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Abstract: Long-term cross-correlational structures are examined for pairs of sea surface temperature
anomalies (SSTAs) and advective forcing parameters and sea surface height anomalies (SSHAs)
and current velocity anomalies (CVAs) in the East/Japan Sea (EJS); all these satellite datasets were
collected between 1993 and 2023. By utilizing newly modified detrended cross-correlation analysis
algorithms, incorporating local linear trend and local fluctuation level of an SSTA, the analyses were
performed on timescales of 400–3000 days. Long-term cross-correlations between SSTAs and SSHAs
are strongly persistent over nearly the entire EJS; the strength of persistence is stronger during rising
trends and low fluctuations of SSTAs, while anti-persistent behavior appears during high fluctuations
of SSTAs. SSTA-CVA pairs show high long-term persistence only along main current pathways:
the zonal currents for the Subpolar Front and the meridional currents for the east coast of Korea.
SSTA-CVA pairs also show negative long-term persistent behaviors in some spots located near the
coasts of Korea and Japan: the zonal currents for the eastern coast of Korea and the meridional
currents for the western coast of Japan; these behaviors seem to be related to the coastal upwelling
phenomena. Further, these persistent characteristics are more conspicuous in the recent decades
(2008~2023) rather than in the past (1993~2008).

Keywords: sea surface temperature anomaly; sea surface height anomaly; current velocity anomaly;
long-term cross-correlation; detrended cross-correlation analysis

1. Introduction

Sea surface temperature (SST) variability is an important issue in oceanography as
well as in climate science. As a representative property for a variety of energy exchanges
occurring at the sea surface, SST variability has a lot of information about forcing pa-
rameters, which can be greatly categorized into the oceanic, atmospheric, and coupled
ocean–atmospheric physical processes [1]. Since the impacts from these forcing parameters
are imprinted on the SST variability in a complex manner, we can obtain useful information
from the auto- and cross-correlation structures of SST anomalies (SSTAs) [2]. In our recent
study [3], it was reported that SSTAs in the East/Japan Sea (EJS) show scale-dependent
long-term persistent behaviors in auto- and cross-correlation structures constructed from
multivariate SSTA datasets; there were also region-specific features.

There are many physical processes closely related to SST variability. For example, SST
is varied via lateral energy transports by geostrophic velocity and Ekman current, vertical
energy exchanges by vertical entrainment and Ekman pumping, turbulent energy fluxes
through various air–sea interactions, and radiative fluxes [1]. Since these factors have their
own spatiotemporal scales, SST variability is also spatially and temporally characterized by
spatiotemporal scales involved in driving forcing parameters. In a recent study [4], it was
shown that the spatial pattern of SST variability in the East/Japan Sea is scale-sensitive;
SST variability with smaller scales (less than 60 days) affects the basin-wide area, while the
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spatial extent of SST variability with larger scales (more than 90 days) tends to be focused
on the tongue-shaped region from the East Korea Bay (EKB) to the Subpolar Front (SPF) [4].

These region-specific and scale-dependent behaviors solely coming from SST vari-
ability can be mainly due to the features of various driving forcing parameters. Thus, in
order to reveal the relationship between SST variability and its driving forces, it is urgent to
investigate the cross-correlational structures between SST variability and some advective
forcing parameters, indicated as SSHAs and current intensity (zonal, meridional, and
total). Further, in order to examine the long-term persistence in their cross-correlations, we
utilize the widely used detrended cross-correlation analysis (DCCA) algorithm [5] and its
modified versions.

Most real-world systems, including oceanic systems, are complex, in terms of consist-
ing of many degrees of freedom which are interacting in a very complex manner. As a
result of this, there have been a lot of analyzing tools suggested for examining the cross-
correlational structure among the constituents of a complex system; the traditional Pearson
cross-correlation (PCC) tool was proved to be restricted when dealing with nonstation-
ary time series. As its alternatives, the detrended fluctuation analysis (DFA) [6] and its
multifractal version, called multifractal detrended fluctuation analysis (MFDFA), were in-
troduced for examining the auto-correlation structure of a complex singular time series [7].
Since then, the detrended cross-correlation analysis (DCCA) was introduced in order to
detect the long-range persistence in the cross-correlations between synchronously observed
nonstationary time series. These analysis tools have been successfully applied to a variety
of scientific fields, including finance, physics, and earth sciences [8–14].

However, the aforementioned methodologies have a clear shortcoming in analyzing a
complex system under the influences of strong external forces; most geophysical systems,
including oceanic systems, are governed by a lot of external forcing parameters evolving
with a composite spatiotemporal scale. Often, the long-term persistent behaviors (gener-
ally appearing as a power-law scaling) are dependent on the characteristics of the given
original time series directly related to the external forces; however, DFA and its variant
algorithms [5–7] do not consider the partwise characteristics of the original time series. In
order to overcome these limitations, the original time series should be divided into separate
parts according to the partwise characteristics of the original time series, and the separated
parts must be, respectively, dealt with in the procedural process of these algorithms. The
asymmetric DFA (ADFA) [15] and the multifractal asymmetric detrended cross-correlation
analysis (MF-ADCCA) [16] are the first modified algorithms for incorporating the local lin-
ear trend of the original time series; therein, the characteristic for dividing the original time
series is the local linear trend. In this study, we further consider the local level of fluctuation
as another characteristic for the dividing criterion and present a new fluctuation-dependent
DCCA (F-DCCA) algorithm.

To summarize, our goal in this study is to examine the long-term persistence in the
cross-correlational structures between the SSTAs and the advective forcing parameters in
the East/Japan Sea (EJS), in terms of ADCCA, F-DCCA, and DCCA algorithms; we think
that the EJS is a good testbed for examining the effect of advective forcing parameters
on SSTA variability because it is a semi-enclosed marginal sea and mimics the ocean’s
characteristics well. Although the algorithms utilized in this study have some novel
aspects in examining the dynamic persistent structures depending on local trends and local
fluctuation levels, they still have some limitations in revealing the persistent structures of
SSTAs influenced by teleconnection mechanisms. For the latter, a new algorithm should
be devised.

