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Abstract: Aerosol research is important for the protection of the ecological environment, the improve-
ment of air quality, and as a response to climate change. In this study, a random forest (RF) estimation
model of aerosol optical depth (AOD) and extinction coefficient vertical profiles was, respectively,
established using Orbiting Carbon Observatory-2 (OCO-2) oxygen-A band (O, A-band) data from
China and its surrounding areas in 2016, combined with geographical information (longitude, lat-
itude, and elevation) and viewing angle data. To address the high number of OCO-2 O, A-band
channels, principal component analysis (PCA) was employed for dimensionality reduction. The
model was then applied to estimate the aerosol extinction coefficients for the region in 2017, and
its validity was verified by comparing the estimated values with the Cloud-Aerosol Lidar Infrared
Pathfinder Satellite Observations (CALIPSO) Level 2 extinction coefficients. In the comprehensive
analysis of overall performance, an AOD model was initially constructed using variables, achieving a
correlation coefficient (R) of 0.676. Subsequently, predictions for aerosol extinction coefficients were
generated, revealing a satisfactory agreement between the predicted and the actual values in the
vertical direction, with an R of 0.535 and a root mean square error (RMSE) of 0.107 km~1. Of the
four seasons of the year, the model performs best in autumn (R = 0.557), while its performance was
relatively lower in summer (R = 0.442). Height had a significant effect on the model, with both R
and RMSE decreasing as height increased. Furthermore, the accuracy of aerosol profile inversion
shows a dependence on AOD, with a better accuracy when AOD is less than 0.3 and RMSE can be
less than 0.06 km ™.

Keywords: aerosol extinction coefficient profiles; OCO-2; O, A-band; CALIPSO; random forest
model (RF)

1. Introduction

With the acceleration of industrialization, the issue of air quality has become in-
creasingly prominent, posing severe challenges to both human habitation and ecological
environments [1]. Particle pollution poses a serious threat to human health [2]. Regions,
especially urban areas, frequently experience widespread smoggy weather, leading to a
sharp reduction in visibility due to particle pollution. Consequently, improving air quality
has become a focal point of urgent concern across society [3].

Atmospheric aerosols are multiphase systems composed of tiny solid or liquid par-
ticles suspended in the air along with a gaseous carrier, with sizes ranging from a few
nanometers to several tens of micrometers [4-6]. They can consist of a variety of sub-
stances, including dust, particulate matter, sulfates, nitrates, organic compounds, black
carbon, and sea salt [7-9]. They can be introduced into the atmosphere through natural
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sources (e.g., volcanic eruptions, marine aerosols, and biogenic emissions) or anthropogenic
activities (e.g., industrial emissions and vehicular exhaust) [10].

As a vital constituent of the atmosphere, aerosols play a crucial role in the radiation
balance of the Earth-atmosphere system [11]. They not only directly absorb and scatter
solar radiation, but also indirectly influence the formation and distribution of clouds and
precipitation [12]. However, due to the complex composition and sources of atmospheric
aerosols, their impact exhibits considerable variability [13,14]. Research indicates that three
widely recognized factors determine the positive or negative radiative effects of aerosols in
the atmosphere—aerosol type, information on aerosol vertical profiles, and surface albedo.
Among these factors, extracting information on aerosol profiles is the most challenging
aspect [15].

Various methods, including ground-based monitoring, balloon-borne aerosol counters,
model simulations, and remote sensing, are currently utilized for detecting aerosol informa-
tion [16-19]. Ground-based observations can provide high-precision aerosol concentration
data but are limited by sparse station distribution, offering aerosol information only for
specific regions [20,21]. Consequently, this method cannot reflect aerosol gradients in a
given area and it is impractical for continuous global observation. While balloon obser-
vations effectively provide information on aerosol concentration and distribution in the
upper atmosphere, they are significantly affected by weather conditions and are limited by
the balloon’s flight path and altitude, resulting in data constraints [22-24]. Model simula-
tion methods can be employed using a specific approach, but they typically offer limited
spatial and temporal resolution and cannot capture micro-scale aerosol variations [25].
Satellite technology, among others, facilitates the acquisition of extensive aerosol distri-
bution information with global coverage, enabling researchers to obtain continuous time
series data and conveniently observe global aerosol change trends [26,27]. The utilization
of satellite-borne lidar allows for the retrieval of relatively accurate profile information
and is currently recognized as one of the most direct and accurate means of information
retrieval [28,29]. However, it is constrained by significant energy loss, lengthy detection
cycles, and challenges in achieving global coverage within a short timeframe [30-32].

