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Abstract: Remote sensing of rotated objects often encounters numerous small and dense objects.
To tackle small-object neglect and inaccurate angle predictions in elongated objects, we propose
SA3Det, a novel method employing Pixel-Level Attention and Adaptive Labels Assignment. First, we
introduce a self-attention module that learns dense pixel-level relations between features extracted
by the backbone and neck, effectively preserving and exploring the spatial relationships of potential
small objects. We then introduce an adaptive label assignment strategy that refines proposals by
assigning labels based on loss, enhancing sample selection during training. Additionally, we designed
an angle-sensitive module that enhances angle prediction by learning rotational feature maps and
incorporating multi-angle features. These modules significantly enhance detection accuracy and
yield high-quality region proposals. Our approach was validated by experiments on the DOTA and
HRSC2016 datasets, demonstrating that SA3Det achieves mAPs of 76.31% and 89.4%, respectively.

Keywords: remote-sensing detection; self-attention; adaptive label assignment strategy; rotation
object detection

1. Introduction

Rotated bounding-box detectors for remote-sensing object detection have gained at-
tention owing to the triumph of deep convolutional neural networks (CNN). Instead of
simply drawing horizontal boxes around detected objects, it detects objects by generat-
ing directional bounding boxes. A considerable amount of research [1–3] has focused
on improving the representation of directional bounding boxes for remote-sensing ob-
ject detection. Transfers from axis-aligned detectors have been developed, such as RoI
Transformer [4], Oriented RCNN [5], and SCRDet [6]. Moreover, frameworks without
anchor frames, such as RepPoint [7] and DETR [8], have also been employed. Furthermore,
researchers have proposed various loss functions like GWD [9], KLD [10], and KFIoU [11]
to enhance the performance of these methods. Overall, significant progress has been made
in improving the representation of directional bounding boxes for remote-sensing object
detection through the development of specialized detection frameworks and optimized
loss functions.

Despite the advances in remote-sensing technology, aerial images are primarily cap-
tured from a bird’s-eye view, which can pose challenges in identifying tiny objects based
on their appearance alone. Although many efforts have been made to tackle this issue, our
analysis of mainstream remote-sensing datasets (DOTA [1], HRSC2016 [12]) has revealed
two areas in the current frameworks that can be further optimized: (1) Object detectors
in remote-sensing images often lack robust contextual understanding, which can lead to
potential misclassifications and missed detections, resulting in decreased recall rates. For
instance, as illustrated in Figure 1, the object is prone to being overlooked or incorrectly
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detected. Therefore, we propose leveraging comprehensive contextual information to
enhance the precision of object detection in remotely sensed imagery. (2) Decoupling
rotation angles has been proven to enhance the performance of various object detection
techniques. For example, recent studies, such as S2A-Net [13], and PP-YOLOE-R [14], have
achieved promising results by adopting this approach. However, existing methods for
decoupling angles still rely on the same feature map, which limits the significance of angle
decoupling to only avoid interference with localization regression. As depicted in Figure 1b,
the estimated angle may lack precision.

(a) (b)
Figure 1. Visualization of some challenges encountered by existing detection models, such as mission
detection, tiny object detection, and inaccurate bounding-box prediction. (a) The blue box in the
image represents objects lost in dense small-object detection. (b) The red box in the image shows
inaccurate detection angles and error classification.

To address the aforementioned situations, SA3Det is proposed to achieve accurate
object detection in remote-sensing images. Specifically, a PSA (Pixel-level Self-Attention)
module is elaborated, which efficiently detects objects and their extensive background
information by guiding the attention weighting mechanism to assign higher weights to
relevant elements. Furthermore, an ALA (Adaptive Label Assignment) strategy is pre-
sented that decouples the label assignment of the classification branch and the regression
branch and utilizes the loss value to allocate labels. This strategy reduces the influence of
the classification branch on the regression branch and enables adaptive label assignment.
Additionally, an ASM (Angle-Sensitive Module) is designed to optimize angular repre-
sentation and enable more precise angle prediction. It employs rotating filters to extract
angle-sensitive features and introduces phase-shift encoding to overcome the problem of
angle periodicity, therefore generating accurate angle information.

With enhancements to the PSA module, adaptive label assignment of ALA strategy,
and new feature angle prediction of the ASM module, SA3Det achieves excellent detection
performance on two popular datasets. Figure 2 illustrates the proposed framework, and
the main contributions of this article are summarized as follows:
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• Based on the self-attention module, we formulate a PSA module that leverages inter-
pixel relationships to guide the feature map, which effectively preserves potential useful
contextual details for small objects and improves the recall rate of object detection.

• Respecting the diverse learning difficulties of samples, we have implemented an ALA
strategy to allocate labels based on loss values, therefore automatically selecting more
valuable samples. Additionally, we have decoupled the labels of the two branches to
improve the regression accuracy.

• We design an ASM module that generates an independent angle-sensitive feature
map for more accurate bounding boxes regression while subtly addressing the issues
caused by angle information.
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Figure 2. Architecture of the proposed SA3Det. SA3Det is composed of a backbone network, a
Feature Pyramid Network [15], and a rotating object detection head. The PSA(a) acts as a bridge
between FPN and the detection head. ALA(b) is responsible for using the cost matrix to divide
positive and negative labels. Through ASM(c), we obtain an independent rotation feature map, which
enables us to accurately determine the rotation angle.

2. Related Works
2.1. Rotated Object Detection

According to the detection strategy adopted, the current deep learning methods used
for remote-sensing image object detection can be divided into anchor-based, anchor-free,
and Transformer-based methods. Anchor-based methods can be further divided into
single-stage regression methods and two-stage region proposal methods.

Single-stage methods, such as SSD [16] and YOLO series [14,17–20], Directly output
the target position and category from the features extracted from the network, bypassing
the region proposal stage. These methods provide high detection speeds suitable for real-
time applications but typically exhibit lower accuracy and higher miss rates. Recently, Yang
et al., proposed SCRDet++ [21], which introduces instance-level denoising technology to
enhance the detection effect of small targets in aerial remote-sensing images.