This article is organized as follows: In the Materials and Methods section, descriptions
of satellite datasets and analysis tools are presented. The subsequent analysis Results
section contains all the analysis results as well as their interpretations. In the Discussion
section, comparisons with the previous studies and new implications are presented, and
lastly, the Conclusion section summarizes the meaningful results and describes the di-
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rection of further research in terms of correlational structures under the effect of various
climate factors.

2. Materials and Methods
2.1. Gridded Satellite Data

In this study, three kinds of satellite-derived daily gridded datasets are used for examining
their long-term persistent cross-correlational structures. They are briefly described below.

The satellite-derived daily SST data were obtained from the National Oceanic and
Atmospheric Administration (NOAA) Optimum Interpolation SST (OISST) version 2.1
software [17,18]. This NOAA 0.25◦ daily OISST is a long-term climate data record incor-
porating observations from different platforms (satellites, ships, buoys, and Argo floats)
into a regular global grid and is currently available from 1 September 1981 to 4 April 2023.
SST anomalies (SSTAs) represent departures from normal or average conditions and are
computed via the daily OISST minus a 30-year climatological mean from 1971 to 2000.

The SSH data as well as the derived geostrophic currents are DUACS delayed-time
altimeter-gridded (0.25◦ × 0.25◦ in latitude and longitude) maps over the global ocean.
These products are produced and distributed by the Copernicus Climate Change Service
(C3S, https://climate.copernicus.eu/, accessed on 8 April 2024). These datasets are cur-
rently available from 1 January 1993 to 4 April 2023. The anomalies of SSH and geostrophic
currents were computed with respect to the full-duration climatological mean.

For the goal of this study, we confined the spatial coverage of all the datasets into the
East/Japan Sea (EJS) with latitude of 34~45◦N and longitude of 127~144◦E, and also, the
temporal coverage of all these satellite datasets with different observation periods was set
to the same duration from 1 January 1993 to 4 April 2023 for a consistent cross-correlation
analysis. Further, in order to compare the decadal change in cross-correlational structures,
we divided the whole timespan into two domains, namely the first domain of 1993 to 2008
and the second domain of 2008 to 2023.

2.2. Characteristics of SSTAs

In this section, we present the statistical characteristics of SSTAs in the EJS through the
standard deviation (STD) and linear trends. Figure 1 illustrates the spatial distribution of
fluctuation levels of SSTAs (Figure 1A–C) denoted by the standard deviation and the spatial
pattern of linear trends (Figure 1D–F). As shown in Figure 1B,C as well as Figure 1E,F, the
fluctuation levels and linear trends are strengthened in the recent decade from 2008 to 2023,
particularly in specific regions. This strengthened warming in the recent decade in the EJS
was also reported in the previous study [19]. The STD values are high along the region
extending from the EKB to the SPF, and the linear trends are strong in areas near the east
coast of Korea, including the EKB and the western part of the SPF. The regions along the
west coast of Japan show a relatively low fluctuation over the full duration (Figure 1A–C).
These distinct spatial features might be related to the spatial pattern of cross-correlations
between SSTAs and advective forcing parameters.

Further, for comparison, we presented the STD and linear trends map for the SSHAs
and current intensity (UA, VA, and UVA) in Figures A1–A4. The pattern of STD maps is
very similar for all those parameters, indicating that SSHA and surface currents are closely
related to each other, with a high STD in the southern part and a low STD in the northern
part. However, the maps of linear trends show a dramatic decadal change.

https://climate.copernicus.eu/
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Figure 1. STD maps of SSTAs for three durations: the full observation period (A), the 1st decades 
(B), and the 2nd decades (C). The linear trends are illustrated in (D–F), respectively, corresponding 
to their different observation durations. The light gray dashed-line box indicates the EKB region, 
and the dark gray dashed-line box denotes the SPF region. Note that the areas marked “x” are not 
statistically significant for the linear trends at the 95% significance level. 
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forcing parameters, such as SSHAs and current intensity (zonal, meridional, and total). 
This method has some limitations on examining the long-term persistence between a pair 
of time series under a variety of polynomial trends; firstly, the long-term persistence of a 
bivariate time series incorporates a long-ranged time-delay cross-correlation, and 
secondly, the polynomial trends can lead to spurious cross-correlations. Nonetheless, they 
give us a good benchmark for the alternative analyses. In this study, we use this method 
as the baseline. 

2.3.2. Detrended Cross-Correlation Analysis 
This algorithm [5] allows us to compute the long-term persistent cross-correlation of 

any two nonstationary signals. The procedure is given below. 
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Figure 1. STD maps of SSTAs for three durations: the full observation period (A), the 1st decades
(B), and the 2nd decades (C). The linear trends are illustrated in (D–F), respectively, corresponding
to their different observation durations. The light gray dashed-line box indicates the EKB region,
and the dark gray dashed-line box denotes the SPF region. Note that the areas marked “x” are not
statistically significant for the linear trends at the 95% significance level.

2.3. Cross-Correlational Analysis
2.3.1. Pearson Cross-Correlation

The traditional Pearson cross-correlations were used to exhibit the spatial distribution
of synchronized features with no delay time between SSTAs and advective forcing param-
eters, such as SSHAs and current intensity (zonal, meridional, and total). This method
has some limitations on examining the long-term persistence between a pair of time series
under a variety of polynomial trends; firstly, the long-term persistence of a bivariate time se-
ries incorporates a long-ranged time-delay cross-correlation, and secondly, the polynomial
trends can lead to spurious cross-correlations. Nonetheless, they give us a good benchmark
for the alternative analyses. In this study, we use this method as the baseline.

2.3.2. Detrended Cross-Correlation Analysis

This algorithm [5] allows us to compute the long-term persistent cross-correlation of
any two nonstationary signals. The procedure is given below.

Step 1: We considered two nonstationary time series xi, yi for i = 1, 2, · · · , N where N
is the length of the series. Then, we constructed the signal profile:

X(k) =
k

∑
i=1

[xi − ⟨x⟩], Y(k) =
k

∑
i=1

[yi − ⟨y⟩] (1)

where ⟨·⟩ denotes averaging over an entire time series.
Step 2: Both signal profiles are divided into Ns = int(N/s) disjoint segments ν of

length s. Because of the cases of the length N not divided exactly by s, the segmentation
procedure is repeated starting from the end of the signal. Thus, we obtain 2Ns segments
in total.
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Step 3: For each segment ν, the local trend is estimated by fitting a polynomial of order

m (
∼
X
(m)

ν for X and
∼
Y
(m)

ν for Y). In this study, we use a polynomial of order m = 1. Then, the
local trend is subtracted from the profile.