In 1908, Mie G. [33] proposed a computational method for the scattering and absorp-
tion of spherical particles, laying the foundation for the study of aerosol optics. In order to
obtain high-precision aerosol retrieval information, as early as the 1980s, Soviet scientists
Badaev and Malkevich [34] first attempted to utilize the 0.76 um oxygen A-band (O, A-
band) for aerosol optical measurements. They derived inversion formulas and established
the vertical profile of atmospheric aerosol optical thickness. Subsequently, Gabella et al. [35]
demonstrated the feasibility of retrieving aerosol profiles using a linearly constrained in-
version method and applied this method based on the O, A-band, confirming that the O,
A-band contains sufficient aerosol information even at low resolutions. In 2006, Corradini
et al. [36] retrieved aerosol extinction profiles using the Scanning Imaging Absorption
Spectrometer for Atmospheric Chartography, proposing a multiple scattering retrieval
method for passive remote sensing instruments to invert aerosol extinction coefficient
profiles and assess errors within the O, A-band.

Malladi et al. [37] obtained altitude-varying extinction-to-backscatter ratio profiles
using a pre-established aerosol model in 2010. However, the aerosol model exhibits signif-
icant differences across different regions, thus lacking universal applicability. O.M. and
Holz. R. [38] improved the pre-assigned extinction-to-backscatter ratio in Cloud-Aerosol
Lidar Infrared Pathfinder Satellite Observations (CALIPSO) products using MODIS data,
yet inversion errors due to aerosol type matching still persist. In 2011, Zhang Yan et al. [39]
proposed an algorithm that introduced correction factors and validated its effectiveness in
retrieving aerosol profiles in the O, A-band constrained by optical thickness. Sanders [40]
investigated a general aerosol retrieval algorithm based on the O, A-band for retrieving
aerosol parameters in vegetated areas. In 2015, Geddes et al. [41] discussed the potential
of retrieving tropospheric aerosol layer height from the O, A-band using simulated data
based on next-generation satellite instruments such as the Greenhouse Gases Observing
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Satellite (GOSAT), the Orbiting Carbon Observatory-2 (OCO-2), and the Tropospheric
Ozone Monitor (TROPOMI). Ding et al. [42] analyzed the sensitivity and information
content of aerosol vertical profiles using polarized remote sensing in the O, A-band and O,
B-band in 2016. In recent years, Zeng and Chen et al. [43] employed spectral classification
methods, utilizing the solar absorption spectra within the OCO-2 O, A-band to constrain
aerosol vertical structure. The authors of [44] also utilized machine learning to retrieve
aerosol optical depth (AOD) and aerosol layer height (ALH) information from the spectra,
aiding in the retrieval of aerosol profiles. In summary, progress has been made in aerosol
retrieval methods based on the O, A-band, ranging from initial theoretical explorations
to the validation and application of various retrieval techniques. These methods have
shown great potential in improving retrieval accuracy and applicability, providing essen-
tial tools for atmospheric aerosol research. However, current research on aerosol profiles
is primarily theoretical, with only a few individuals obtaining aerosol information with
extensive vertical height distribution. Utilizing data from new-generation high spectral
resolution satellite instruments, further improvements in retrieval accuracy and regional
applicability are necessary to better serve atmospheric science research and environmental
monitoring needs.

In general, oxygen (O;) is a gas that is present in the atmosphere in stable and uni-
form concentrations and serves as the sole strong absorber within absorption bands [6].
Therefore, the O, A-band represents an ideal retrieval channel containing aerosol infor-
mation. Moreover, CALIPSO and OCQO-2 are instruments within the A-Train series, and
until September 2018, both instruments operated in nearly synchronized orbits, offering
the possibility of extracting aerosol profile information [45]. In this study, the extinction
coefficient data from CALIPSO was used as the true value. Primarily utilizing OCO-2 O,
A-band data, supplemented by the weak carbon dioxide (CO;) band and strong CO, band,
and integrating geographical and observational geometrical information, a random forest
(RF) model was constructed for China and its surrounding areas (16.9-54.9°N, 72-136°E).
This model estimates the inversion of atmospheric aerosol extinction coefficient profiles,
and the results were comprehensively evaluated from multiple perspectives. This approach
offers new methodological support for acquiring aerosol information and monitoring
atmospheric environmental conditions.

In this study, the dataset of CALIPSO and OCO-2, data processing methods, and
model construction approaches are introduced in Section 2. In Section 3, the results of
AOD retrieval using the RF model are discussed. This discussion highlights the feasibility
provided by these results for the subsequent estimation of aerosol extinction coefficient
profiles. Sections 3.2-3.5 include the validation of CALIPSO extinction coefficient data
and the estimated coefficients concerning overall, seasonal, altitude, and various AOD
aspects. Furthermore, in Section 3.2 a comparison of aerosol extinction coefficient profiles
for individual observation points is presented. Finally, the discussion and conclusions
section is provided in Section 4.