The two-stage method represented by the RCNN series [4,5,22] is divided into two
stages: first, extracting regions of interest (ROIs), and then classifying and regressing these
regions. The effectiveness of these methods depends on the rotation anchor generation strat-
egy to accurately cover the target’s bounding box and azimuth. Methods such as RRPN [23],
ReDet [24], and Oriented-RCNN [5] combine directional information by adding angle pa-
rameters to bounding-box representations and using sample loss methods for regression. In
addition, LSKNet [25] proposes a detection method based on multi-scale feature pyramids,
which achieves high-precision detection by combining features of different scales and is
particularly suitable for multi-scale object detection tasks in remote-sensing images.

The anchor-free method was pioneered by CornerNet [26], which identifies key points
in the upper left and lower right corners and assembles targets based on their similarity to
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detect them. Accurate detection is achieved by regressing boundary perception vectors to
capture rotated bounding boxes. DETR [27] introduces a Transformer-based method that
integrates Transformer into object detection, combining CNN and Transformer components
without the need for post-processing. Although DETR achieves high accuracy, it consumes
many resources and converges slowly. In order to reduce the computational requirements
of the DETR self-attention module, methods such as AO2-DETR [28] have been developed.
By providing improved initial weights for target queries and reference points, the number
of decoder layers has been significantly reduced, therefore maintaining acceptable accuracy
while reducing computational complexity.

2.2. Attention Mechanism

Attention mechanisms used in computer vision can be categorized into three types:
channel domain, spatial domain, and mixed domain. The main idea behind attention
mechanisms is to assign different weights to different channels or spatial regions, allowing
the network to focus on extracting more important information instead of treating all
positions or channels equally during convolution/pooling operations. To achieve this, the
channel attention SE block [29] utilizes global average pooling operations to assess the
significance of various channels. Spatial attention modules like GENet [30] and SGE [31]
enhance the network’s ability to comprehend contextual information by incorporating
spatial masks. CBAM [32] integrates both channel and spatial attention to leverage their
respective advantages. Furthermore, Non-local Neural Networks [33] perform precise
correlation modeling by calculating correlations between different positions in the spatial
domain and learning channel weights in the channel domain.

Our approach shares similarities with Non-local NN [33], but there are two important
distinctions. First, our proposed pixel-level mechanism explicitly models the correlation
between each pixel position in the input image, allowing us to capture local details and
texture information more effectively. Second, unlike Non-local, which aggregates informa-
tion in the channel domain, we aggregate information in the spatial domain. This design
is more intuitive and effective for remote-sensing tasks because channel selection cannot
adequately capture the spatial variance of different targets in the image space.

2.3. Label Assignment

Label assignment in object detection can be categorized into two strategies: static
and dynamic. In dynamic label assignment, the model’s output is used to select positive
and negative samples during training. On the other hand, static label assignment relies
on predefined rules and ground conditions to determine positive and negative samples.
A common practice is to allocate anchor points with an Intersection over Union (IoU)
and ground truth greater than a certain threshold [15,34]. To enhance label assignment in
object detectors, researchers have explored different matching methods. For example, G-
Rep [35] uses normalized Gaussian distribution distance as an allocation indicator instead
of IoU. ATSS [36] adapts anchor allocation based on statistics like the average and standard
deviation of IoU values on a set of anchors from each ground truth. To adaptively separate
anchors based on the model’s learning state, PAA [37] proposes a probabilistic approach
for label assignment. DAL [38] introduces a prior matching degree that considers spatial
matching and feature alignment capabilities to dynamically select positive samples.

3. Methods
3.1. Overview of SA3Det

The overall network architecture is constructed based on the popular structures
R3Det [39], as depicted in Figure 2. SA3Det takes an image as input and predicts the
positions of objects in the form of oriented bounding boxes (x, y, w, h, θ). Initially, ResNet
and FPN are used as the backbone to extract compact multi-scale feature maps from the
given image. The image features from the backbone are then enhanced by pixel-level
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self-attention in each multi-scale feature map. This helps mitigate the problem of blurred
object boundaries and missed detection.

Then, the feature maps are received by the classification and regression subnets.
Subsequently, a feature reconstruction module (FRM) is employed to address the issue
of regional feature misalignment, as described in [39]. The ALA module utilizes a cost
matrix to dynamically select positive labels for classification and regression. Next, the ASM
module is used to generate rotation sensing features independently, which are utilized to
produce independent rotation angles. To ensure the accuracy of angle prediction during
training, we incorporate an independent angle loss to provide constraints. For a detailed
introduction to all three modules, please refer to Sections 3.2–3.4.

3.2. Pixel-Level Self-Attention

As depicted in Figure 3a, the fusion of features can introduce a considerable amount
of noise, resulting in the loss of small target details. Several previous studies [33,40]
have aimed to alleviate this issue. Therefore, a new insight is proposed to formulate a
PSA module that utilizes global semantic contextual information to guide the learning
of features, better preserving the relevant features of small objects while reducing noise
and relatively enhancing object information. Since the feature map is continuous, non-
object information cannot be eliminated. However, this allows for the retention of certain
contextual information, therefore improving overall robustness.

(a) (b) 
Figure 3. The visualization of image without/with PSA. The upper line indicates a feature map
without PSA, while the lower line indicates a feature map with PSA. (a) Feature maps without/with
PSA. (b) Attention weights without/with PSA. Red denotes higher attention values, and blue denotes
lower values.

