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Abstract: Utilizing deep learning for semantic segmentation of cropland from remote sensing imagery
has become a crucial technique in land surveys. Cropland is highly heterogeneous and fragmented,
and existing methods often suffer from inaccurate boundary segmentation. This paper introduces a
UNet-like boundary-aware compensation model (BAFormer). Cropland boundaries typically exhibit
rapid transformations in pixel values and texture features, often appearing as high-frequency features
in remote sensing images. To enhance the recognition of these high-frequency features as represented
by cropland boundaries, the proposed BAFormer integrates a Feature Adaptive Mixer (FAM) and
develops a Depthwise Large Kernel Multi-Layer Perceptron model (DWLK-MLP) to enrich the global
and local cropland boundaries features separately. Specifically, FAM enhances the boundary-aware
method by adaptively acquiring high-frequency features through convolution and self-attention
advantages, while DWLK-MLP further supplements boundary position information using a large
receptive field. The efficacy of BAFormer has been evaluated on datasets including Vaihingen,
Potsdam, LoveDA, and Mapcup. It demonstrates high performance, achieving mIoU scores of 84.5%,
87.3%, 53.5%, and 83.1% on these datasets, respectively. Notably, BAFormer-T (lightweight model)
surpasses other lightweight models on the Vaihingen dataset with scores of 91.3% F1 and 84.1% mIoU.

Keywords: high-resolution remote sensing; convolutional neural network; vision transformer

1. Introduction

With the rapid development of remote sensing technology, finer and higher-resolution
optical remote sensing images can now be obtained [1]. Extracting cropland information
from these images is crucial for assessing food security and formulating agricultural
policies [2]. The mainstream approach involves using deep learning models for cropland
identification [3]. Although deep learning has achieved some results in cropland data
segmentation, the segmentation of cropland boundaries is still problematic due to the
highly heterogeneous and fragmented nature of cropland [4]. Specifically, the inaccuracy
of boundary segmentation is often caused by the misidentification of complex boundary
shapes and features, as shown in Figure 1. Addressing these inaccuracies requires urgently
enhancing the model’s capability to perceive edge features, thereby improving the accuracy
and reliability of segmentation results [5].

In recent years, many studies have proposed integrating semantic segmentation with
edge detection to better guide models in perceiving agricultural land information, thereby
enhancing local segmentation accuracy and preserving global morphological continuity.
Existing methods can be broadly categorized into three types: (1) Network-based ap-
proaches [6–15]: These methods design specific network architectures based on agricultural
features to direct the model’s attention to key characteristics. However, they often empha-
size specific geographical regions or single types of agricultural land, neglecting regional
variations between plots and failing to achieve universal applicability. (2) Feature-based
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approaches [16–24]: By augmenting the model with additional features, these approaches
enhance the representation and understanding of agricultural information. However, some
redundant feature representations not only increase computational burden but also do not
yield positive effects on the model. (3) Loss-based approaches [5,25–27]: These methods
introduce additional supervised training during the training process to impose strong con-
straints on boundaries. They strengthen segmentation constraints and optimize boundary
continuity. However, these methods often classify boundary pixels and internal pixels
into different categories, thereby to some extent compromising the consistency of identical
boundary pixels and the inter-class differences of different boundary pixels.

GTPre

GTPre

Inaccurate Edge

Recognition Error

  Difficulties  in  Remote  Sensing  Semantic  Segmentation

(a)

(b)

Figure 1. (a) Inaccurate edge issues. (b) Feature recognition error problems. Illustrates the differences
between Ground Truth (GT) and model Predictions (Pre) obtained from the Vaihingen and Potsdam
datasets, using prediction maps generated by UNetFormer.

To alleviate the issue of inaccurate boundary segmentation, we propose a UNet-like
boundary-aware compensation model called BAFormer. Unlike explicit boundary detec-
tion methods, we introduce an implicit boundary-aware approach that enhances semantic
contextual information while perceiving boundary features, comprehensively compensat-
ing in aspects of feature extraction, fusion, and constraint. (1) In feature extraction, we
introduce the Feature Adaptive Mixer (FAM) and Depthwise Large Kernel Multi-Layer
Perceptron (DWLK-MLP), significantly enhancing model information flow and expressive
capability. FAM leverages the advantages of convolution and self-attention to separate
high-frequency and low-frequency features of images, effectively extracting image de-
tails and global information while adaptively integrating frequency-based contributions.
DWLK-MLP enlarges the convolutional receptive field through depth-separable large ker-
nel convolutions, extracting more complete boundary features with minimal computational
cost. (2) In feature fusion, we propose a Relational Adaptive Feature (RAF) fusion strategy
based on spatial and channel semantic relationship perception. Unlike other static feature
fusion methods, this approach dynamically learns weights by modeling spatial and channel
relationships between shallow and deep feature maps. (3) In boundary constraint, we
propose an edge constraint strategy implemented in deep layers of the network. This strat-
egy guides the model to optimize boundaries from the bottom-up by extracting high-level
semantic information from images, without requiring additional auxiliary task overhead.