2. Materials and Methods
2.1. Data

In this study, OCO-2 Level 1B data (i.e., the O, A-band, the weak CO, band, and
strong CO, band) for China and its surrounding regions (16.9-54.9°N, 72-136°E) were
utilized for the years 2016 and 2017. Additionally, CALIPSO Level 2 data were employed,
including AOD and aerosol extinction coefficient profile data, for modeling and validating
aerosol information retrieval. Furthermore, it was found that the distribution of aerosols is
influenced by spatiotemporal factors and observational geometry [46,47]. Hence, auxiliary
data such as longitude, latitude, altitude, solar zenith angle, and satellite zenith angle were
also incorporated in this study.
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2.1.1. CALIPSO Data

The CALIPSO, jointly developed by the National Aeronautics and Space Administra-
tion (NASA) of the United States and the Centre National d‘Etudes Spatiales (CNES) of
France, was launched in April 2006 [48,49]. CALIPSO integrates an active lidar instrument
with passive infrared and visible imagers [50]. The Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) serves as the primary instrument, operating at two wavelengths
(i.e., 532 nm and 1064 nm) [51,52]. It emits laser pulses and measures the scattered sig-
nals returned to acquire information on the vertical distribution, morphology, and optical
properties of clouds and aerosols in the atmosphere [38].

This study is based on the CALIPSO standard Level 2-5 km aerosol profile data
product (CAL_LID_L2_05 km APro-Standard-V4-51). This product provides detailed
observational results regarding the vertical distribution of aerosols in the atmosphere. We
selected key parameters, including positional information, altitude distribution, and a
532 nm aerosol extinction coefficient and AOD, for analysis and research.

Based on the selected CALIPSO aerosol extinction coefficients for the region, we
analyzed the two-dimensional histogram of extinction coefficients with height and the
relationship between height-averaged extinction coefficients and standard deviation, as
shown in Figure 1. The aerosol extinction coefficients in the study area are primarily
distributed between 0 and 0.3 km~! (Figure 1a). The extinction coefficient exceeds 0.4 km~!
with a height < 2 km. It is noteworthy that the maximum boundary value of extinction
coefficients for each layer exhibits exponential decay with height, reflecting the trend in
aerosol profile variations in the vertical structure of the atmosphere. In Figure 1b, the red
shaded area represents the uncertainty range of the extinction coefficient at each height,
where a wider shaded area indicates a greater variability in the extinction coefficient at
that height. From the figure, it can be observed that around 0.7 km above ground level,
there is a characteristic of maximum dispersion and high aerosol concentration, indicating
a significant dynamic range of aerosol variability at this height.
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Figure 1. Variation of CALIPSO extinction coefficient with height for China and neighboring regions
(16.9-54.9°N, 72-136°E) in 2017. (a) Two-dimensional histogram of extinction coefficients with height;
(b) the relationship figure of mean extinction coefficient and standard deviation with height.

2.1.2. OCO-2 Data

The OCO-2 was launched in July 2014 as an Earth observation mission initiated
by the NASA with the objective of quantifying column-averaged atmospheric dry air
mole fractions of carbon dioxide (XCO,) to better understand the Earth’s carbon cycle
processes [53,54]. Equipped with an imaging grating spectrometer, the instrument collects
high-resolution spectra of reflected sunlight at the O, A-band centered at 0.765 um, the weak
CO, absorption band at 1.61 pm, and the strong CO, absorption band at 2.06 um [54,55].
The O, A-band spectra exhibit high sensitivity to changes in the light path, providing
valuable information for detecting surface pressure, aerosol optical thickness, and the
vertical distribution of aerosols. In this study, calibrated and geolocated Level 1B data
(Version 11r OCO2_L1B_Science) provided by NASA were utilized, selecting variables
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such as radiance of three absorption bands, solar zenith angle, satellite zenith angle, and
location information for analysis.

2.2. Methods
2.2.1. Data Processing

Prior to September 2018, CALIPSO was flying in the A-Train, approximately 7 min
behind OCO-2. In this study, the nearest-neighbor method was used to perform spatiotem-
poral matching on CALIPSO and OCO-2 data. Specifically, we considered data points
within a 1.3 km (0.0012°) range of longitude and latitude differences and with a temporal
difference of approximately 7 min at neighborhood points around each target grid point
for analysis. The CALIPSO Level 2 aerosol data were derived from Level 1 data through
algorithmic preprocessing and calibration steps. There were uncertainties in the algorithms,
so clouds or other factors needed to be excluded before using aerosol extinction coefficients
and AOD data as real data in order to obtain scientifically reliable data.