As illustrated in Figure 2, let Pi,j ∈ Rh×w×b represents the input module patch. In
channel 1, a linear transformation is applied to acquire the feature representation, while
in channel 2, the pixel-level correlation block is used to determine the attention weight of
each pixel concerning the others. To begin, the patch is cropped, and a vector Xi,j ∈ Rb is
obtained for each pixel. Subsequently, the vectors Xi,j undergo MaxPooling and AvgPooling
operations, and the resulting vectors are concatenated to create a new feature vector A0.
This step introduces position-sensitive feature representations. Next, A0 is transposed to
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yield A1. Finally, based on these two vectors, the pixel-by-pixel attention weights can be
generated as follows:

A0 = Conv3×3(MaP(Xi,j) + AvP(Xi,j)),

A1 = (A0)
T ,

Wpbp = A0 ⊗ A1

(1)

where Wpbp ∈ Rh×w×256. A comprehensive illustration of this block is provided is shown
in Figure 4 (left), where MaP represents MaxPooling and AvP represents AvgPooling.
Through multi-layer convolution and pooling operations, pixel-level attention can capture
spatial relationships and contextual information between pixels.
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A1 = (A0)T

Patch  Pi, j

Wpbp

Vector  Xi, j
1×1×B Conv©

⊗
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Figure 4. (Left) The detailed diagram of the pixel-level correlation block in PSA. It consists of
two main parts: acquiring the new feature vector A0 and obtaining the pixel correlation weight
matrix Wpbp. Different colors represent different pixel weights. Symbol ⊗ denotes element-wise
multiplication. (Right) Visualization of pixel self-attention weights at different positions and layers.
The area where circles are drawn in layer 1 displays the effect of pixel self-attention, which enhances
attention near key areas of objects in space.

The weight is then normalized using the SoftMax function, and the resulting matrix is
added at the pixel-level by V to obtain a guided feature map Fg f . This process enhances
object clues and facilitates guided feature map learning. The equation for this procedure is
as follows:

Fg f = Conv3×3(So f tmax(Wpbp) + V) (2)

where V represents the feature map derived from channel 1. Then, we proceed to enhance
it by multiplying it with V to obtain the enhanced attention map. Subsequently, we
summarized the Fg f , V, and the enhanced attention map together. The equation for this
step can be expressed as:

Gi =
N

∑
i=0

(Fi
g f + Vi + Wi

f c ∗ Gmp(Vi) ∗ Fi
g f ) (3)

where W f c is the weight of the fully connected layer and Gmp() is the global maximum
pooling operation.

Figure 4 (Right) shows the attributes of two layers, with each matrix representing the
attention weights of a single position. In layer 1, we observe that small-object details are
highlighted by enhancing the weight values of key pixel positions, while local attention
appears in adjacent pixels. This indicates that pixel-level attention mainly focuses on the
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features of individual pixels, but it does not completely ignore contextual information.
Please note that layer 6 displays a more global weight matrix without any specific inter-
pretable local patterns. A visual comparison is presented in Figure 3, illustrating the impact
of PSA on the sample features. It can be observed that using PSA results in obtaining more
relevant and cleaner features.

3.3. Adaptive Label Assignment

We argue that when dealing with harder-to-learn samples, it becomes necessary to
dynamically adjust the thresholds to make accurate predictions. In our baseline method
trained on DOTA-v1.5, the last category (Container Crane) did not yield any predictions.
However, when we attempted to train again by lowering the threshold of the baseline, the
last category started appearing with predicted probabilities. Furthermore, papers such
as [36,41] have demonstrated that the regression threshold does not necessarily have to be
consistent with the classification threshold. It is reasonable to set a separate threshold for
bounding-box regression. Some good attempts show that replacing IoU with the loss value
is a more suitable approach for label assignment.

Motivated by these observations, we have designed an adaptive label assignment
strategy, which adapts a clean and effective cost formula proposed in [42] to assignment
labels. It decouples labels on the classification and regression branches, therefore reducing
the interference of classification on regression and alleviating such situations. Given an
image I, let there be Ω predictions based on the predefined anchors and G ground truth.
For each candidate, the foreground probability p̂ and the regressed bounding box Cg are
output for each category. To this end, a cost matrix can be formulated as:

Mi,π(i) = 1
[
π(i) ∈ C i

g

]
·
(

p̂π(i)(i)
)1−α

·
(

IoU
(

gi, C
π(i)
g (i)

))α
(4)

where Mi,π(i) ∈ [0, 1] represents the matching quality of the π(i)-th prediction with respect
to each ground truth, and C i

g denotes the set of candidate predictions for i-th ground truth.
α ∈ [0, 1] balances the contribution between classification and regression labels, and the α
defaults to 0.5. The relevant analysis of this parameter is presented in Section 4.4.

To stabilize the training process and accelerate model convergence, only candidates
whose centers fall into the ground-truth boxes are considered to be potential foreground
samples. During the allocation process, select the top K forecasts with the highest cost
value from each FPN level. If the matching quality of the candidate exceeds the adaptive
threshold calculated using ATSS (Adaptive Training Sample Selection), it is assigned as
a foreground sample. Algorithm 1 describes how the proposed strategy works for an
input image.

3.4. Angle-Sensitive Module

Many detection frameworks, such as S2A-Net [13] and SCRDet [6], utilize a shared
feature map to predict both the enclosing frame information and angle information of the
rotated bounding box. However, in Figure 1b, it is observed that the localization of the
bounding box is mostly accurate during object detection, while errors tend to occur in
the prediction of the angle parameter. This observation suggests that the feature maps
used for predicting the bounding-box localization may not be suitable for angle prediction.
Therefore, an ASM module is proposed for independent regression of the angle parameters.

As shown in Figure 5, we first extract rotation-sensitive features using active rotating
filters (ARF) [43]. The ARF is a directional filter with a size k ∗ k ∗ N, where N is the number
of rotations performed during the convolution process (default value is 8). Each rotation
produces a directional channel, resulting in a feature map with N channels. Here, k denotes
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the kernel size. The output feature map Y consists of N orientation channels, each feature
map Y can be calculated as follows:

Y(i) =
N−1

∑
n=0

G(n)
θi
∗ X(n), θi = i

2π

N
, i = 0, . . . , N − 1 (5)

where Gθi is the clockwise θi-rotated version of G, and G(n)
θi

and X(n) are the n-th directional
channel of Gθi and X, respectively. By applying ARF to the convolutional layer, we can
obtain information with direction-sensitive features. Additionally, learning ARF requires
much fewer training examples since the parameters between the N filters are shared.