Overall, our main contributions are summarised as follows:

1. We propose the BAFormer framework for edge optimization. The framework compre-
hensively improves the quality of edge segmentation of the model in terms of feature
extraction, fusion, and constraints.
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2. We propose a Feature Adaptive Mixer (FAM), which adaptively extracts high-frequency
information represented by edges through the advantages of convolution and self-
attention, thereby enhancing the model’s information flow and expressive capability.

3. We propose a Depthwise Large Kernel Multi-Layer Perceptron (DWLK-MLP). The
boundary features are enriched with negligible computational overhead by deeply
decomposing the large kernel convolution.

4. We propose a Relational Adaptive Fusion (RAF) strategy, which optimizes feature
granularity by dynamically sensing the relationships between features from both
spatial and channel semantic perspectives.

5. We propose a deeply supervised edge constraint strategy. The boundary continuity
is strengthened by making the model automatically focus on the boundary through
deep semantic guidance.

2. Related Work
2.1. Methods Based on Network Design

Various methods have been proposed to set different network structures and modules
according to the cropland morphology to achieve better performance. (1) For the inherent
finite geometric transformations of convolutional neural networks, methods based on con-
volutional kernel design have been proposed, represented by the well-known dilated convo-
lution [28] and deformable convolution [6], which show excellent performance in complex
monitoring and segmentation tasks. These methods [10,15,29] can dynamically sense the
geometric features of objects to adapt to morphologically changing structures. For example,
the MDANet proposed in [6] was used to design a deformable attention module (DAM)
combining sparse spatial sampling strategy and long-range relational modeling capability
for capturing the domain structure information of each pixel to enable better adaptation to
the structure of HRSI images. (2) CNN-Transformer-based hybrid models [7–9,14,30,31],
designed to adequately learn diverse target features are proposed. For example, the ASNet
network proposed in ref. [7] innovatively integrates Transformer and CNN techniques in
a two-branch encoder to capture global dependencies while capturing local fine-grained
image features. In ref. [8], Swin-Transformer is embedded into a classical CNN-based UNet
to form a novel dual encoder architecture with Swin-Transformer and CNN in parallel to en-
hance the feature representation of occluded targets, which brings significant performance
improvement on the ISPRS-Vaihingen and Potsdam datasets. (3) Methods that combine
edge detection and semantic segmentation tasks [4,10–12] are proposed to guide the model
to strengthen the supervision constraint on the boundary. For example, the authors of [12]
designed frequency attention to topically emphasize key high-frequency components in the
feature map to improve the accuracy of boundary detection. The authors of [32] proposed a
multi-task joint network MDE-UNet for accurate segmentation by three-branch multi-task
learning of deterministic, fuzzy, and primitive boundaries. Inspired by this, this paper
designs the model in terms of network architecture as well as boundary guidance. Hybrid
model architectures are designed to fully capture complete boundary information. By en-
hancing boundary awareness and edge guidance, the model can dynamically focus on the
boundary information and automate the optimization during the network learning process.
Unlike many assisted boundary guidance approaches that use three segmentation masks
for post-processing, the proposed network is further enhanced in the feature extraction,
transmission fusion, and constraint guidance processes at the boundaries, resulting in a
more efficient and accurate boundary delineation workflow.

2.2. Methods Based on Feature Fusion

Feature fusion-based approaches [16–19,21–24,33] enhance the representation of crop-
land information by supplementing additional feature information to the model. Con-
sidering the difficulty in labeling the existing high-resolution remote sensing image sam-
ples, ref. [16] utilized the existing medium-resolution remote sensing images as a priori
knowledge to provide cross-scale relocatable samples for HR images, thus obtaining more



Remote Sens. 2024, 16, 2526 4 of 27

effective high-resolution farmland samples. To mitigate the loss of feature details due
to image downsampling and the interference caused by image noise, Ref. [18] proposed
to compensate for local image features and minimize noise by bootstrapping the feature
extraction module. Ref. [20] proposed a fully convolutional neural network HRNet-CRF
with improved contextual feature representation to optimize the initial semantic segmenta-
tion results by morphological post-processing methods to obtain internally homogeneous
farmland. Ref. [21] proposed a boundary-enhanced segmentation network, HBRNet, with
Swin-Transformer as the backbone of the pyramid hierarchy to obtain contextual infor-
mation while enhancing boundary details. Ref. [23] proposed a pyramid scene parsing
learning framework that combines high-level semantic feature extraction with low-level
texture feature deep mining. Ref. [33] proposed to encode parcel features by a Transformer
module and null convolution module, which operates on multi-scale features at the feature
extraction order, which in turn improves the ability to capture the details and boundaries
of farmland parcels. Different from the above-mentioned methods, this paper proposes an
adaptive fusion strategy based on the perception of spatial and channel semantic relations
to dynamically adjust the fusion of shallow and deep features from spatial and channel
perspectives, aiming to obtain finer-grained features.