CALIPSO extinction coefficient data consists of 399 vertical layers at each latitude and lon-
gitude point. In our study, we selected the extinction coefficient data from layers 277 to 390,
comprising a total of 114 layers (heights below 6.8 km from the ground). According
to the CALIPSO product data description manual (https://ntrs.nasa.gov (accessed on
28 April 2024)), parameters such as extinction coefficient uncertainty, cloud-aerosol dis-
crimination score (CAD Score), and atmospheric volume description (AVD) were utilized
for data filtering. Initially, all values below locations with extinction coefficients exceeding
10 km~! were excluded. The CAD Score serves as an indicator to assess the discriminative
ability between clouds and aerosols in remote sensing observations, where negative values
represent aerosols and positive values represent clouds. Consequently, data with negative
values in both upper and lower adjacent layers were identified as reliable aerosol extinction
coefficient data. Additionally, AVD comprises two sets of data, serving as indicators for
distinguishing feature classifications. A set of data were deemed to be aerosol if the first
three bits resulted in a value of 3 after a specific calculation. Finally, profiles with effective
values greater than 10 layers in the vertical direction were retained, while other invalid
values were set to null. Figure 2 illustrates the trajectory of the 2016 and 2017 data after
matching processing between CALIPSO and OCO-2 satellites. In the Qinghai-Tibet Plateau
region, most of the CALIPSO aerosol extinction coefficient data were invalid, resulting in
data gaps after processing and screening.
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Figure 2. Trajectories of matched data for Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIPSO) and Orbiting Carbon Observatory-2 (OCO-2) in 2016 (red) and 2017 (blue) using the
nearest-neighbor method.
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2.2.2. Principal Component Analysis

Principal component analysis (PCA) is a common multivariate statistical technique used
to reveal inherent relationships among variables or samples in multivariate datasets [56]. It
aims to reduce data dimensionality to extract the most relevant information efficiently [57].
It constitutes a linear transformation aimed at achieving dimensionality reduction by
projecting the data onto a new coordinate system. In this novel coordinate system, the
primary principal component encapsulates the greatest variance of the data projection,
followed by the second principal component, and so forth. This conversion is designed to
preserve the features within the original dataset that contribute the most to the variance,
while reducing dimensionality. Through PCA, the original dataset is reconfigured and
transformed into a set of new mutually uncorrelated variables.

The workflow of this method is as follows:

Assuming there are m satellite sample data and n channels per satellite detector, the
complete satellite radiance dataset is denoted by the matrix X,

X11 X120 Xin
X1 X2 ot Xop

an = . . . . (1)
Xml Xm2 *°° Xmn

(1) Compute the correlation coefficient matrix
Calculate the correlation coefficient between variables x; and X; (i,j=1,2,...,n)in
dataset X,;;;; to derive the correlation coefficient matrix.

air a4 o Aip
a1 dxp - Agp

A= . . ) (2)
Am1 Am2  **°  Omn

(2) Calculate eigenvalues and eigenvectors
Firstly, obtain the characteristic equation through the following:

ATl — A| =0 3)

resulting in eigenvalues A; (i =1, 2, ..., n), which are then arranged in descending order,
ie, Ay > Ay > ... > Ay > 0; subsequently, compute the eigenvectorse; (i=1, 2, ..., n)
corresponding to each eigenvalue A;.

(3) Calculate the contribution rate of each value in principal component analysis.

fii X 100%(i =1, 2, -, n) (4)
YAz

z=1

(4) Compute the principal component coefficients.

Lij = p(cirj) = VAiei (i,j =1, 2, -, n) (5)

In light of the observational data from OCO-2 regarding the O, A-band, weak CO;
band, and strong CO, band, PCA can be employed to reduce the dimensionality of a large
number of channel observations, preserving the primary components to simplify input
variables. Given that OCO-2 encompasses over 3000 channels for the O, A-band and
CO; absorption bands, PCA was utilized to reduce the dimensionality of these variables.
Subsequently, we conducted principal component analysis on the OCO-2 observational
spectra, examining the feasibility of aerosol vertical profile inversion using the principal
component threshold method.
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This study conducted PCA on the observed spectra of three absorption bands from
2016 and 2017, totaling 73,978 datasets. PCA is a statistical method that uses the idea of
dimensionality reduction to transform multiple variables into a small number of unrelated
composite variables, usually expressed as a linear combination of the original variables.
Table 1 presents the characteristic vectors, contribution rates, and cumulative contribution
rates of the top 10 principal components of the O, A-band observed spectra. The contri-
bution rate and cumulative contribution rate are utilized to depict the extent to which the
principal components explain the total variance of the original variables. Based on the
findings, we selected 10 principal components for the O, A-band, 10 for the weak CO,
band, and 20 for the strong CO, band for analysis. Each principal component is a linear
combination of all channels in the O, and CO, absorption bands, and the individual princi-
pal components are uncorrelated. The results indicate that the cumulative contribution rate
of the principal components selected for each band exceeds 99.99%. It is evident that the
selected principal components can extract the majority of the information from the original
spectra, further validating the effectiveness of PCA.