Step 4: The detrended cross-covariance within each segment is computed,

F2
XY(ν, s) =

1
s

s

∑
k=1

{(X[(ν − 1)s + k]−
∼
X
(m)

ν (k))× (Y[(ν − 1)s + k]−
∼
Y
(m)

ν (k))} (2)

Step 5: In order to see the scaling behavior of the covariant function, we averaged all
segments and computed the detrended covarying fluctuation function,

FXY(s) =

(
1

2Ns

2Ns

∑
ν=1

F2
XY(ν, s)

)1/2

(3)

Step 6: The scaling behavior of the covariance function FXY(s), in case that the function
FXY(s) develops scaling, is manifested in the power-law dependence of FXY(s) as follows:

FXY(s) ∼ shXY (4)

where hXY, known as the cross-correlation Hurst exponent, quantitatively characterizes
fractal properties of the covariance, that is, the long-term cross-correlational persistence.
In case the function FXY(s) is alternating across zero, it is said that there is no scaling or
long-term persistence.

When estimating the Hurst exponent, it is very important to determine a scaling
range over which a power-law scaling of Equation (4) is well established and its double
logarithmic linear fit yields a robust singular value, which is said to be the Hurst exponent.
In this study, the scaling range was set to be a segment scale range of 400~3000 days; herein,
the segment scale denotes the segment length, s. For the smaller segment sizes (less than
400 days), a Hurst exponent near the value of 1.5 was observed); this value indicates that
the considered time series is likely to be a Brownian motion, which is a cumulative sum
of random noises. Thus, in this study, we only consider the larger scales, and the smaller
scales will be dealt with in future work. The scaling range of 400~3000 days is equally
applied to all the DCCA-based algorithms below through this study because all show a
similar power-law scaling behavior.

There is another caution to be noted. From Equation (2), the local detrended covariance,
F2

XY(ν, s), can be consistently negative over all segment sizes, yielding a negative power-
law scaling. In this case, the Hurst exponent can be estimated by assigning the minus
sign to all F2

XY(ν, s) in Equation (3), and this behavior is also interpreted as a long-term
persistent feature in a negative manner. In this study, we assign the minus sign to the Hurst
exponent obtained from the negative

{
F2

XY(ν, s)
}

series, and this Hurst exponent indicates
that there is a negative long-persistent behavior between the two considered nonstationary
time series.

The interpretation of hXY is the same as that of the traditional Hurst exponent. That is,
when hXY > 0.5, the cross-correlation of both time series is said to be persistent, implying
that an increase in one time series is followed by an increase in the other. In the case of
hXY < 0.5, the cross-correlation is said to be anti-persistent, meaning that an increase in
one signal is likely to be followed by a decrease in the other. Lastly, the case of hXY = 0.5
indicates a short-range or no cross-correlation. As mentioned in the previous paragraph,
the negatively persistent behaviors are interpreted in the same manner, except for the
direction due to the sign; that is, in the case of hXY < −0.5, the cross-correlation is said to
be negatively persistent, implying that an increase in one signal is likely to be followed by a
negative increase in the other. These interpretations are also valid in the modified versions
of the DCCA algorithm below.
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2.3.3. Asymmetric Detrended Cross-Correlation Analysis

This algorithm is a modified version of the DCCA, which incorporates the local linear
trend of the original time series in the process of computation of covariances of a pair
of two nonstationary time series; this can be an extension of an asymmetric detrended
fluctuation analysis (ADFA) to a bivariate time series [13]. The whole procedure is given
below; the first two steps are nearly the same as those of the DCCA algorithm.

Step 1: We considered two nonstationary time series xi, yi for i = 1, 2 · · · , N where N
is the length of the series. Then, their profiles are computed via a cumulative summation,

X(k) =
k

∑
i=1

[xi − ⟨x⟩], Y(k) =
k

∑
i=1

[yi − ⟨y⟩] (5)

where ⟨·⟩ denotes averaging over an entire time series, that is, computed as ⟨x⟩ = 1
N ∑N

i=1 xi.
Step 2: We divided each of the time series {xi, yi} into Ns = int(N/s) non-overlapping

segments of equal length s. Likewise, the profiles {X(k), Y(k)} are also divided into
Ns = int(N/s) non-overlapping segments of equal length s, respectively, and {x(t)} into
N(s) = int(N/s) non-overlapping segments of equal length s, respectively. In order to
incorporate a short-end part of the signal in case the record length N is not divided by s,
the same procedure is repeated from the end of the signal. Thus 2Ns segments are obtained.
Then, in the ν-th segment (ν = 1, · · · , 2Ns), we have two pairs of segmented time series
{xν(k), Xν(k)} and {yν(k), Yν(k)} for k = 1, · · · , s.

Step 3: For each segment time series of a pair of segmented time series {xν(k), Xν(k)},
we computed the local linear fits (equivalent to local linear trends) Lν,x and Lν,X us-
ing the least squares regression, each of which is expressed as Lν,x = aν,x + bν,xk and
Lν,X = aν,X + bν,Xk, respectively. In another pair of time series, {yν(k), Yν(k)}, it is the
same. The linear fit Lν,x is used to determine whether the trend of the ν-th segment
{xν(k)} is positive (rising) or negative (falling), while the linear fit Lν,X is used to locally
detrend the ν-th profile segment {Xν(k)}. The linear trends of a pair of original time se-
ries {xν(k), yν(k)} are said to be asymmetric; this is why this algorithm is said to be an
asymmetric DCCA. Thus, the detrended cross-covariance is computed as

F2
XY(ν, s) =

1
s

s

∑
k=1

{(Xν(k)− Lν,X(k))× (Yν(k)− Lν,Y(k))} (6)

Step 4: The detrended covariances {F2
XY(ν, s)} are classified into two classes according

to the piecewise trend of the corresponding time series {xν(k), yν(k)}, and the classified
segments are used to assess the asymmetric cross-correlation scaling properties. As men-
tioned in Step 3, the local trend is determined by the sign of the slope bν,x or bν,y. By, for
example, taking the trend of {xi} as the reference (herein, the SSTA is the reference), we
computed the so-called directional detrended covariances as follows:

F+
XY(s) =

(
1

M+

2Ns

∑
ν=1

sgn(bν,x) + 1
2

F2
XY(ν, s)

)1/2

(7)

F−
XY(s) =

(
1

M−

2Ns

∑
ν=1

[−sgn(bν,x) + 1]
2

F2
XY(ν, s)

)1/2

(8)

where M+ and M− denote the number of segments with positive and negative trends,
respectively. In case bν,x ̸= 0 for all segments, M+ + M− = 2Ns.