2.3. Methods Based on Loss Function

Loss function-based methods [5,25–27,34], introduce a metric approach to comple-
ment strong constraints on morphological boundaries in the training process. SEANet [5]
proposes a multi-task loss that constrains irregular agricultural parcels from the mask
prediction, edge prediction, and distance map estimation tasks to improve the geometric
accuracy of the parcels circling. RBP-MTL [25] jointly models local spatial constraints
between each region, boundary, and object through multi-task learning to promote object
separability and boundary connectivity for agricultural parcels. Ref. [27] proposed a bound-
ary loss in the form of a distance metric on contour space instead of regions, showing that
boundary loss can yield significant performance gains while improving training stability.
ABL [26] proposed a new active boundary loss algorithm for semantic segmentation that
models the boundary alignment problem into a microdirectionally vectorizable prediction
problem by incrementally encouraging the alignment of predicted boundaries with the true
boundaries problem to improve boundary details. Ref. [34] proposed a new conditional
edge loss CBL for improving boundary segmentation, specifically by pulling each boundary
pixel closer to its unique local class center and pushing it away from its dissimilar neighbors
to enhance pixel intra-class consistency and inter-class variability, which in turn filters
out noisy and incorrect information to obtain accurate boundaries. However, these works
always classify boundary pixels and internal pixels into two different classes when optimiz-
ing the pixel-level boundary classification assistance task, which destroys the consistency
of the same class and the inter-class variability of different boundary pixels. In this paper,
we propose a deep constraint strategy, leveraging rich high-level semantic information in
the deep layers of the network to autonomously reinforce boundary constraints, without
introducing additional overhead from auxiliary tasks.

3. Methodology

This section will introduce the proposed BAFormer architecture and discuss and
analyze its key designs. These key designs include the Feature Adaptive Mixer (FAM), the
Depthwise Large Kernel Multi-Layer Perceptron (DWLK-MLP), the Relational Adaptive
Fusion (RAF) strategy, and the deeply supervised edge constraint strategy. The model
development is built upon the UNetFormer network [35], utilizing high-performance
auxiliary branches and referring to the structural design of the encoder and decoder.

3.1. CNN-Based Encoder

In the BAFormer model (as shown in Figure 2), we adopt the encoder design of UNet-
Former, using ResNet-18 at the encoder side as a shallow semantic extractor to effectively
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capture shallow features and reduce computational costs. ResNet-18 consists of four resid-
ual blocks capable of extracting shallow (high-frequency) semantic features. During feature
compression, the spatial resolution of each block is halved through downsampling, and the
number of channels used for extracting deep semantic information is doubled. Within each
block, skip connections are employed at the decoder side to link shallow semantic features
with their corresponding semantic levels.

Encoder
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Figure 2. An overview of the BAFormer model.

3.2. Transformer-Based Decoder

The decoder adopts the same block design as UNetFormer, achieving abstract feature
extraction and detail reconstruction of images by stacking four BABlock modules (as shown
in Figure 3) from bottom to top. To ensure high-quality image recovery, shallow information
is dynamically fused by the RAF module before each BABlock.

3.2.1. FAM (Feature Adaptive Mixer)

A Convolutional Neural Network (CNN) acts as a high-pass filter that can extract
locally salient high-frequency information such as texture and detail [36]. The self-attention
mechanism is a relatively low-pass filter that can extract salient low-frequency information
such as global and smooth [37]. Although the traditional pure convolution-based methods
can effectively extract rich high-frequency features, they are unable to capture the spatial
contextual information of the image. In contrast, methods based on purely self-attentive
mechanisms tend to extract only the low-frequency information of the image, and also suffer
from computational complexity and poor model generalization. Therefore, determining
how to give full play to the advantages of these two computational paradigms has become a
bottleneck for further breakthroughs in model feature extraction capability. From the ideas
of information distillation and frequency mixing in image super-resolution reconstruction,
we can obtain some insights. By mixing low-frequency features and high-frequency features,
the model’s information flow and expression ability can be effectively enhanced [38,39].
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Figure 3. The structure of BABlock. (a) represents the block structure in Swin-Transformer, and
(b) represents the BABlock structure in BAFormer.