Table 1. Principal component analysis information of oxygen A-band (O, A-Band) spectrum.

Principal Components Eigenvalues Contribution Rate (%) Cumulative Contribution Rate (%)
1 3.0777 x 10* 98.4594 98.4594
2 343.7895 1.0998 99.5592
3 97.7374 0.3127 99.8719
4 15.7895 0.0505 99.9224
5 10.8076 0.0346 99.9570
6 5.5176 0.0177 99.9747
7 2.9030 0.0093 99.9840
8 1.9107 0.0061 99.9901
9 0.9865 0.0032 99.9933
10 0.3768 0.0012 99.9945
11 0.2533 8.1043 x 1074 99.9953

2.2.3. Random Forest Model

The RF algorithm, proposed by Breiman [58], is an ensemble method that integrates
multiple basic decision trees to address single prediction problems and achieve regres-
sion goals [59]. Compared to other methods, RF regression is widely applied in high-
dimensional and large-scale data studies due to its robustness. It performs well in capturing
nonlinear data fitting relationships, reducing root mean square error (RMSE), and further
improving the predictive accuracy of the model [60].

The explanation of the RF model can be articulated by assuming an independent
distribution relationship between the independent variable X and the dependent variable
Y. By randomly sampling in the (X, Y) space to construct the training set 6, the model
predicts the outcomes in the form of g(X). When evaluating the model performance,
we employ the mean square error as a metric to gauge the average degree of squared
deviation between the predicted values and the true values, where the RMSE can be
defined as follows:

Exy[Y —g(X)]’ (6)

The steps of the RF model are as follows:
The model predicts the outcome as the average of predictions {g(6, Xj)} from h
decision trees. When h — oo,

Exy[Y —%,(X,0,)]> = Exy[Y — Eo(X,0,)]* 7)
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The left side of the equation represents the RMSE of the average prediction of
decision trees, denoted as Sg,. When I — oo, the RMSE of a single decision tree is denoted
as Sg,-Sg,satisfies

Sk, = EeExy[Y — ¢(X,0)]” ®

where « is the correlation coefficient between the residuals, and 0 satisfies:
SE, < &S, )
The final expression of the RF model is given by the following equation:
Y = Epg(X,0) (10)

In this study, an RF model was utilized for estimating the AOD and extinction co-
efficient. The input variables included 40 principal components of the O, A-band, weak
CO;, band, and strong CO, band, as well as solar zenith angle, satellite zenith angle, and
geolocation information (i.e., latitude, longitude, and altitude). The output consisted of
extinction coefficients for each layer of CALIPSO data. The data from 2016 were employed
as the training set for the model, while the data from 2017 served as the validation set.
Since RF supports only multi-input single-output mode, a total of 114 RF models were
constructed for predicting aerosol vertical distribution. Figure 3 illustrates the workflow of
the RF model for estimating aerosol profiles for a single layer. During the model construc-
tion process, the number of decision trees (numTrees) was incrementally increased from
100 to 360, with increments of 20. The RF was trained and validated at each step, and the
performance stabilized when the number of decision trees reached 300 layers.

Test Sample Input
Treel Tree2 ... Tree300
Prediction 1 Prediction 2 Prediction 300
Average All Prediction

v

Output (Extinction Coefficient)

Figure 3. Flowchart of the single-layer extinction coefficient random forest (RF) estimation model.

2.2.4. Statistical Metrics

In this study, we selected three error evaluation metrics—correlation coefficient (R),
RMSE, and bias—to evaluate the aerosol prediction results. The formulas for these three
statistical metrics are presented below:

R— (X =X)(Y-Y)
\/Z?:l (X - X)z (Y - ?)2

(11)
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RMSE = \/ oot (X=Y) (12)
1
Bias= —Y ' (X~ Y) (13)

(a)

N
where X and Y are RF estimates and CALIPSO extinction coefficients, respectively.

3. Results
3.1. Evaluation of AOD Accuracy

Figure 4 presents a two-dimensional histogram comparing the AOD estimated using
the RF algorithm with CALIPSO AQOD. It is evident that the inversion results obtained
using the RF algorithm exhibit good agreement with CALIPSO AOD, with an R of 0.676, an
RMSE of 0.168, and a bias of 0.01. The densely populated data points are distributed near
the 1:1 line, particularly concentrated when AOD is less than 0.2. These results demonstrate
the feasibility of predicting aerosols using OCO-2 data.