When the piecewise linear trend of {x(t)} is ignored, the traditional DCCA [5]
is restored:

FXY(s) =

(
1

2Ns

2Ns

∑
ν=1

F2
XY(ν, s)

)1/2

(9)
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As a result, if there are power-law cross-correlations, the following scaling law
is established:

F+
XY(s) ∼ sh+XY , F−

XY(s) ∼ sh−XY (10)

where h+XY and h−XY denote positive (rising) and negative (falling) scaling exponents, re-
spectively. The scaling behaviors in Equation (11) are determined in the log–log plots, and
the exponents are estimated via a linear fit over the scaling range.

The interpretation of the exponent hXY is the same as that of the DCCA. However, for
the symmetricity of the cross-correlation of a pair of time series, the relation of h+XY = h−XY
indicates that the cross-correlation is symmetric. If h+XY ̸= h−XY, the cross-correlation is said
to be asymmetric, meaning that there is a trend-dependent scaling behavior. Further, the
degree of cross-correlation asymmetry is measured via the following formula:

∆hXY = h+XY − h−XY (11)

The greater the magnitude of ∆hXY, the more pronounced the asymmetry of the cross-
correlation. The sign of ∆hXY indicates the dependence on the trending behavior of the
chosen time series, herein {xi}, that is, the SSTA time series.

2.3.4. Fluctuation-Dependent Detrended Cross-Correlation Analysis

We present a new DCCA algorithm by making a little modification to ADCCA. This
algorithm is based on the fact that the nonstationarity inherent in the original time series
is caused by different dynamical processes and results in a noticeable variation in the
fluctuation level. To this end, we consider the fluctuation level of the segmented original
time series instead of its linear trend. Thus, the algorithm is very similar to the ADCCA;
from now on, this algorithm is called the F-DCCA. The whole procedure is below; since the
first two steps are completely the same as those in the ADCCA, Steps 1 and 2 are ignored.

Step 3: For each segment time series of a pair of segmented time series {xν(k), Xν(k)},
we compute the local standard deviation (STD) and the local linear fits (equivalent to local
linear trends), σν,x and Lν,X , respectively. The local STD σν,x is used to determine whether
the level of fluctuation of the ν-th segment {xν(k)} is high or low; the linear fit Lν,X of
the profile series is used to locally detrend its corresponding segment {Xν(k)}. Then, we
compute the fluctuation-dependent detrended covariance given as follows:

F2
XY(ν, s) =

1
s

s

∑
k=1

{(Xν(k)− Lν,X(k))× (Yν(k)− Lν,Y(k))} (12)

Step 4: The detrended covariances {F2
XY(ν, s)} are classified into two classes, high and

low, according to the segment-wise level of fluctuation. In this study, the STD criterion
is set to be the STD, σx, of the full-length time series {xi}; if the local σν,x is greater (less)
than σx, the local segment indicator Iσ becomes +1(−1), which indicates a local high (low)
fluctuation level. In this study, the referenced series {xi} is the SSTA signal. Then, we
compute the so-called fluctuational detrended covariances as follows:

Fhi
XY(s) =

(
1

Mhi

2Ns

∑
ν=1

sgn(Iσ) + 1
2

F2
XY(ν, s)

)1/2

(13)

Flo
XY(s) =

(
1

Mlo

2Ns

∑
ν=1

[−sgn(Iσ) + 1]
2

F2
XY(ν, s)

)1/2

(14)

where Mhi and Mlo denote the number of segments with high- and low-fluctuation
levels, respectively.
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Likewise, the traditional DCCA is restored when the fluctuation criterion is ignored.
Further, if there are power-law cross-correlations, the following scaling law is established:

Fhi
XY(s) ∼ shhi

XY , Flo
XY(s) ∼ shlo

XY (15)

where hhi
XY and hlo

XY denote high- and low-fluctuation scaling exponents, respectively. The
scaling behaviors in Equation (11) are determined in the log–log plots, and the exponents
are estimated via a linear fit over the scaling range.

The interpretation of the exponent hXY is the same as those of the DCCA and ADCCA.
Similar to the symmetricity of the ADCCA algorithm, we can define a new fluctuation–
asymmetry metric given as follows:

∆h f luc
XY = h

hi

XY − hlo
XY (16)

This metric ∆h f luc
XY indicates the degree of fluctuation-dependency of the cross-

correlational structure of two signals, while the cross-correlation asymmetry ∆hXY quan-
tifies the degree of trend-dependency in the cross-correlational structure of two signals.
Finally, these metrics could be said to represent the change in underlying dynamics.

3. Results
3.1. Spatial Pattern of Pearson Cross-Correlation

The PCC is a tool for quantifying the level of synchronized co-movement of two sta-
tionary time series. Thus, if there is a phase lag or a nonstationary feature between both
signals, a spurious result can come out. Nonetheless, this approach has been long used
in oceanography, especially in terms of empirical orthogonal function algorithms. In this
study, we use the PCC map as a baseline for alternative long-persistence analysis tools.