To enhance the accuracy of boundary identification, we propose a module called FAM.
This method captures more accurate boundary features by enhancing the information flow
and expressiveness of the model. It not only solves the single-scale feature problem, but also
incorporates the idea of multi-branch structure to filter out important features from rich se-
mantic information. Specifically, FAM includes three main parts: high-frequency branching,
low-frequency branching, and adaptive fusion, as shown in Figure 4. It aims to separate
high-frequency features and low-frequency features in an image to capture local and global
information of the image through the respective advantages of convolutional neural net-
work and self-attention, and adaptively selects the fusion according to the contribution
of channel fusion. Unlike traditional hybrid methods, we innovatively combine the high-
frequency static affinity matrix extracted by convolution with the dynamic low-frequency
affinity matrix obtained based on self-attention, which enhances self-attention’s ability
to comprehensively capture high-frequency and low-frequency information and feature
generalization. In addition, for the characteristics of these two computational paradigms,
we carry out adaptive feature selection for multi-frequency mixing in the spatial domain,
which can dynamically adjust the fusion effect according to the feature contribution.

The high-frequency branch is a simple and efficient module whose main function
is to obtain local high-frequency features. Considering that high-frequency information
can be obtained by a small convolutional kernel, we obtain local high-frequency feature
information by concatenating 1 × 1 and 3 × 3 regular convolutions [40]. To enhance the
learning and generalization ability of self-attention, we designed it to introduce the obtained
high-frequency affinity matrix into the low-frequency affinity matrix, which is used to
compensate for the lack of feature information of self-attention due to linear modeling. Let
Fi ∈ RC×H×W denote the input feature map, with H = W by default. After confirming
the 2D feature map through identity, the size remains unchanged following standard
convolutions of kernel sizes 1 and 3. The formulas for generating the high-frequency
feature Fh and the high-frequency affinity matrix Fhm are as follows:

Fc1 = C1(Fi), Fh = Fc2 = C2(Fc1) (1)

Fhm = Φ(Fc1 ⊗ Fc2
T) (2)
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where ⊗ represents matrix multiplication, Φ represents the operation of partitioning ac-
cording to a predefined window size N, T denotes matrix transpose, C1 represents a 1 × 1
convolutional operator, C2 represents a 3 × 3 convolutional operator, Fc1, Fc2, Fh ∈ RC×H×W ,

and Fhm ∈ R(
H
N ×W

N ×C)×N×N .

transpose

Feature

Query

Key

Value

Conv 
1x1

Conv 
3x3

1
D

2
D

NxN

NxN

Low 
Frequency

cross
window

BN High 
Frequency

Max
Pool

Average
Pool
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Mixer
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High 
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transpose

FAM consists of three modules: High Frequency, Low Frequency and Adaptive Fusion.

reshape

Figure 4. The structure of the Feature Adaptive Mixer (FAM) is as follows: 2D refers to a two-
dimensional image, and 1D denotes a sequence stretched to one dimension. BN stands for Batch
Normalization. High-Attn represents the attention weight score attributed to high-frequency features
in the mixed information flow, while Low-Attn represents the attention weight score attributed to
low-frequency features in the mixed information flow. Both dimensions are denoted as HxW.

The low-frequency branch plays a pivotal role in capturing global contextual relation-
ships, primarily through a multi-head self-attention mechanism [41]. Initially, the method
expands the input feature map Fi ∈ RC×H×W by a factor of three along the channel dimen-
sion using standard 1 × 1 convolution. Subsequently, the 2D feature map is partitioned into

windows of size N × N and flattened into a 1D sequence ∈ R3×( H
N ×W

N ×h)×(N×N)× C
h with

adjusted dimensions considering the number of heads and channels, where N denotes the
window size and h represents the number of heads. This sequence is then decomposed

into Query (Q), Key (K), and Value (V) feature vectors ∈ R(
H
N ×W

N ×h)×(N×N)× C
h . During

the self-attention computation, a learnable positional encoding (PE) is introduced to en-
code positional information of the image sequence. The resultant low-frequency affinity
matrix Flm, which is derived from multi-head self-attention, is then combined with the
high-frequency affinity matrix Fhm to produce a blended affinity matrix Fmm. After applying
softmax normalization to Fmm, a matrix multiplication with V produces the low-frequency
feature map Fl . The formula is described as follows:

Flm = Q ⊗ KT (3)

Fmm = Fhm ⊕ Flm (4)

Fl = So f tmax
(

Fmm√
d
+ PE

)
⊗ V (5)

where ⊕ denotes element-wise addition, So f tmax represents the normalization activation

function, Flm, Fmm ∈ R(
H
N ×W

N ×C)×N×N , where N is the window size, PE is the learnable
positional encoding of window size, d is a constant, and Fl ∈ RC×H×W .