(b)
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Figure 4. (a) Two-dimensional histogram for CALIPSO aerosol optical depth (AOD) versus estimated
AOD; (b) distribution of errors in AOD estimated using CALIPSO and RF for different AOD ranges.

Figure 4b presents a histogram depicting the errors between AOD estimated using
CALIPSO and RF for different AOD ranges. AOD is stratified into three categories de-
lineated by thresholds at 0.1 and 0.3, with errors being color-coded according to their
respective AOD values. The results indicate that for AOD values equal to or less than 0.3,
there is a propensity for AOD overestimation, with errors primarily centered around 0.05.
Conversely, when AOD surpasses 0.3, it tends to be underestimated, with errors primarily
concentrated around —0.15. Overall, the absolute errors for 74.51% of observation points
are less than 0.15. Furthermore, an analysis of the relative errors in estimated AOD re-
veals that 24.25% of observation points exhibit relative errors below 20%, and 12.14% have
relative errors below 10%.

3.2. The Overall Accuracy of Aerosol Profile Retrieval and Assessment at Individual
Observation Points

Figure 5 presents a detailed examination of the correlation and accuracy between the
aerosol extinction profiles derived from the RF estimation model and those from CALIPSO.
It is evident from the figure that the predicted results exhibit a commendable alignment
with the CALIPSO extinction profiles, displaying an R of 0.535, indicative of a moderate
correlation (i.e., 0.3-0.7) with the CALIPSO extinction profiles. The RMSE and bias stand at
0.107 km~! and 0.01 km ™!, respectively. This suggests that leveraging the RF model based
on OCO-2 O; A-band observation data enables the extraction of valuable aerosol profile
information. Figure 5 shows that the error increases with the CALIPSO extinction coefficient.
This may be related to the larger dynamic range of CALIPSO extinction coefficient profiles
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in the vertical direction, while the profiles retrieved using the RF method are relatively
smoother. In addition, with an increasing CALIPSO extinction coefficient, the negative bias
increases. This could be attributed to the fact that the output data of the model trained in
this study is predominantly concentrated below 0.3 km~! (constituting 90.77% of the total
samples), potentially limiting the model’s ability to accurately capture intricate variations
under higher extinction coefficient conditions. But the color gradient in the figure shifts
gradually with escalating extinction coefficients, with a reduced density of data points
in regions characterized by higher extinction coefficients, predominantly concentrated in
areas where the extinction coefficient is less than 0.2 km 1.

‘£ 0.8 : . -
£ 1800
pog R =0.535
] RMSE = 0.107 k1m'1 1600
© 06} Bias=0.01km" 4

1400
%
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_S 04r 1 1000
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£ .
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3 400
3
g 200
w0 * * :
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CALIPSO Extinction Coefficient (km'1)

Figure 5. Two-dimensional histogram of the 2017 CALIPSO extinction coefficient versus the estimated
extinction coefficient (the color bar on the right represents the density of the data points, with densities
ranging from 50 to 2000).

Figure 6 displays the distributions of aerosol extinction coefficients estimated using
CALIPSO and the RF model for the validation dataset, comprising 37,537 cases. The
figures offer a visual comparison between the predicted values from RF and the measured
values from CALIPSO, demonstrating a notable agreement in the vertical aerosol profiles
across various locations and altitudes. Additionally, the figures reveal that the extinction
coefficients in this region during 2017 are primarily concentrated below 3 km, consistent
with the findings obtained in Figure 1.
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Figure 6. (a) Distribution of CALIPSO extinction coefficients; (b) distribution of estimated extinction
coefficients (the colors of the bars represent the magnitude of the extinction coefficient).

Figure 7 shows a comparison of RF estimates and CALIPSO aerosol extinction coeffi-
cient vertical profiles for a single observation point, where the extinction coefficients are
primarily in the range of 0.1-0.3 km~! and the profile is relatively complete, with more
than 30 layers. The comparative analysis indicates variations in the range and distribution
of aerosol extinction coefficient profiles across different locations and times. However, the
overall trends are similar to the characteristics depicted in Figure 1, with higher aerosol
extinction coefficients observed near the surface. It is evident from the figure that, vertically,
there is a notable consistency between the aerosol vertical profiles estimated using RF and
the observed values from CALIPSO. At vertical heights, there is a good agreement be-
tween the RF-estimated aerosol vertical profiles and CALIPSO, with most of the estimated
and true values at the same height having an error of less than 0.05 km. In essence, the
results demonstrate a favorable agreement between the OCO-2 O, A-band estimations
and CALIPSO across most altitude layers, highlighting the capability of the RF method in
estimating aerosol vertical profiles.
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Figure 7. Comparison figure of RF estimates and CALIPSO aerosol extinction coefficient profiles as a
function of height for individual observations (the CALIPSO aerosol extinction coefficients are pri-
marily concentrated within the range of 0.1-0.3 km~!, with the total number of layers exceeding 30).