Algorithm 1: Adaptive Label Assignment. (ALA)
Input:
G is a set of ground-truth boxes on the image
L is the number of feature pyramid levels
πi is a set of prediction boxes from the ith pyramid levels
Ω is a set of all prediction boxes
k is a quite robust hyperparameter with a default value of 9
Output:
P is a set of positive labels

1 for each ground-truth g ∈ G do
2 build an empty set for candidate positive labels of the ground-truth g: Cg ← ∅;
3 for each level i ∈ [1,L] do
4 Ui ← select k prediction boxes from πi whose centers are closest to the

center of ground-truth g based on L2 distance;
5 Cg = Cg ∪ Ui;

6 compute IoU between g and Cg: IoU(g, Cg);
7 compute foreground probability p̂: sigmoid(cls_scores[:, gt_labels]);
8 compute a cost matrixM: Equation (4);
9 compute mean ofM: mg = Mean(M);

10 compute standard deviation ofM: vg = Std(M);
11 compute IoU threshold for ground-truth g: tg = mg + vg;
12 for each candidate c ∈ Cg do
13 if IoU(c, g) ≥ tg and center of c in g then
14 P = P ∪ c;

15 return P ;

To fully leverage the directional information in the feature map, we incorporated the
directional encoding module PSC [44] for angle recognition. The PSC module efficiently
computes cosine values using three distinct phase-shift codes, effectively addressing the
boundary issue associated with angle generation. Specifically, due to the fact that rectan-
gular objects encounter boundary problems every 180 degrees of rotation, and the phase
period is 360 degrees, both periods must match to effectively solve the boundary problem,
thus establishing a double-layer mapping relationship. Similarly, square objects exhibit 90-
degree rotational symmetry and require a quadruple mapping relationship. Therefore, the
different rectangles within the light-yellow area in Figure 5 represent two unique mapping
relationships. The phase difference between the three different colors in a long rectangle is
2
3 π, so it just covers the range [0, 2π].
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Figure 5. Illustration of the proposed ASM. The blue area represents the process of obtaining rotation
sensing features. The light-yellow area indicates the use of a dual-frequency phase-shift encoder.
Three different colored lines in a rectangle represent the cosine encoding of angle data from three
different phases. The “Length” in the middle represents the length of the data encoding. Nstep means
the number of phase-shift steps. The final angle prediction is obtained through phase unwrapping at
the end.

Subsequently, the network predicts three phase-shifted cosine values and reverts them
to the angle formula using the following equation, where Nstep defaults to 3:

Fθ = − arctan
∑

Nstep
n=1 xn sin( 2nπ

Nstep
)

∑
Nstep
n=1 xn cos( 2nπ

Nstep
)

(6)

In practice, the arctan in the formula is implemented by the arctan 2 function which
limits its output to the range (−π, π]. xn represents the cosine function value of different
phases. It is worth noting that the angle in the formula Fθ should be twice or four times
the actual angle of the object.

This approach enables us to extract orientation-sensitive information from each chan-
nel of the feature map, which contains multiple orientation channels. After combining this
information with the previous localization information, it is fed into the sub-network to
regress the enclosing box.

3.5. Training Loss Function

In the training phase, in order to improve efficiency, we adopted a loss function similar
to the one used in [39]. The difference is that, to match our independent angle prediction,
we added an angle loss to constrain it. Specifically, we use Snap Loss [45] to solve the
periodic problem of angular consistency during the rotation process. The angle loss can be
expressed as:

Langle = ℓ
(

θpred, θtarget

)
,

Xpred = 2× sigmoid(X f eat)− 1,

θpred = Fθ(Xpred), θtarget = Fθ(Xtarget)

(7)

where X f eat is the output feature of the convolution layer, Xpred is the predicted encoded
data in the range [−1, 1], and Xtarget is the ground-truth phase-shifting patterns en-
coded from the orientation angle of annotation boxes. The formulations of ℓ() can be
expressed as:

ℓ
(

θpred, θtarget

)
= min

k∈Z

(
smoothL1

(
θpred, kπ + θtarget

))
(8)
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After obtaining the loss function for this portion, we define the total loss as the sum of
the three previously mentioned loss functions, which can be formulated as:

Ltotal = ω1Lcls + ω2Lbox + ω3Langle (9)

where ω1, ω2, and ω3 are weights of each sub-loss function and set to 1, 0.5, and 0.2
by default.

4. Experimental Results and Analysis
4.1. Experimental Setup

We conduct experiments on three rotated object detection datasets.
DOTA [1] is one of the largest datasets used for object-oriented detection in aerial

images, with two versions: DOTA-v1.0 and DOTA-v1.5. DOTA-v1.0 contains 2806 aerial
images with a size range of 800 × 800 to 4000 × 4000, including 188,282 instances in
15 common categories: Plane (PL), Baseball diamond (BD), Bridge (BR), Ground track field
(GTF), Small vehicle (SV), Large vehicle (LV), Ship (SH), Tennis court(TC), Basketball court
(BC), Storage tank (ST), Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), Swimming
pool(SP), and Helicopter (HC).

DOTA-v1.5 is released with a new category, Container Crane (CC). DOTA-v1.5 contains
402,089 instances. Compared to DOTA-v1.0, DOTA-v1.5 is more challenging but remains
stable in the training phase.

We use both training and validation sets for training, and the test set for testing.
According to the settings in the previous method [46], We cropped the original image to
1024 × 1024 blocks in step 824. Random horizontal flipping is adopted to avoid over-fitting
during training, and no other tricks are utilized. For fair comparisons with other methods,
we adopt data augmentation at three scales 0.5, 1.0, 1.5. The performance of the test set is
evaluated on the official DOTA evaluation server.

HRSC2016 [12] only contains one category “ship”. The image size ranges from
300 × 300 to 1500 × 900. The HRSC2016 dataset contains 1061 images in total (436 for
training, 181 for validation, and 444 for testing). We use both training and validation sets
for training and the test set for testing. All images are resized to (800, 512) without changing
the aspect ratio. Random horizontal flipping is applied during training.

Implementation details. The experiments are based on the MMRotate [46] toolbox,
using libraries such as PyTorch 1.12.1, CUDA 10.2, and Python3.8. All experiments are
carried out on NVIDIA RTX 2080Ti GPU cards (NVIDIA, Santa Clara, CA, USA).

In all experiments, We adopt ResNet50 and FPN (i.e., P3 to P7) as the backbone
network for a fair comparison with other methods. We train all models in 12 epochs for
DOTA and 36 epochs for HRSC2016. SGD optimizer is adopted with an initial learning
rate of 0.01, and the learning rate is divided by 10 at each decay step. The momentum and
weight decay are 0.9 and 0.0001, respectively. We use random flipping as the only data
augmentation method which is also the original setting of the official MMDetection code
when performing the comparison of the experiments.