High-low frequency adaptive fusion is a fusion mechanism built on spatial feature
mapping. Inspired by the feature rescaling of SK-Net [42], the weights of the contribution
values of the hybrid channel occupied by high-frequency features and low-frequency
features are learned by designing different pooling methods, so that the network can
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select a more appropriate multi-scale feature representation. Specifically, the obtained
high-frequency feature Fh ∈ RC×H×W and low-frequency feature Fl ∈ RC×H×W are directly
fused together to obtain the mixed feature Fm ∈ RC×H×W . Then, the maximum pooling
and average pooling are performed on this mixed feature to obtain the high-frequency
attention feature map Ah ∈ RH×W and low-frequency attention feature map Al ∈ RH×W ,
respectively. The two spectral features are connected at the channel level, and the standard
convolution smoothing filter with a size of 7 × 7 is applied to obtain A ∈ R2×H×W . After
Sigmoid activation in the fusion dimension, the high-frequency attention feature map
Âh ∈ RH×W and low-frequency attention feature map Âl ∈ RH×W are obtained, and they
are individually weighted by element-wise multiplication on the Fh and Fl . Finally, the
weighted feature map results are added together to obtain the output result of the adaptive
fusion, Fo ∈ RC×H×W . The relevant formulas are as follows:

Fm = Fh ⊕ Fl (6)

Ah = MaxPool(Fm), Al = AvgPool(Fm) (7)

A = F7×7
Conv(Concat(Ah, Al)) (8)

Âh, Âl = Sigmoid(A, dim = 0) (9)

Fo =
(

Fh ⊙ Âh
)
⊕

(
Fl ⊙ Âl

)
(10)

where
⊙

represents matrix element-wise multiplication, MaxPool denotes global maximum
pooling, AvgPool denotes global average pooling, Concat denotes channel-level splicing,
Sigmoid denotes the activation function, and F7×7

Conv denotes convolution with a kernel size
of 7 × 7.

3.2.2. RAF (Relational Adaptive Fusion)

To obtain richer boundary features, fusing feature maps of different scales is consid-
ered to be an effective method to improve image effects [43]. Currently, the commonly used
fusion methods include spatial numerical summation and channel dimensional splicing.
However, shallow and deep features in the network do not play the same contribution in
feature fusion. Generally, the shallow features have larger values and the deeper features
in the network have smaller values, leading to differences in their spatial contributions. In
addition, since shallow and deep features contain different semantic information, there is
also some semantic confusion in the channel dimension. Determining how to improve the
effect of feature fusion has become a new thinking direction to optimize network perfor-
mance. Inspired by the perceptual fusion of shallow and deep branches in ISDNet [44],
we propose a dynamic fusion strategy (RAF) based on relational perception. This module
obtains more complete boundary information by improving the feature granularity, and its
detailed structure is shown in Figure 5.

Unlike other multi-scale static fusion methods, RAF can adaptively adjust the fusion of
shallow and deep features according to the network task requirements and data character-
istics by explicitly modeling the spatial and channel dependencies between features. While
ensuring deep semantic transformation, it can fully use shallow features to achieve higher-
quality feature reconstruction. Specifically, this method first models the spatial numerical
differences between shallow-layer features and deep-layer features through global average
pooling to learn spatial weighting factors. Then, matrix multiplication is performed under
the feature mapping of spatial modeling to obtain the channel relationship matrix. By
flattening the relationship matrix and compressing the features, channel weighting factors
are obtained. Finally, the spatial weighting factors and channel weighting factors obtained
are separately weighted and fused.
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Figure 5. Illustration of the Relational Adaptive Fusion (RAF) module. GAP stands for Global
Average Pooling and MLP stands for Multi-Layer Perceptron variation. Blue and orange represent
the feature maps of the shallow and deep layers of the network, respectively.

Given the shallow feature map Fs ∈ RC×Hs×Ws and the deep feature map
Fd ∈ RC×Hd×Wd where Hs ̸= Hd and Ws ̸= Wd. In the first step, RAF aligns the height
and width of the deep feature map with those of the shallow feature map. By explicitly
extracting feature information, two one-dimensional attention vectors Ps and Pd ∈ RC

containing their respective channel information are obtained. The following formulas can
represent this:

Ps = GAP(Fs), Pd = GAP(Up(Fd)) (11)

where GAP denotes Global Average Pooling and Up denotes spatially sampled twice. In
the second step, spatial and channel dependencies are modeled sequentially. The two one-
dimensional attention vectors Ps and Pd undergo global average pooling to derive spatial
relationship weight factors Sws and Swd, expressed as follows in the following Equation:

Sws = GAP(Ps), Swd = GAP(Pd). (12)

When modeling channel dependencies, considering the semantic differences between
channels, the two one-dimensional attention vectors Ps and Pd are compressed to a length
of r using perceptrons to reduce semantic errors, resulting in two contraction vectors Psr
and Pdr ∈ Rr, where r is typically much smaller than C. Subsequently, based on these
two contraction vectors, a channel correlation matrix R ∈ Rr×r is obtained through matrix
multiplication. This correlation matrix is then flattened and mapped through multiple
perceptron layers to generate a channel weight factor consisting of only two numerical
values, Cws and Cwd, as shown in the following formula:

R = Psr ⊗ PT
dr, Cws, Cwd = $

(
FLATTEN(R)

)
(13)

where ⊗ denotes matrix multiplication, R represents the channel relationship matrix,
FLATTEN denotes the flattening operation, and $ denotes a Multi-Layer Perceptron that
maps a one-dimensional vector to two channel weighting factors. In the third step, the
obtained weight values are separately weighted and fused. The spatial weight factors Sws
and Swd from the shallow feature map Fs and deep feature map Fd, along with the channel
weight factors Cws and Cwd, are summed individually. After applying a softmax operation,
they yield weighted values Ws and Wd. These are then dot-multiplied with Fs and Fd,
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respectively, and added together to form the final fused feature map Fra f ∈ RC×Hs×Ws . The
formula is as follows:

Ws, Wd = SOFTMAX(Sws + Cws, Swd + Cwd) (14)

Fra f = (Ws · Fs + Fs) + (Wd · Fd + Fd). (15)

3.2.3. DWLK-MLP (Depthwise Large Kernel Multi-Layer Perceptron)

Enhancing the convolutional perceptual field is an effective means to improve semantic
segmentation [45]. Recent studies have shown that the introduction of DW convolution
into MLP (Multi-Layer Perceptron) can effectively integrate the properties of self-attention
and convolution, thus enhancing the generalization ability of the model [46]. Compared
to ordinary MLP [41], DW-MLP [47] with a residual structure introduces a 3 × 3-sized
DW convolution into the hidden layer. This approach is effective in aggregating local
information, mitigating the effects of the self-attention paradigm, and improving the
generalization ability of the model. However, due to the large number of channels in
the hidden layer, a single-scale convolution kernel cannot effectively transform channel
information with rich scale features. To solve this problem, a multi-scale feedforward
neural network MS-MLP [48] has been proposed. It used DW convolution with kernel
size [1, 3, 5, 7] to capture multi-scale features. In this way, the performance of the model is
enhanced to some extent. However, just using MLP to transform the multi-scale features
further to enhance the generalization of the model is limited as it also undertakes the
important task of extracting the feature maps for higher-level combination and abstraction.

To further improve the completeness of boundary features, we propose the simple
and effective DWLK-MLP module as shown in Figure 6. This module increases the con-
volutional receptive field by deeply separating the large kernel convolutions, and more
complete boundaries can be extracted with almost no computational overhead. Unlike
other methods, DWLK-MLP introduces the idea of large kernel convolution, which can take
on more advanced abstract feature extraction tasks by creating a large kernel receptive field.
Specifically, we introduce a depthwise large kernel convolution of 23 × 23 size in front
of the activation function. The final result is obtained by summing up the initial feature
map with the feature map after the large kernel convolution using jump concatenation.
To reduce the number of parameters and computational complexity, we use two depth
convolution sequences of 5 × 5 and 7 × 7 for decomposition. This approach exploits
the lightweight nature of the depth-separable computational paradigm and promotes the
fusion of self-attention and convolution to improve network generalization. Numerous ex-
periments have demonstrated that the introduction of depthwise large kernel convolution
before the activation function improves the accuracy and robustness of image recognition
more than after the activation function.

1x1 Conv

GELU

1x1 Conv

3x3 
DWConv

1x1 Conv

GELU

1x1 Conv

MultiScale
DWConv 1X1 3X3 5X5 7x7

(b) DW-MLP (c)  MS-MLP (d) DWLK-MLP(Ours)

1x1 Conv

DWLSK

1x1 Conv

GELU

5x5 Conv

7x7 Conv

1x1 Conv

1x1 Conv

23x23

1x1 Conv

GELU

1x1 Conv

(a) MLP

Figure 6. (a) Plain MLP that processes only cross-channel information. (b) Depthwise residuals
for aggregating local tokens, DW-MLP. (c) Depthwise residuals for aggregating multi-scale tokens,
MS-MLP. (d) Our proposed depthwise large kernel, DWLK-MLP.