Figure 2 illustrates four PCC maps, which represent a pairwise cross-correlation level
between SSTAs and the rest of the four advective forcing parameters, namely SSHAs, the
zonal current anomaly (UA), the meridional current anomaly (VA), and the total current
anomaly (UVA), respectively. The solid line indicates a PCC value of 0.5 and the dotted
line denotes a value of 0.25; they are interpreted as strong and weak correlations, in an
ad hoc way. The most intriguing feature is that the region with a strong cross-correlation
is focused on the tongue-shaped area connecting the EKB and the SPF and has become
conspicuous in the recent decade from 2008 to 2023. Especially, the current speed seems
to play a major role (Figure 2L). It should be noted that the SSHA can incorporate other
forcing parameters not directly linked to advection.

As for a negative PCC, there are nearly no noticeable negative cross-correlations over
almost the entire EJS region. If any exist, their strength is too weak, with most values below
0.25 in magnitude. However, it should be noted that the regions with negative PCC values
are mainly located along the coastal area for the pairs of the SSTA and current velocity.
One interesting feature is that there is a point with a negative PCC value greater than 0.25
in magnitude between the SSTA and zonal velocity, which is indicated as a dashed contour
line (Figure 2D–F); this point may be related to the effect of significant negative wind stress
curl [20].
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Figure 2. PCC maps between SSTAs and advective parameters, in terms of different temporal
ranges. PCC maps between SSTAs and SSHAs for (A) 1993–2023, (B) 1993–2008, and (C) 2008–2023.
PCCs map between the SSTA and zonal current anomaly for (D) 1993–2023, (E) 1993–2008, and
(F) 2008–2023. PCC maps between the SSTA and meridional current anomaly for (G) 1993–2023,
(H) 1993–2008, and (I) 2008–2023. PCC maps between the SSTA and total current anomaly for
(J) 1993–2023, (K) 1993–2008, and (L) 2008–2023. The contour line notation: the solid black line for
0.5 (strong correlation), the dotted line for 0.25 (weak correlation), and the dashed black line for
−0.25. Note that the areas marked “x” are not statistically significant for the linear trends at the 95%
significance level.

3.2. Spatial Pattern of DCCA

For comparison with PCC maps, DCCA maps are presented in Figure 3. The biggest
difference between the two algorithms lies in the quantification of long-term persistence.
Generally, persistence means slow-decaying auto- and/or cross-correlational behaviors.
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The DCCA algorithm is a more appropriate tool compared to the traditional time-delayed
PCC methodology because DCCA can yield a reliable result even for both nonstationary
time series while the PCC tool is theoretically reliable only under the constraint of station-
arity. The PCC algorithm can yield a spurious result when there are polynomial trends in
both signals, respectively.
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As shown in Figure 3, long-term cross-correlational persistence is very rare, except for
the case of a pair of SSTAs and SSHAs. Firstly, SSHAs seem to be a combination of various
forcing parameters, while the current velocity anomalies show a region-specific feature; the
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zonal velocity is strongly related to zonal currents (SPF area), and the meridional velocity
is securely related to the meridional currents (near the coast of Korea). As for the current
speed, the SPF area and the east coast of Korea seem to be a hot spot for the long-term
persistent interactions between SSTAs and currents.

The presence of negative long-term persistence is notable, although the spatial cov-
erage is too small (Figure 3D–I); these behaviors are observed only in the pairs of SSTAs
and current velocities. The pair of the SSTA and zonal current velocity leads to a negative
long-term persistent feature along the east coast of Korea (Figure 3D,F), while another pair
of the SSTA and meridional current velocity seems to contribute to long-term persistence
near the Japan coast and the Tsugaru strait (Figure 3G,H). There could be a possibility
for upwelling phenomena due to coastal currents; in a recent study [21], current-driven
upwelling prevailed off the southern coast while wind-driven upwelling is dominant off
the northern coast.

3.3. Spatial Pattern of ADCCA

As a kind of conditional DCCA, the asymmetric DCCA was performed on pairs of
SSTAs and advective forcing parameters. Since, generally, the advective forcing parameters
(herein, SSHA, UA, VA, and UVA are considered) make a more direct impact on SSTA
variability than the other way around, the local linear trend of segmented SSTA series
was used as a separating criterion. Figures 4–6 show the ADCCA map between the SSTA
and the respective advective forcing parameter, where “Positive” denotes the rising-up
behavior of a local linear trend in the segmented SSTA variability, and “Negative” denotes
the falling-down behavior of the SSTA’s local linear trend.
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Figure 4. ADCCA maps between SSTAs and SSHAs, in terms of different temporal ranges. ADCCA
maps during the positive (rising) phase for (A) 1993–2023, (B) 1993–2008, and (C) 2008–2023. ADCCA
maps during the negative (falling) phase for (D) 1993–2023, (E) 1993–2008, and (F) 2008–2023. All the
cross-correlational Hurst exponents are statistically significant at the 95% significance level. Note
that the white blanks indicate areas where the power-law scaling is not defined, and therefore the
cross-correlational Hurst exponents are also not defined. Also, note that the solid black contour line
indicates a Hurst exponent of 0.5, implying that there is a short-ranged or no cross-correlation.
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Figure 5. ADCCA maps between the SSTA and UA, in terms of different temporal ranges. The
ADCCA maps during the positive (rising) phase for (A) 1993–2023, (B) 1993–2008, and (C) 2008–2023.
ADCCA maps during the negative (falling) phase for (D) 1993–2023, (E) 1993–2008, and (F) 2008–2023.
All the cross-correlational Hurst exponents are statistically significant at the 95% significance level.
Note that the white blanks indicate areas where the power-law scaling is not defined, and therefore
the cross-correlational Hurst exponents are also not defined. Also, note that the solid black contour
line indicates a Hurst exponent of 0.5, implying that there is a short-ranged or no cross-correlation.
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Figure 6. ADCCA maps between the SSTA and VA, in terms of different temporal ranges. ADCCA
maps during the positive (rising) phase for (A) 1993–2023, (B) 1993–2008, and (C) 2008–2023. ADCCA
maps during the negative (falling) phase for (D) 1993–2023, (E) 1993–2008, and (F) 2008–2023. All the
cross-correlational Hurst exponents are statistically significant at the 95% significance level. Note
that the white blanks indicate areas where the power-law scaling is not defined, and therefore the
cross-correlational Hurst exponents are also not defined. Also, note that the solid black contour line
indicates a Hurst exponent of 0.5, implying that there is a short-ranged or no cross-correlation.
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In the pair of SSTAs and SSHAs (Figure 4), the positive ADCCA shows a strong
long-term persistent behavior over almost the entire EJS region when the full duration
was considered (Figure 4A). However, the negative ADCCA exhibits nearly no long-term
persistence (Figure 4D–F). This distinct behavior seems to be mainly due to the strong
rising tendency of SSTAs in the EJS. Also, there is a difference between the first and second
decades. For the positive ADCCA, the recent decade (Figure 4C) shows a more complex
spatial distribution rather than the former decade (Figure 4B). The area eastward from
135◦E to 38.5◦N shows a transition from persistent to anti-persistent behavior (the solid
black contour line in Figure 4C). Nonetheless, it is noteworthy that the tongue-shape area
from the EKB to the SPF has become highly persistent in the recent decade. Further, there
is no region showing a negative long-term persistent behavior.