4.2. Comparison to State-of-the-Art

We compare SA3Det against some state-of-the-art methods (the selected comparison
method comprehensively covers popular methods, including single-stage method, two-
stage method, and anchor-free method) in oriented datasets. The results are shown in
Tables 1–3. The backbone used in the experiments is as follows: R-50, 101, 152 denotes
ResNet-50, ResNet-101, ResNet-152, and H-104 refers to a 104-layer hourglass network.
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Table 1. Comparison with state-of-the-art methods on DOTA. R101(152)-FPN stands for ResNet-101(152) with FPN and H104 stands for Hourglass-104. * Indicates
multi-scale training and testing. † represents the actual experimental results of the framework.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Anchor-free
Deformable Detr [47] R50-FPN 77.5 69.2 66.7 49.6 55.4 53.4 88.8 50.3 76.0 68.9 62.9 64.7 65.5 57.2 44.0 63.4
O2-DETR * [48] R50-FPN 86.01 75.92 46.02 66.65 79.70 79.93 89.17 90.44 81.19 76.00 56.91 62.45 64.22 65.80 58.96 72.15
Rotated RepPoints [7] R50-FPN 83.36 63.71 36.27 51.58 71.06 50.35 72.42 90.10 70.22 81.98 47.46 59.50 50.65 55.51 3.07 59.15
DRN * [49] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70
AO2-DETR [28] R50-FPN 87.7 73.06 45.28 64.79 75.68 71.12 83.12 90.12 72.99 83.20 52.17 62.25 59.74 68.33 61.34 70.06
CFA † [50] R50-FPN 90.20 85.36 61.92 75.17 73.61 80.13 88.53 90.10 79.09 85.04 78.93 68.86 65.83 85.31 77.24 72.91

Two-stage
RoI-Transformer * [4] R101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
SCRDet * [6] R101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
CSL * [51] R152-FPN 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
ReDet [24] ReR50-ReFPN 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
Gliding Vertex * [52] R101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
LSKNet [25] R50-FPN 90.7 82.9 61.7 74.3 71.6 81.2 80.5 90.9 83.1 75.1 70.7 79.8 67.3 72.0 87.2 72.30

One-stage
DAL [38] R101-FPN 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78
S2A-Net [13] R50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
S2A-Net † [13] R50-FPN 88.52 77.33 51.99 72.70 76.86 73.49 85.48 90.90 81.24 83.27 55.86 66.08 63.79 67.20 52.12 72.46
R3Det † [39] R50-FPN 88.65 73.92 43.83 69.10 77.05 72.56 82.39 90.88 76.98 84.02 55.66 66.92 59.98 65.10 47.69 70.32
PIoU [53] DLA-34 80.9 69.7 24.1 60.2 38.3 64.4 64.8 90.9 77.2 70.4 46.5 37.1 57.1 61.9 64.0 60.5
O2-DNet * [54] H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
SCRDet++ [21] R152-FPN 89.20 83.36 50.92 68.17 71.61 80.23 78.53 90.83 86.09 84.04 65.93 60.86 68.83 71.31 66.24 74.41
YOLOv5m † [19] R50-FPN 90.7 86.3 62.8 84.1 73.6 85.2 82.5 90.5 87.1 77.1 75.7 65.86 75.8 80.3 86.2 72.66

Our
SA3Det R50-FPN 88.25 81.80 47.24 70.41 77.93 75.09 86.03 90.88 83.27 84.34 61.56 61.63 65.61 69.08 55.24 73.22
SA3Det R101-FPN 88.96 81.15 49.49 74.59 79.84 80.38 86.88 90.88 78.46 85.22 61.98 70.32 67.95 70.70 53.22 74.67
SA3Det R152-FPN 89.26 84.04 51.38 73.31 80.24 81.64 87.46 90.88 85.91 85.87 63.01 70.34 72.61 71.75 57.00 76.31
SA3Det * R101-FPN 88.71 85.16 55.83 79.62 80.07 82.79 88.32 90.88 85.68 87.53 67.80 71.87 76.01 77.89 67.95 79.07
SA3Det * R152-FPN 88.89 82.99 56.09 79.44 80.66 83.32 88.38 90.85 85.93 87.58 66.81 73.79 75.53 78.70 69.52 79.23
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Results on DOTA. Table 1 shows a comparison of our SA3Det with the recently
state-of-the-art detectors on the DOTA-v1.0 dataset with respect to oriented bounding-
box detection. Among these methods, Redet and CSL are implemented by adding angle
prediction channels in the bounding-box regression branch of the classical computer vision
algorithms Faster-RCNN [34] and RetinaNet [55], respectively. Other methods are especially
proposed to detect rotating objects in remote-sensing images. SCRDet++ [21] introduces
the idea of denoising to object detection. Instance-level denoising on the feature map is
performed to enhance the detection of small and cluttered objects. DAL [38] is a dynamic
anchor learning method that uses a new matching mechanism to evaluate anchors and
assign them more efficient labels. S2A-Net [13] uses a new alignment convolution, which
can adaptively align convolution features according to anchors. CFA [50] proposes a convex
hull representation method that can more accurately locate the range of objects while
reducing feature aliasing to some extent. LSKNet [25] dynamically adjusts the receptive
field of targets through a series of Depth wise convolution kernels and spatial selection
mechanisms, allowing the model to adapt to target detection in different backgrounds.
YOLOv5m [19] is a model in the YOLOv5 series, and a rotation detection version of this
model has already appeared in the field of remote sensing.

Unlike comparison methods, our method proposes a new pixel-level attention mecha-
nism and independent angle regression branches to enhance the network’s regression and
directional feature extraction, therefore improving the detection ability of rotating objects.
For the accuracy measured by mAP, we achieved 76.31% mAP with single-scale data and
79.23% mAP with multi-scale data. Specifically, SA3Det outperforms RoI-Transformer
5.11% (74.67% vs. 69.56%), better than R3Det 2.9% (73.22% vs. 70.32%), SCRDet 2.06%
(74.67% vs. 72.61%), O2-DNet 3.63% (74.67% vs. 71.04%), CFA 0.31% (73.22% vs. 72.91%),
LSKNet 0.92% (73.22% vs. 72.30%), YOLOv5m 0.56% (73.22% vs. 72.66%), which is a great
improvement. It is worth noting that our results have a good lead in the detection of GTF,
RA, and SP. The directionality of these classes of objects is obvious, indicating that our
detector has a strong ability in direction detection.