Remote Sens. 2024, 16, 2526 11 of 27

3.2.4. Edge Constraint with Deep Supervision

The deeper the network layers, the richer the high-level semantic information [49].
By visualizing the layers of the network, we find that shallow feature maps are relatively
detailed and highlight local features, while deep feature maps are relatively smooth and
highlight global features. To optimize edge detail, we propose an edge constraint strategy
using deep supervision at the deeper layers of the network. Unlike other shallow constraint
methods, our proposed method starts guiding the model to automatically focus on the
boundary features at the deep layer of the network and further consolidates the correct
boundary information during the up-sampling process. Specifically, we extract the same
number of channels as the number of categories at the deepest feature layer of the model
encoder, with the same scale labels applied to the edge cross-entropy constraints to perform
the supervision. The method significantly improves 0.5% mIoU on the Vaihingen dataset,
enhancing edge supervision effectively with negligible computational overhead and no
increase in model parameters. The deep edge constraint can be formulated as follows:

y = δ(Fdf) (16)

Ledge = − 1
S

S

∑
s=1

P

∑
p=1

y(s)p ∗ log(ŷ(s)p ) (17)

where Fdf is the deepest feature map of the network, δ denotes the number of channels
corresponding to the number of classes of this feature map, and Ledge refers to the cross-
entropy constraint with the labels.

3.3. Loss Function

The model primarily utilizes Cross-Entropy Loss (Lce) and Dice Loss (Ldice). The main
segmentation loss Lmain integrates these two in a joint form. To enhance segmentation
performance for multi-scale targets, we introduce Cross-Entropy Loss as an auxiliary
constraint Laux in intermediate layers. Innovatively, we introduce deep supervision edge
constraint Ledge to guide the model’s focus on boundaries from deep layers. Importantly,
Laux and Ledge only operate during training to avoid inference speed impact. In summary,
the total loss L of the model is the sum of Lmain, Laux, and Ledge, formulated as follows:

Lce = − 1
N

N

∑
n=1

K

∑
k=1

y(n)k log
(

ŷ(n)k

)
(18)

Ldice = 1 − 2
N

N

∑
n=1

K

∑
k=1

y(n)k ŷ(n)k

y(n)k + ŷ(n)k

(19)

Lmain = Lce + Ldice, Laux = Lce (20)

L = Lmain + Laux + Ledge (21)

where N represents the number of samples, and K represents the number of categories.
y(n)k represents the one-hot encoding of the k-th semantic label in the n-th sample, while

ŷ(n)k represents the confidence level of predicting category k in the n-th sample.

4. Experiments

We conducted extensive experiments to compare the performance of BAFormer with
other advanced segmentation models, validating our model’s effectiveness from multiple
perspectives. Specifically, we evaluated the model on public datasets Vaihingen, Potsdam,
and LoveDA, along with our custom Mapcup dataset, to verify its capability in general
farmland extraction. Additionally, we performed numerous ablation studies to rigorously
demonstrate the scientific foundation of our module’s components and parameter settings.
In comparison with other methods, accuracy indicators are typically obtained from cited
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literature by default, and results obtained by ourselves are denoted with a # symbol, as
specified in each table.

4.1. Experimental Setup
4.1.1. Dataset

Vaihingen: The dataset consists of 33 top-view image patches with a very fine spatial
resolution, with an average size of 2494 × 2064 pixels. Each image patch contains three
multi-spectral bands (near-infrared, red, green), as well as a Digital Surface Model (DSM)
and Normalized Digital Surface Model (NDSM) with a ground sampling distance of
9 centimeters (GSD). The dataset includes five foreground classes (impervious surfaces,
buildings, low vegetation, trees, and cars) and one background class (clutter). For the
specific experiments, we utilized ID: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, 38
for testing, ID: 30 for validation, and the remaining 15 images for training.

Potsdam: The dataset comprises 38 top-view image blocks with an extremely high
spatial resolution, a ground sampling distance of 5 centimeters, and an image size of
6000 × 6000 pixels. Similar to the Vaihingen dataset, it covers the same class information.
Each image block provides four multi-spectral bands (red, green, blue, and near-infrared),
as well as a Digital Surface Model (DSM) and Normalized Digital Surface Model (NDSM).
For the experiment, we selected image blocks with the ID: 2_13, 2_14, 3_13, 3_14, 4_13, 4_14,
4_15, 5_13, 5_14, 5_15, 6 _13, 6_14, 6_15, and 7_13 for testing, and used the image block
with ID: 2_10 for validation. The remaining 22 image blocks (excluding image block 7_10
due to incorrect annotation) were used for training. Only three bands (red, green, and blue)
and the original images were utilized during the processing.