3.3. Seasonal Dependence

Aerosol characteristics exhibit variations across different seasons [61]. In this study,
an analysis of the mean aerosol extinction coefficient profiles was conducted for the four
seasons (i.e., spring, summer, autumn, and winter). Characteristic metrics comparing the
true values and predicted values for each season were calculated, as illustrated in Figure 8
and Table 2.

Table 2. Seasonal average statistical analysis of correlation coefficient (R), root mean square error
(RMSE), and bias between CALIPSO and estimated aerosol extinction coefficients.

Season R RMSE (km—1) Bias (km—1)

Spring 0.535 0.102 0.009
Summer 0.442 0.101 0.014
Autumn 0.557 0.107 0.017

Winter 0.527 0.115 0.010
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Figure 8. Quarterly averaged CALIPSO aerosol extinction coefficient profiles and estimated aerosol
extinction coefficient profiles over China and surrounding areas for 2017 ((a) spring (March-May),
(b) summer (June-August), (c) autumn (September—November), (d) winter (December-February)).

The aerosol extinction coefficients generally decrease with height in each season. In
autumn, the vertical distribution of atmospheric aerosols appears non-uniform across
different height levels, particularly with multiple peaks observed at higher heights. This
phenomenon may be attributed to the pronounced vertical atmospheric motions during
autumn, where the boundary layer tends to be elevated, facilitating the upward dispersion
of aerosols from the lower atmosphere [62]. Overall, the trends in the average aerosol
extinction coefficient predictions for each season closely align with those of CALIPSO ex-
tinction coefficients, with errors typically below 0.02 at each altitude level. Combined with
Table 2, it is observed that the correlation is strongest in autumn (R = 0.557) and weakest
in summer (R = 0.442), though still maintaining a moderate correlation. Additionally, the
RMSE of the average extinction coefficients for all four seasons is approximately 0.1 km ™.
The bias is minimal in spring (0.009 km~!) and maximal in autumn (0.017 km~!), once
again underscoring the reliability of the aerosol vertical profile estimations in this study.

3.4. Height Dependency

In this study, a statistical analysis was conducted on the aerosol extinction coefficients
retrieved using CALIPSO and predicted using the RF model at intervals of 0.5 km within the
height range of 0 to 6 km, as illustrated in Figure 9. The figure presents the variations of the
R, RMSE, and bias with height. With increasing height, all three statistical metrics exhibit
discernible trends. Specifically, the maximum RMSE (0.585 km™!) is observed within the
range of 0—0.5 km, while the minimum RMSE (0.098 km ') occurs between 5.5 and 6 km.
The RMSE decreases with height, likely due to lower aerosol concentrations at higher
heights. When height < 4.5 km, it remains positive, indicating an overall positive bias
in predictions. The maximum positive bias value of 0.0155 km~! is observed at heights
between 1 and 1.5 km. Conversely, when height > 4.5 km, it becomes negative, indicating
an overall negative bias in predictions. Furthermore, within the height range of 0 to 6 km,



Remote Sens. 2024, 16, 2497

14 of 18

the R demonstrates fluctuations but generally decreases with height. Notably, within the
height range of 0 to 0.5 km, the R can reach a value of 0.585, indicating a notable correlation.

0.3 T T T T T T T T T T T T T

N RVSE I Bias R

RMSE,Bias(km™")

0 05 1 15 2 25 3 35 4 45 5 55 6
Height (km)

Figure 9. Within the height range of 0-6 km (categorized every 0.5 km), a comparative analysis of
CALIPSO aerosol extinction coefficients and estimated extinction coefficients (R, RMSE, and bias) is
conducted at different heights over China and surrounding areas for 2017.

3.5. Accuracy of Aerosol Profile for Different AODs

To assess the disparities between estimated data and CALIPSO actual data under
different AOD conditions, this study categorized the data into three models—Condition 1
(AOD < 0.1), Condition 2 (0.1 < AOD < 0.3), and Condition 3 (AOD > 0.3). Subsequently,
the RMSE was computed for each model, as depicted in Figure 10. It is evident that
the median values of RMSE for all three scenarios are lower than their respective means.
The results reveal a positive correlation between RMSE and AOD, with RMSE values
predominantly clustering around 0.04 km~1,0.06 km~?, and 0.08 km~! for condition- s 1,
2, and 3, respectively. Notably, all conditions exhibit outliers in RMSE. When AOD > 0.3,
the violin plot shows a flat and elongated distribution, indicating a greater dispersion in
RMSE values and an increased variability and fluctuation of prediction errors under high
AQOD conditions. Conversely, when AOD < 0.3, the distribution is narrower, indicating
relatively stable errors under low-to-moderate AOD conditions. Additionally, the total
RMSE for models 1 and 2 is 0.04 km ™! less than that of model 3, with RMSE values being
more concentrated and having fewer outliers.