We further conduct the experiments by setting the backbone of all models to ResNet50
to investigate the effects of the backbone. From Table 1, It can be observed that our SA3Det
achieves the best result in comparison to all anchor-free methods. SA3Det achieves 73.22%
mAP, about 2.52% mAP higher than the second-best method DRN*. Compared with the
anchor-based methods, our method is better than most single-stage methods and two-
stage methods, even though many of them use ResNet101, which contributes to a stronger
backbone. The results show that our model performs slightly worse than S2A-Net by 0.9%.
Although our method does not achieve the best performance, the proposed method has
some apparent advantages over the anchor-based methods. When detecting objects with
dense distribution and large-scale differences, our SA3Det generates fewer error angles and
a lower probability of missed detections. Partial visualization results are shown in Figure 6.

Figure 6. Visualization of SA3Det detection. The first three images and the last two images, re-
spectively, show the images used for DOTA and HRSC detection. The second row shows the
corresponding detection results obtained by SA3Det.
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Results on DOTA-v1.5. Compared to DOTA-v1.0, DOTA-v1.5 contains more tiny
objects. We summarize the results for DOTA-vl.5 in Table 2. Compared with state-of-
the-art methods, SA3Det achieves 67.18% mAP with single-scale data and 76.02% mAP
with multi-scale data, outperforming Mask RCNN [56], AO2-DETR [28], and HTC [57].
The experiments verify that our proposed SA3Det can achieve superior performance in
small-object detection.

Results on HRSC2016. For the HRSC2016 dataset, some of them have large aspect
ratios and various orientations. In Table 3, it can be seen that our SA3Det achieves good
performance. Among these methods, R2CNN [58] and RRPN [23] are proposed in the field
of computer vision to detect slanted text with angles. Other methods are proposed to detect
rotated objects in RSIs. It is worth noting that we used the PASCAL VOC 2007 metric to
calculate the mAP of the detection results (as we did not find the dataset for the 2012 metric),
and the mAP of other methods compared was also calculated under this metric. Specifically,
SA3Det achieved 88.5% and 89.4% mAP using R101 and R152, respectively, under VOC 2007.
Partial visualization results are shown in Figure 6. From it, it can be seen that although some
ships have the characteristics of large-scale differences and dense arrangement, SA3Det
can always provide appropriate OBB (Oriented Box Boundary) to tightly surround ships in
any direction. Even in different environments such as ports, coasts, and seas, this method
can still perform high-quality detection.

Table 2. Comparison with state-of-the-art methods on DOTA-v1.5. R50-FPN stands for ResNet-50
with FPN, and H104 stands for Hourglass-104. * Indicates multi-scale training and testing.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

Mask RCNN [56] R50-FPN 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67
HTC [57] R50-FPN 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40
AO2-DETR [28] R50-FPN 79.55 78.14 42.41 61.23 55.34 74.50 79.57 90.64 74.76 77.58 53.56 66.91 58.56 73.11 69.64 24.71 66.26
AO2-DETR * [28] R50-FPN 87.13 85.43 65.87 74.69 77.46 84.13 86.19 90.23 81.14 86.56 56.04 70.48 75.47 78.30 72.66 42.62 75.89
ReDet * [24] ReR50-ReFPN 88.51 86.45 61.23 81.20 67.60 83.65 90.00 90.86 84.30 75.33 71.49 72.06 78.32 74.73 76.10 46.98 76.80
Point RCNN * [59] ReR50-ReFPN 83.40 86.59 60.76 80.25 79.92 83.37 90.04 90.86 87.45 84.50 72.79 77.32 78.29 77.48 78.92 47.97 78.74

Our
SA3Det R50-FPN 78.07 84.33 48.04 70.30 55.80 75.52 80.54 90.86 78.04 74.67 50.63 69.96 68.12 65.63 60.02 15.59 67.18
SA3Det * R50-FPN 85.48 86.39 59.82 76.30 69.13 81.49 89.15 90.86 83.05 84.28 65.21 74.43 78.92 75.33 69.90 40.57 76.02

Table 3. Accuracy and speed on HRSC2016. And 07 (12) means using the 2007 (2012) evaluation metric.

Method Backbone Image Size mAP (07) mAP (12) Speed

R2CNN [58] R101-FPN 800 × 800 73.07 79.73 5 fps
RoI-Transformer [4] R101-FPN 512 × 800 86.20 - 6 fps
Gliding Vertex [52] R101-FPN - 88.20 - -

DRN [49] H-104 - - 92.70 -
R3Det [39] R101-FPN 800 × 800 86.9 - -
CSL [51] R152-FPN - 89.62 - -

RRPN [23] R101-FPN 800 × 800 79.08 85.64 1.5 fps
RRD [43] VGG16 384 × 384 84.3 - -

CenterMap-Net [60] R50-FPN - - 92.8 -

Our
SA3Det R50-FPN 800 × 800 85.6 - -
SA3Det R101-FPN 800 × 800 88.5 - -
SA3Det R152-FPN 800 × 800 89.4 - -

4.3. Ablation Studies

In this section, we conduct a series of experiments on the testing set to validate the
effectiveness of our method. To further understand the effectiveness of our proposed
method, we further explore and validate the contributions of different modules of the
proposed SA3Det framework, i.e., the PSA module, the ALA module, and the ASM module.
We conducted ablation experiments on the DOTA and HRSC2016 datasets, and the results
are shown in Tables 4 and 5, respectively.



