has high computational complexity. Such
a high testing cost prevents metric-network-based methods from being employed in many
applications despite their excellent performance. Thus, in practice, using the retrieved 2D
and 3D local feature descriptors is more reasonable.

4.4. 3D Point Cloud Registration

Following the 3DMatch Benchmark, we have generated color 3D point cloud fragments
for several scenes. These color 3D point cloud fragments are detected and sampled to generate
uniform keypoints. Each feature point generates a 3D point cloud volume with a radius of
30cm, which are fed into 3D encoder of 2D3D-DescNet to extract 3D local feature descriptors.
It should be noted that the 30 cm radius setting is based on the experience of previous point
cloud registration research [50–53]. Finally, pairs of 3D point cloud fragments are matched
through a nearest neighbor search of 3D local feature descriptors and RANSAC.

Then, five pairs of 3D point cloud fragments are input to the registration process, and
the visualizations are shown in Figure 4. Registration results show that the 3D feature
descriptors learned from 2D3D-DescNet not only have excellent retrieval performance but
also demonstrate robustness in 3D point cloud registration.

In addition, based on the 3DMatch dataset, we calculate the point cloud registration
recall of eight scenes and compare them with the existing point cloud registration methods,
as shown in Table 3. The experimental results show that the performance of the 3D point
cloud feature description extracted by 2D3D-DescNet is better in the registration task
than some traditional methods, but there is still a certain gap compared with other deep
learning methods. The reason is that the multi-task attribute of the cross-dimensional
feature description makes it impossible to focus entirely on a specific task.

Table 3. The performance of the 2D and 3D local feature descriptors learned by 2D3D-DescNet with
different dimensions on the 3DMatch dataset.

2D3D-DescNet CZK [54] FGR [55] 3DMatch [49] 3DSmoothNet [56] PointNetAE [43] LCD [43]

Kitchen 0.781 0.499 0.305 0.853 0.871 0.766 0.891
Home1 0.613 0.632 0.434 0.783 0.896 0.726 0.783
Home2 0.528 0.403 0.283 0.610 0.723 0.579 0.629
Hotel1 0.714 0.643 0.401 0.786 0.791 0.786 0.808
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Table 3. Cont.

2D3D-DescNet CZK [54] FGR [55] 3DMatch [49] 3DSmoothNet [56] PointNetAE [43] LCD [43]

Hotel2 0.589 0.667 0.426 0.590 0.846 0.680 0.769
Hotel3 0.423 0.577 0.385 0.577 0.731 0.731 0.654
Study 0.572 0.547 0.291 0.633 0.556 0.641 0.662
MIT Lab 0.444 0.378 0.200 0.511 0.467 0.511 0.600
Average 0.583 0.543 0.342 0.688 0.735 0.677 0.725

Figure 4. Three-dimensional global registration results based the three-dimensional feature descrip-
tors learned by the proposed 2D3D-DescNet. Five pairs of 3D point cloud fragments are input to
the registration process, and registration results show that the 3D feature descriptors learned by
2D3D-DescNet are robust in 3D point cloud registration. The blue point clouds are source data and
the yellow point clouds are target data.

4.5. Outdoor 2D-3D Retrieval

In order to explore the reliability of our proposed method in extracting 2D and 3D
cross-dimensional feature descriptors, we supplemented it with additional validation on
an outdoor 2D-3D dataset. This outdoor 2D-3D dataset is obtained via a mobile LiDAR
system and includes street view images and corresponding 3D LiDAR point clouds, with a
total of 13,884 pairs of matching 2D image patches and 3D point cloud volumes [41]. We
use 12,884 matching 2D and 3D pairs as training data and set 1000 matching 2D and 3D
pairs as testing data. The experimental result is shown in Table 4. This also verifies the
effectiveness of our proposed 2D3D-DescNet in extracting 2D and 3D cross-dimensional
feature descriptors on an outdoor 2D-3D dataset.

Table 4. TOP1 and TOP5 retrieval accuracy on outdoor 2D-3D dataset [41].