As for the pairs of SSTAs and current velocities, UA and VA, nearly no long-term
persistence is observed. However, the high persistent behaviors are observed along the
obvious zonal and meridional current areas, respectively. Although it is small in the
area portion, a high persistence of the positive ADCCA between the SSTA and UA is
observed along the SPF area (Figure 5A,C) while the positive ADCCA of a pair of the
SSTA and VA shows a high persistent behavior along the east coast of Korea (Figure 6A,C).
These behaviors are also relatively more conspicuous in the recent decade than in the
former decade.

The negative long-term persistent behaviors are nearly not observed from the per-
spective of linear-trend asymmetry (Figures 5 and 6), compared to those of DCCA cases
(Figure 3). This distinct contrast directly implies that there is no long-term persistence
depending on the local linear trend. Instead, a negative long-term persistence is established
only when all segments are considered. Since power-law scaling features in DCCA-based
algorithms are determined by an ensemble average of local detrended fluctuation functions,
no power-law scaling can be established according to constraints such as local linear trend
and local fluctuation level.

Concerning the long-term persistent behavior of ADCCA between the SSTA and
current speed (UVA), Figure A5 shows more clearly a high persistence along the SPF area
in the recent decade, and the extent of the spatial area with a high persistence is greater
compared to the single current velocity (Figures 5 and 6). This contrast can be mainly due
to the directionality of the current velocity.

Also, as mentioned in the section of the DCCA map, the spatial extent of the high
persistence of the ADCCA becomes wider in the pair of SSTAs and SSHAs compared to
other pairs. This feature seems to be mainly due to the fact that the SSHA component
includes more composite factors, even relating to vertical advection. A wide spatial
coverage with a strong cross-correlation between SSTAs and SSHAs is also observed
in PCC maps in Figure 3A–C.

3.4. Spatial Pattern of F-DCCA

Secondly, as another conditional DCCA, the F-DCCA algorithm was applied to all
pairs of SSTAs and advective forcing parameters. Different from the case of the ADCCA
algorithm, the local level of fluctuation of SSTAs can also lead to different cross-correlational
long-term persistence between SSTAs and advective forcing parameters; all the relevant
F-DCCA maps are given in Figures 7–9, where “High” means that the STD of the local
fluctuation is greater than the STD of the full-length fluctuations while “Low” indicates
that the local STD is smaller than the full-length STD.
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Figure 7. F-DCCA maps between SSTAs and SSHAs, in terms of different temporal ranges. F-DCCA
maps with high fluctuations for (A) 1993–2023, (B) 1993–2008, and (C) 2008–2023. F-DCCA maps
with low fluctuations for (D) 1993–2023, (E) 1993–2008, and (F) 2008–2023. All the cross-correlational
Hurst exponents are statistically significant at the 95% significance level. Note that the white blanks
indicate areas where the power-law scaling is not defined, and therefore the cross-correlational Hurst
exponents are also not defined. Also, note that the solid black contour line indicates a Hurst exponent
of 0.5, implying that there is a short-ranged or no cross-correlation.
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Figure 8. F-DCCA maps between the SSTA and UA, in terms of different temporal ranges. F-DCCA
maps with high fluctuations for (A) 1993–2023, (B) 1993–2008, and (C) 2008–2023. F-DCCA maps
with low fluctuations for (D) 1993–2023, (E) 1993–2008, and (F) 2008–2023. All the cross-correlational
Hurst exponents are statistically significant at the 95% significance level. Note that the white blanks
indicate areas where the power-law scaling is not defined, and therefore the cross-correlational Hurst
exponents are also not defined. Also, note that the solid black contour line indicates a Hurst exponent
of 0.5, implying that there is a short-ranged or no cross-correlation.
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As for the negative long-term persistence in the aspect of the F-DCCA, there is nearly 
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Figure 9. F-DCCA maps between the SSTA and VA, in terms of different temporal ranges. F-DCCA
maps with high fluctuations for (A) 1993–2023, (B) 1993–2008, and (C) 2008–2023. F-DCCA maps
with low fluctuations for (D) 1993–2023, (E) 1993–2008, and (F) 2008–2023. All the cross-correlational
Hurst exponents are statistically significant at the 95% significance level. Note that the white blanks
indicate areas where the power-law scaling is not defined, and therefore the cross-correlational Hurst
exponents are also not defined. Also, note that the solid black contour line indicates a Hurst exponent
of 0.5, implying that there is a short-ranged or no cross-correlation.

Figure 7 shows the clearly distinct behaviors of long-term persistence in high and low
levels of SSTA fluctuations, respectively. In low fluctuations, highly persistent behaviors
are mostly observed all over the EJS (Figure 7D–F), while anti-persistent behaviors are
strengthened in high fluctuations (Figure 7A–C). Especially, near the Korea–Tsushima
strait (KTS), the long-term persistence shows a harsh contrast: strong persistence in low
fluctuations and weak or anti-persistence in high fluctuations. This feature is noteworthy
because the KTS is the major in-flux gate of warm waters. Also, along the SPF line, a highly
persistent behavior is observed only in the low-fluctuating phase (Figure 7A,D).