Remote Sens. 2024, 16, 2496 14 of 21

As shown in Table 4, in most categories, adding any module can improve the accuracy
of detection, and the combination of the three modules is the best, with a mAP of 73.22%.
This indicates that PSA retains more detailed features of small targets, the ALA module
adaptively divides positive and negative sample labels, and ASM independently predicts
angles. All three methods are effective. On the HRSC dataset, as shown in Table 5, our
module has also improved accuracy. Figure 7 is a specific visualization of our three
innovative methods, showing the problems we encountered in the baseline and the results
we achieved after solving the corresponding problems.

In the ablation study of different losses, we classified the losses using Focal Loss and
focused on the regression losses of the bounding box in the baseline. We compared several
commonly used losses, as shown in Table 6. Specifically, our loss achieves a 1.39% gain
in mAP relative to the KFIoU, 2.05% gain relative to the KLD, 4.97% gain relative to the
GWD, 2.9% gain relative to the Smooth-L1, and 3.67% gain relative to the L1 loss. Our loss
achieves a significant improvement in performance, demonstrating the effectiveness of
angle constraints.

Table 4. The ablation of the modules presented in SA3Det was studied in this experiment using
DOTA-v1.0. The striking results show the best performance. Both baseline and SA3Det use ResNet50
as the backbone. ✓indicates that the module is included in the model.

PSA ALA ASM PL BD BR GTF SV LV SBF mAP

Baseline 88.65 73.92 43.83 69.10 77.05 72.56 55.66 70.32
SA3Det ✓ 89.20 77.30 44.81 68.89 77.26 73.96 54.49 71.24 (+0.92)
SA3Det ✓ 88.01 80.62 44.30 68.19 77.40 74.65 56.93 71.07 (+0.75)
SA3Det ✓ ✓ 89.04 77.77 44.81 69.03 77.47 76.06 53.78 71.72 (+1.40)
SA3Det ✓ ✓ 87.96 79.64 46.75 72.82 77.47 75.52 59.99 72.31 (+1.99)
SA3Det ✓ ✓ ✓ 88.25 81.80 47.24 70.41 77.93 75.09 61.56 73.22 (+2.90)

Table 5. Ablation study of the module presented in SA3Det. This experiment was performed using
HRSC2016. The striking results show the best performance. Both baseline and SA3Det use ResNet152
as the backbone. ✓indicates that the module is included in the model.

PSA ALA ASM RECALL mAP

Baseline 90.2 86.9
SA3Det ✓ 93.0 87.4 (+0.5)
SA3Det ✓ 92.5 88.0 (+1.1)
SA3Det ✓ ✓ 92.9 88.4 (+1.5)
SA3Det ✓ ✓ 93.6 88.6 (+1.6)
SA3Det ✓ ✓ ✓ 97.2 89.4 (+2.5)

Table 6. Comparison of the properties and performance of different regression losses. Baseline is
R3Det. The striking results show the best performance. Both baseline and SA3Det use ResNet50 as
the backbone. ✓indicates that the method is included in the model.

Focal Loss [15] L1 Loss [49] Smooth-L1 [34] GWD [9] KLD [10] KFIoU [11] Our Loss mAP

Baseline ✓ ✓ 70.32
SA3Det ✓ ✓ 69.55
SA3Det ✓ ✓ 68.25
SA3Det ✓ ✓ 71.17
SA3Det ✓ ✓ 71.83
SA3Det ✓ ✓ 73.22
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Figure 7. Visualizationof three innovative methods. The green label represents the problems encoun-
tered without the PSA module, the blue label represents the problems encountered without the ALA
module, and the yellow label represents the problems encountered without the ASM module.

4.4. Parameter Analysis

Method parameter. R3Det has high efficiency as an independent detector, but adding
any module to it will introduce more computation, which may affect its efficiency. Therefore,
We compared the models based on parameter counts (Params), inference speed (speed),
floating-point operations per second (FLOPs), and mAP. The evaluated algorithms include
RoI-Transformer, AO2-DETR, Yolov5m, S2ANet, Baseline (R3Det), and SA3Det, each evalu-
ated using a standardized image size of 1024x1024 pixels and trained over a period of 12.
All of these were evaluated under consistent conditions.

As shown in Table 7. Although SA3Det has poorer speed and Flops compared to
RoI-Transformer, AO2-DETR, and S2ANet, our parameter count is lower and detection
accuracy is higher. The R3Det achieved 70.32% mAP across 37.08 M parameters, indicating
that the baseline is reliable. After adding three modules, SA3Det achieved a parameter
count of 37.27 M, a speed of 65.7 ms, and 232.92 GFLOPs, achieving a mAP of 73.22,
indicating a good trade-off between computational efficiency and detection accuracy. In
addition, Yolov5m achieved similar performance to ours with fewer model parameters, but
our model produces better results in small-object detection, as shown in Section 4.5. These
results indicate that our method can achieve competitive performance and a better balance
of speed–accuracy, meeting the engineering needs of the real world.

The effect of ALA’s parameter α. Here, we delve into the influence of the hyperpa-
rameter α within the ALA, as delineated in Table 8. When α is set to 0.5, SA3Det achieves
a peak mean Average Precision (mAP) of 73.22%, indicating a notable performance en-
hancement. However, surpassing this threshold leads to a degradation in our method’s
performance. Our rationale is rooted in the prevalence of diminutive targets in remote-
sensing imagery, often characterized by low Intersection over Union (IoU) values, posing
challenges for precise target localization by the model. Excessive emphasis on IoU, re-
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sulting from disproportionate weight allocation, exacerbates the detection constraints for
small targets, therefore impinging on the efficacy of remote-sensing target detection. Thus,
informed by this observation, we designate the default value of α as 0.5 to strike a harmo-
nious balance between preserving detection rates for small targets and optimizing overall
method performance.

Table 7. Research on SA3Det model parameters. This experiment used DOTA-1.0. Param represents
the number of parameters for the entire network. Speed is the inference speed of each image. Flops is
a floating-point operation per second.

Method Size Epochs Param (M) Speed (ms) Flops mAP

RoI-Transformer [4] 1024 12 55.13 M 61.5 225.29 69.56
AO2-DETR [28] 1024 12 46.95 M 63.45 236.8 70.06

Yolov5m [19] 1024 12 22.65 M 47.5 97.52 72.66
S2ANet [13] 1024 12 38.6 M 55.7 197.62 72.46
Baseline [39] 1024 12 37.08 M 60.5 232.67 70.32

SA3Det 1024 12 37.27 M 65.7 232.92 73.22

Table 8. The effect of the parameter α in the ALA.