0.5¢ Mean ]
Median

£
203} :

01¢} — 1 O

1 2 3
Condition

Figure 10. Violin plots of CALIPSO aerosol extinction coefficients versus predicted extinction coeffi-
cients RMSE at different AOD concentrations (Condition 1: AOD < 0.1, Condition 2: 0.1 < AOD < 0.3,
Condition 3: AOD > 0.3).
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4. Discussion and Conclusions

This study utilized the O, A-band, weak CO; band, and strong CO; band information
from the OCO-2 satellite over China and its surrounding regions in 2016, along with
geographical parameters such as longitude, latitude, and altitude, as well as solar zenith
angle and satellite zenith angle, as input data for the model. The CALIPSO Level 2 aerosol
extinction coefficient data were used as the output data for model training. An RF model
was established and trained using these data, which was subsequently applied to aerosol
data from the same region in 2017. By comparing the retrieved inversion estimates with
CALIPSO Level 2 aerosol extinction coefficient data under various seasonal, altitudinal,
and AOD conditions, the feasibility of this approach has been demonstrated.

In the comprehensive performance analysis, we initially analyze the selected vari-
ables to construct the AOD prediction model. The RF model for AOD yields an R value
of 0.676, indicating the effectiveness of retrieving aerosol information. Subsequently, a
new RF model was established to invert aerosol extinction coefficients. The results showed
a favorable consistency between the predicted results and the true values in the vertical
direction across different regions, with an R value of 0.535, indicating a moderate cor-
relation. Additionally, we analyze the vertical aerosol extinction coefficient profiles at
individual geographic coordinates, visually demonstrating the fitting degree achieved
using this method. Furthermore, comparisons are made between the predicted values for
all four seasons and the average extinction coefficient profiles from CALIPSO, showing a
general agreement in the trend with height. The proposed model performs best in autumn
(R = 0.557) and slightly less well in summer (R = 0.442). Height has a certain impact on
the model, with both R and RMSE generally increasing with decreasing height. Specifi-
cally, the correlation is highest near the ground level, reaching 0.585 at heights between
0 and 0.5 km. This indicates that the model’s accuracy in estimating aerosol extinction
coefficients is higher near the ground level, which may be related to the more reliable
and abundant data in this region. When the height is less than 4.5 km, the estimated
values exhibit a positive bias, with the aerosol extinction coefficients being overestimated.
Conversely, when the height is greater than 4.5 km, a negative bias is observed, with the
aerosol extinction coefficients being underestimated. Finally, the influence of different
AOD conditions on the predicted results varies. When AOD > 0.3, the predicted results are
relatively unstable, with a wider range of RMSE values, but they are still predominantly
concentrated around 0.08 km~!. Compared to traditional physical inversion estimation
methods, we employ machine learning techniques such as RF to autonomously learn
features and patterns within the data. Through a straightforward analysis of O, A-band
data, we identify and utilize latent features and their associations with aerosol profiles,
thereby obtaining relevant information. The CO; satellites are uniformly equipped with O,
A-band observation instruments, so the results of this study are of great significance for
improving CO; inversion algorithms. Moreover, aerosols influence cloud formation and
properties, affecting precipitation patterns. Examining aerosol profiles can enhance climate
prediction model accuracy. Passive remote sensing satellites offer extensive spatial coverage
and frequent revisit times. OCO-2, in a sun-synchronous orbit, performs continuous and
systematic Earth observations, covering regions from the equator to the poles, with global
coverage every 16 days. Therefore, the proposed approach has the potential to enable
current and future passive remote sensing missions to retrieve global vertical profiles of
aerosol extinction coefficients.

In the future, we will continue to optimize the aerosol extinction coefficient profile
prediction model by exploring other ensemble learning algorithms and incorporating
additional relevant input variables (e.g., surface reflectance). Additionally, in this study,
we conducted a classification-based validation of the results according to AOD ranges.
Future work can evaluate aerosol extinction coefficient profiles according to aerosol types
and develop separate machine learning models for different aerosol types. Furthermore,
geographical data could be organized into groups based on spatial locations to predict and
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assess data across diverse geographic regions and terrains, ensuring the applicability of the
models to varying terrain types.
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