Even in F-DCCA maps between the SSTA and a singular current velocity component
(Figures 8 and 9), as already clearly observed in Figure 7, noticeable persistent behaviors are
only seen in the low-fluctuating phases (Figures 8F and 9F). These behaviors become more
conspicuous in the recent decade (2008–2023) rather than in the former decade (1993–2008).
Also, the regions showing a strong persistence seem to be closely related to the current
paths. The zonal current leads to a high persistence along the SPF region (Figure 8F) while
the meridional current leads to a high persistence along the east coast of Korea (Figure 9F),
strongly influenced by the East Korea Warm Current (EKWC).

As for the negative long-term persistence in the aspect of the F-DCCA, there is nearly
no region compared to those of the DCCA. If any exist, they are very sparsely located along
the Japanese coast as well as the Tsugaru strait (Figure 9B,E). Thus, it can be concluded
that there is no long-term scaling behavior in negatively fluctuating pairs of SSTAs and
advective forcing parameters under constraints such as local fluctuation levels and local
linear trends.

Considering the case of the current speed (Figure A6), the wider spatial area is affected
by a strong persistence only in the low-fluctuating phase. Further, the highly persistent
region seems to be dependent on the observation period. The pathway region of the EKWC
shows a highly persistent behavior in the former decade (Figure A6E) while the SPF region
exhibits a stronger persistence in the recent decade (Figure A6F).
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Already confirmed in previous analysis results, the spatial extent with long-term per-
sistent and/or anti-persistent behaviors is robustly wider in the pair of SSTAs and SSHAs
compared to other pairs. This behavior seems to be due to the fact that an SSHA represents
a mixture of various forcing parameters. Nevertheless, there is one big difference; the
persistent behavior seems to be more strongly dependent on the level of SSTA fluctuations
(Figure 7). Specifically, the area along the Japanese coast exhibits a highly anti-persistent
behavior in the pair of SSTAs and SSHAs. This finding should be necessarily noted for
future research because there can be an upwelling process.

4. Discussion

In this study, we have examined the long-term persistence of cross-correlational
structures between SSTAs and advective forcing parameters using DCCA-based algorithms
because the traditional time-lagged Pearson cross-correlation tool is not appropriate for
dealing with a pair of nonstationary time series, especially oceanic time series with a variety
of strong periodic trends. The cross-correlational long-term persistence of a pair of time
series is an important feature, especially in predicting the future variations of one parameter
based on the present variations of another parameter: herein, SSTAs and three advective
forcing parameters (SSHAs, UA, and VA). Also, a complexity underlying SSTA variability
can be qualitatively assessed, according to whether power-law scaling relations for those
pairs are established or not. The unestablished regions of power-law scaling can be said to
be more complex.

There naturally arises a question about the origin of long-term persistence in cross-
correlational structure. According to the simulation study [5], both signals can exhibit a
cross-correlational power-law scaling under a strong common term, the so-called interaction
term, if only one of them exhibits a power-law scaling. Since it was already confirmed that
the SSTA exhibits a power-law scaling [3], the presence of strong persistence among pairs
considered in this study indicates that the interaction term between them must be strong
enough to influence their joint behavior.

Further, these long-term persistent behaviors can be dependent on the characteristics
of the SSTA’s variability characteristics. Thus, to unveil these constraint-dependent features,
we additionally utilized the modified versions of the DCCA algorithm, namely ADCCA
and F-DCCA, which deal with the local linear trend and the local fluctuation level of
SSTAs, respectively. In the applications of DCCA-based algorithms as well as DFA-based
algorithms, the step of estimating the generalized Hurst exponents from the power-law
scaling functions (Equations (4), (10) and (15)) is very important because various crossover
behaviors are very often observed in cases of geophysical time series [3,11,13,14]. In this
study, the scaling range from 400 to 3000 days was used because Brownian motion behaviors
were observed for the smaller scales (less than 400 days). The Hurst exponent is about
1.5 for Brownian motions, and a Brownian motion can be explained in terms of stochastic
processes with no or short-term correlations [22].

In STD and linear trend maps (Figure 1), the tongue-shaped region, extending from
the EKB toward the eastern end of the SPF, shows a high value in two measures. And,
this region is also well consistent with the areas of relatively high PCC values for all pairs
between SSTAs and advective forcing parameters (Figure 2). However, these consistent
behaviors seem to be valid only for two pairs of the SSTA and UA as well as the SSTA and
UVA (Figure 3). As for the pair of SSTAs and SSHAs, strongly persistent behaviors are
not restricted to that region but pervasive nearly all over the EJS. In the case of the pair of
the SSTA and VA, the coast regions, along which main meridional currents flow, show a
strong long-term persistence. These observational findings imply that the SSTA variability
in the tongue-shape region is greatly affected by the zonal current and the current speed in
a long-term persistent manner.

Concerning the impact of constraints on long-term persistent behaviors, any constraint
on SSTA variability seems to surely increase the system’s complexity. Compared to DCCA
results (Figure 3), ADCCA and F-DCCA results showed nearly no areas in the EJS where
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any long-term persistent behaviors are established (Figures 4–9). Nonetheless, there are
noticeable findings supporting that long-term persistent behaviors for all the pairs are
dependent on local linear trends as well as local fluctuation levels; relatively strong persis-
tence appeared in the rising-up (positive) phases of the SSTA and in the low-fluctuating
phases of the SSTA. There are also region-specific features between the SSTA and current
velocity (UA and VA); zonal currents (UA) show a strong persistent behavior along its
main pathway from the EKB to the eastern end of the SPF, while meridional currents show
a strong persistence along the coasts of Korea and Japan. These coastal regions should be
cautiously dealt with because of the poor resolution of satellite-gridded datasets on the
coasts. Nonetheless, the relations between SSTAs and current velocity anomalies along the
major pathways of surface currents are noteworthy.

One noticeable finding is that these long-term persistent behaviors between SSTAs
and advective forcing parameters are stronger in the recent decade (2008–2023) than in the
former decade (1993–2008). Specifically, during the rising phase of SSTAs, the long-term
persistence becomes more pronounced. This may be related to the increasing role of oceanic
dynamics in recent decades [23].