Setting α mAP

I 0.1 70.93
II 0.3 72.23
III 0.5 73.22
IV 0.7 71.90
V 0.9 71.48

4.5. Qualitative Analysis

From Figure 8, it can be seen that the accuracy curve of SA3Det is more stable than
Yolov5s overall, especially with a more obvious upward trend in the middle and later stages
of training. For example, in remote-sensing subcategories such as small vehicles, ships, and
bridges, the curve of SA3Det shows a smoother upward trend. The reason for this situation
is that the pixel self-attention mechanism can make the model pay more attention to key
areas in the image and suppress interference from irrelevant areas. This mechanism can
more accurately extract useful features, improve the model’s feature expression ability, and
thus achieve more refined feature extraction and preservation of small-object details.

0 2 4 6 8 10 0 2 4 6 8 10
Epoch Epoch

SA3Det Yolov5m

Figure 8. Qualitative comparison of detection results on DOTA using SA3Det and YOLOv5m. We
only show the top 10 epochs with significant effects in the figure.

Figure 9 shows the qualitative analysis results of representative samples. It can be seen
that the results of our method are very close to actual ground conditions and can accurately
detect vehicles of different sizes. Other comparison methods only perform well on relatively
large vehicles, while small vehicles may have missed detections. The comparison method
has varying degrees of error detection and omission detection, while our method produces
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identical basic facts. There may be significant differences in proportion between different
types of objects. It displays the presence of objects of different sizes in the same image. All
comparison methods will lose small objects. In contrast, we can perceive small objects well
and detect them all. In addition, we can also see from the graph that our method is more
accurate in terms of detection angle compared to other detection methods.
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Figure 9. Qualitative comparison between proposed SA3Det and baseline, RoI-Transformer, and
ReDet on DOTA. The original image, baseline, RoI-Transformer, ReDet, and our proposed SA3Det
are presented from left to right in each column, respectively. The color description section below
represents the detection objects corresponding to the detection boxes of different colors in the image.

5. Discussion

The proposed method demonstrates the potential of pixel-level self-attention and
label optimization, offering a novel approach to designing remote-sensing object detection
models. The detection of small objects poses a common challenge in object detection, not
exclusive to remote-sensing imagery, mainly due to the limited pixel-level information
provided by small objects, making robust feature extraction challenging. Conventionally,
approaches such as image pyramids or multi-scale feature fusion are employed to address
this issue, yet they often result in information loss when handling small objects. While
these methods may enhance the accuracy of small-object detection to some extent, their
performance tends to be suboptimal in complex backgrounds. Our research findings
indicate that pixel-level self-attention plays a pivotal role in preserving and exploring
fine-grained feature correlations crucially linked to the spatial relationships of potential
small objects. In particular, in complex background remote-sensing images, this approach
exhibits the capability to learn high-quality foreground information.

In object detection, a crucial challenge lies in balancing the learning of positive and
negative samples by the network. It is commonly acknowledged that utilizing hard example
mining techniques can be effective but often demands substantial computational resources
and time. In contrast, adaptive label assignment (ALA) strategies allocate labels based
on loss costs to refine suggestions, enabling the automatic selection and mining of more
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valuable samples during training. Results demonstrate that ALA can efficiently and
accurately select high-quality positive samples. While such approaches are not uncommon,
by introducing loss costs as a benchmark, they essentially require minimal computational
resources and time and can dynamically adjust the importance of samples during training,
thus enhancing both training efficiency and detection performance of the model.

For remote-sensing detection tasks, dense objects pose challenges for bounding-box
generation. Particularly for objects with high aspect ratios, subtle angular biases can lead
to significant detection errors. Previous approaches have employed rotation-equivariant
detectors to extract rotation-invariant features, typically in the feature extraction stage, but
often result in increased computational complexity and insufficient rotational invariance
capability. In addressing this issue, a primary approach involves utilizing angle encoding
for improvement. Hence, our proposed angle-sensitive module implicitly learns feature
maps representing rotations, enhancing the ability to predict angles by considering features
predicted from multiple angles. This method effectively tackles the detection of objects
with high aspect ratios, enhancing both detection accuracy and robustness, particularly
demonstrating outstanding performance in remote-sensing imagery.

Limitations and Future Work. In the current landscape of deep learning for remote-
sensing object detection, the application of techniques like pixel-level self-attention mecha-
nisms has indeed achieved notable successes. However, it is imperative to acknowledge
certain limitations. First, while pixel-level self-attention mechanisms excel in extracting
fine-grained feature correlations, their high computational complexity constrains their
applicability when dealing with large-sized, high-resolution images. This not only esca-
lates the demand for computational resources but also hinders their widespread adoption
in practical applications. Second, although angle-sensitive modules enhance a model’s
robustness to angular variations, they are restricted by predefined angle ranges, making
them inadequate for addressing extreme angular changes. Consequently, future research
directions should encompass optimizing computational efficiency, enhancing model stabil-
ity and generalization capabilities, and exploring more flexible adaptive mechanisms and
angle ranges to propel further advancements in deep learning for remote-sensing object
detection. This entails but is not limited to the investigation of more efficient algorithms,
dynamic parameter adjustments, and the exploration of more adaptable angle-sensitive
module designs.

6. Conclusions

In this paper, we propose a new remote-sensing object detection network (SA3Det)
to improve the detection accuracy of multi-scale targets in remote-sensing images. The
proposed SA3Det consists of three new modules: PSA, ALA, and ASM. The former uses
pixel-level attention and guided feature maps to provide critical information, better preser-
vation of details, and improved accuracy for small target detection. The ALA strategy
decouples labels and assigns labels based on loss, which enables the automatic selection
of more valuable samples during the training phase and improves robustness. ASM
generates independent rotation-sensitive features to be used to generate more accurate
angles. At the same time, angle loss is added to the loss to constrain the independent
angles. Through comprehensive experimentation, SA3Det has demonstrated significant
performance enhancements over existing methodologies on both the DOTA and HRSC2016
datasets, marking a notable advancement in the field.
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