Method TOP1 TOP5

2D3D-MatchNet [40] 0.0081 0.0449
Siam2D3D-Net [41] 0.0084 0.0365
2D3D-GAN-Net [44] 0.0101 0.0489
LCD [43] 0.0343 0.0698
HAS-Net [45] 0.1782 0.2393
2D3D-MVPNet [46] 0.2588 0.3615
2D3D-DescNet (Ours) 0.6971 0.7563
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4.6. Ablation Study

To demonstrate the superiority of the proposed 2D3D-DescNet, we conduct several
ablation studies with analyses and discussions.

4.6.1. Dimensions of 2D and 3D Feature Descriptor

To explore the impact of the learned local 2D and 3D feature descriptors of different
dimensions on the retrieval performance of 2D3D-DescNet, we set the embedding size of
the 2D and 3D feature descriptors to 64, 128, and 256 for comparison experiments; the results
are shown in Table 5. For the 2D-3D retrieval task, the 128-dimensional and 256-dimensional
feature descriptors achieved the best performance in TOP1 and TOP5 retrieval accuracy,
respectively. For the 2D-3D matching task, the 128-dimensional and 256-dimensional
feature descriptors achieved the best performance in FPR95 and precision, respectively.

Table 5. The performance of 2D and 3D local feature descriptors learned by 2D3D-DescNet with
different dimension on 3DMatch dataset.

Dimension TOP1 TOP5 FPR95 Precision

64 0.8813 0.9844 0.2206 99.605
128 0.9271 0.9916 0.1891 99.605
256 0.9221 0.9922 0.2153 99.610

4.6.2. Cross-Domain Image-Wise Feature Map

To explore the role of image-wise feature mapping in 2D3D-DescNet, we compare the 2D3D-
DescNet with the 2D3D-DescNet that removed the cross-domain image-wise feature map extractor
(denoted as w/o image-wise feature map); the results are shown in Table 6. It can be seen that
the 2D3D-DescNet with the cross-domain image-wise feature map extractor demonstrates better
performance in 2D-3D retrieval, while the 2D3D-DescNet without the cross-domain image-wise
feature map extractor demonstrates better performance in 2D-3D matching.

Table 6. The effect of the image-wise feature map extractor, metric network, and adversarial loss in
2D3D-DescNet on the 3DMatch dataset.

TOP1 TOP5 FPR95 Precision

2D3D-DescNet 0.9271 0.9916 0.1891 99.605
2D3D-DescNet w/o
image-wise feature map 0.9169 0.9900 0.1839 99.660
2D3D-DescNet w/o
metric network 0.8873 0.9512 0.1855 99.391
2D3D-DescNet w/o
adversarial loss 0.8452 0.9374 0.1872 98.824

4.6.3. Metric Network and Adversarial Loss

We also test whether there is a metric network in the 2D3D-DescNet and remove the
adversarial loss in the 2D3D-DescNet. The results are shown in Table 6, which shows
that the metric network module and adversarial loss in our proposed 2D3D-DescNet
are positive factors in improving the robustness of cross-dimensional 2D and 3D local
feature descriptors.

5. Conclusions

In this paper, we propose a novel network, 2D3D-DescNet, to learn the 2D and 3D
local feature descriptors jointly, and the network is built based on a feature extractor and an
embedded GAN strategy. The constructed 2D-3D consistent loss balances the 2D and 3D
local feature descriptors between 2D and 3D domains and bridges the domain gap between
2D images and 3D point clouds. We demonstrate that the jointly learned 2D and 3D local



Remote Sens. 2024, 16, 2493 15 of 17

feature descriptors are effective in the 2D-3D retrieval and 2D-3D matching tasks, achieving
state-of-the-art performance. In addition, we also demonstrate that the jointly learned
2D and 3D local feature descriptors are similar in terms of 2D-3D retrieval and feature
histogram visualization. In future work, we aim to integrate our 2D and 3D local feature
descriptors with keypoint detectors to develop full 2D image and 3D point cloud matching.
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