We have to note a clear limitation in establishing the constraints; in this study, two con-
straints are characterized solely by SSTA variability. Generally, SST variability in the EJS is
greatly influenced by climate forcing parameters, such as Arctic Oscillation (AO), North
Atlantic Oscillation (NAO), West Pacific (WP) pattern, and El Niño–Southern Oscillation
(ENSO) [24–26]. Thus, these climate factors should be also considered as constraints on
long-term persistence examinations between SSTAs and various forcing parameters. To
this end, an analysis algorithm is under study.

Lastly, there is another noticeable finding on the negative long-term persistent behav-
ior between SSTAs and current velocity anomalies in terms of the DCCA. The negative
persistence means that the SSTA increases as UA (or VA) negatively increases, and vice
versa. It should be noted that these behaviors are observed only along the coasts although
the spots are too small. There is a possibility that these spots are related to the current-
driven upwelling process [21]. In future research, this topic will be more closely analyzed
in terms of cross-correlational characteristics by considering wind and current.

5. Conclusions

Our main results in this study can be summarized as follows:

• A strong long-term persistent behavior is observed nearly all over the EJS for the pair
of SSTAs and SSHAs in terms of the DCCA.

• The long-term persistence between SSTAs and SSHAs is strong only for the rising
phases of SSTAs as well as the small fluctuating phases of SSTAs in terms of the
ADCCA and F-DCCA, respectively.

• The pairs of the SSTA and current velocity (UA and VA) show a region-specific long-
term persistence; a strong persistent behavior is observed along the coasts of Korea
and Japan for the pair of the SSTA and VA and along the tongue-shaped region for the
pair of the SSTA and UA.

• There are a small number of spots where a negatively long-term persistent behavior
is observed: along the east coast of Korea for the SSTA-UA pair, and along the west
coast of Japan for the SSTA-VA pair.

The long-term persistent features in cross-correlational structures for pairs between
SSTAs and advective forcing parameters can give us insights into a variety of physical
processes underlying SSTA dynamics in the EJS. Especially, the region-specificity and the
SSTA feature-dependency of long-term cross-correlational persistence for those pairs can
greatly contribute to the SSTA’s prediction based on machine learning algorithms as well
as the structural variability of the SSTA system on a longer time scale.
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Figure A1. STD maps of SSHAs for three durations: the full observation period (A), the 1st decades 
(B), and the 2nd decades (C). The linear trends are illustrated in (D–F), respectively, corresponding 
to their different observation durations. The light gray dashed-line box indicates the EKB region, 
and the dark gray dashed-line box denotes the SPF region. Note that the areas marked “x” are not 
statistically significant for the linear trends at the 95% significance level. 

Figure A1. STD maps of SSHAs for three durations: the full observation period (A), the 1st decades (B),
and the 2nd decades (C). The linear trends are illustrated in (D–F), respectively, corresponding to their
different observation durations. The light gray dashed-line box indicates the EKB region, and the
dark gray dashed-line box denotes the SPF region. Note that the areas marked “x” are not statistically
significant for the linear trends at the 95% significance level.
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Figure A2. STD maps of the UA for three durations: the full observation period (A), the 1st
decades (B), and the 2nd decades (C). The linear trends are illustrated in (D–F), respectively, corre-
sponding to their different observation durations. The light gray dashed-line box indicates the EKB
region, and the dark gray dashed-line box denotes the SPF region. Note that the areas marked “x”
are not statistically significant for the linear trends at the 95% significance level.
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Figure A3. STD maps of the VA for three durations: the full observation period (A), the 1st decades (B),
and the 2nd decades (C). The linear trends are illustrated in (D–F), respectively, corresponding to their
different observation durations. The light gray dashed-line box indicates the EKB region, and the
dark gray dashed-line box denotes the SPF region. Note that the areas marked “x” are not statistically
significant for the linear trends at the 95% significance level.
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Figure A4. STD maps of the UVA for three durations: the full observation period (A), the 1st decades 
(B), and the 2nd decades (C). The linear trends are illustrated in (D–F), respectively, corresponding 
to their different observation durations. The light gray dashed-line box indicates the EKB region, 
and the dark gray dashed-line box denotes the SPF region. Note that the areas marked “x” are not 
statistically significant for the linear trends at the 95% significance level. 

  

Figure A4. STD maps of the UVA for three durations: the full observation period (A), the 1st
decades (B), and the 2nd decades (C). The linear trends are illustrated in (D–F), respectively, corre-
sponding to their different observation durations. The light gray dashed-line box indicates the EKB
region, and the dark gray dashed-line box denotes the SPF region. Note that the areas marked “x”
are not statistically significant for the linear trends at the 95% significance level.
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Figure A5. ADCCA maps between the SSTA and UVA, in terms of different temporal ranges. 
ADCCA maps during the positive (rising) phase for (A) 1993–2023, (B) 1993–2008, and (C) 2008–
2023. ADCCA maps during the negative (falling) phase for (D) 1993–2023, (E) 1993–2008, and (F) 
2008–2023. All the cross-correlational Hurst exponents are statistically significant at the 95% 
significance level. Note that the white blanks indicate areas where the power-law scaling is not 
defined, and therefore the cross-correlational Hurst exponents are also not defined. Also, note that 
the solid black contour line indicates a Hurst exponent of 0.5, implying that there is a short-ranged 
or no cross-correlation. 

  

Figure A5. ADCCA maps between the SSTA and UVA, in terms of different temporal ranges. ADCCA
maps during the positive (rising) phase for (A) 1993–2023, (B) 1993–2008, and (C) 2008–2023. ADCCA
maps during the negative (falling) phase for (D) 1993–2023, (E) 1993–2008, and (F) 2008–2023. All the
cross-correlational Hurst exponents are statistically significant at the 95% significance level. Note
that the white blanks indicate areas where the power-law scaling is not defined, and therefore the
cross-correlational Hurst exponents are also not defined. Also, note that the solid black contour line
indicates a Hurst exponent of 0.5, implying that there is a short-ranged or no cross-correlation.
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white blanks indicate areas where the power-law scaling is not defined, and therefore the cross-
correlational Hurst exponents are also not defined. Also, note that the solid black contour line 
indicates a Hurst exponent of 0.5, implying that there is a short-ranged or no cross-correlation. 
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