LoveDA: The dataset [50] is a collection of 5987 optical remote sensing images, with
each image having a resolution of 1024 × 1024 pixels and a ground sampling distance of
0.3 m. The dataset covers seven different land cover classes, including buildings, roads,
water, barren land, forests, agriculture, and background. In the entire dataset, there
are 2522 images for training, 1669 images for validation, and an additional 1796 images
provided by the official dataset for testing. These images were captured from urban and
rural scenes in three cities in China (Nanjing, Changzhou, and Wuhan).

Mapcup: This dataset was annotated and provided by the Key Laboratory of Farmland
Resources Monitoring and Protection of Sichuan Agricultural University. It includes a
total of 507 high-resolution cropland images, each with a resolution of 1024 × 1024 pixels.
The ground sampling distance of the images is 0.6 meters. The dataset covers two classes:
cropland and non-cropland, accounting for 60.4% and 39.6% of the dataset, respectively.
The dataset is divided into three parts: a training set, a validation set, and a test set.
There are 373 images for training, and the remaining 134 are for validation and testing.
Additionally, there is an unlabeled area of 21,433 × 27,976 pixels which, after cropping,
resulted in 1160 images used for mapping inference. These images are from the Northern
Plains region and are finely annotated. They exhibit significant characteristics such as
complex scenes, multi-scale objects, and class imbalance, posing considerable challenges
for tasks involving high-resolution remote sensing image farmland extraction.

4.1.2. Implementation Details

The experiment referenced the dataset processing and parameter settings of UNet-
Former, conducted using the PyTorch framework on a single Nvidia GTX 3090 GPU. The
encoder utilized pre-trained weights from the timm library’s ResNet-18 to accelerate train-
ing through transfer learning. An AdamW optimizer with a base learning rate of 6 × 10−4

and weight decay of 0.01 was employed, complemented by a cosine learning rate scheduler
for improving convergence speed.
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During the data preprocessing stage, we handled each dataset separately. For the
Vaihingen dataset, due to insufficient samples, we performed sliding window cropping of
images into patches of 1024 × 1024 pixels with a sliding step of 512 pixels. For the Potsdam
dataset, we also used 1024 × 1024 pixel patches with a sliding step of 1024 pixels. For the
LoveDA dataset, we merged the training and validation datasets and treated them together
as the training set. The Mapcup dataset, having undergone meticulous refinement, required
no further processing. Additionally, to expedite model training, RGB labels were converted
into the one-hot encoded format.

During model training, multiple data augmentation techniques were applied to the
Vaihingen, Potsdam, LoveDA, and Mapcup datasets. These included Gaussian blur, ran-
dom scaling factors [0.5, 0.75, 1.0, 1.25, 1.5], random horizontal and vertical flips, as well
as random adjustments to brightness and contrast. Specific parameter settings referenced
the experimental setup of UNetFormer. Vaihingen training was set to 105 epochs, and the
batch size for training and validation was set to 4; Potsdam training was set to 45 epochs,
and the batch size for training and validation was set to 4; LoveDA training was set to
35 epochs, and the batch size for training and validation process was set to 16; Mapcup
was trained for 35 epochs, and the batch size of the training and validation process was set
to 4. Moreover, all ablation and discussion experiments used identical configuration files
and training strategies on the datasets to ensure fair and effective results. When comparing
with other methods, default parameters of the original methods were adopted, with no
changes to the data augmentation techniques.

4.1.3. Evaluation Indicators

The overall evaluation of the model follows the ISPRS benchmark. To assess the
model’s effectiveness, we employed IoU, OA, F1-score, and Boundary IoU [51]. Among
these, IoU is the most common and important evaluation metric, providing an intuitive
reflection of the model’s ability to separate foreground and background. A higher IoU
value indicates more accurate segmentation results. Here, we define TP as true positives,
TN as true negatives, FP as false positives, and FN as false negatives. According to these
definitions, the relevant formulas are expressed as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 = 2 × Precision × Recall
Precision + Recall

(22)

IoU =
TP

TP + FP + FN
, OA =

TP + TN
TP + TN + FP + FN

. (23)

To measure the effectiveness of boundary segmentation, we introduced the Boundary
IoU metric, which evaluates the quality of edge segmentation by measuring the intersection
over union (IoU) between predicted and ground truth boundaries. Here, we define G as
the ground truth binary mask, P as the predicted binary mask, Gd, and Pd as sets of pixels
on the boundary of these masks. This is expressed with the following formula:

Boundary IoU =
|(Gd ∩ G) ∩ (Pd ∩ P)|
|(Gd ∩ G) ∪ (Pd ∩ P)| . (24)

4.2. Experimental Results
4.2.1. Results on Vaihingen Dataset

To validate the effectiveness of the proposed method, extensive comparative exper-
iments were conducted. Quantitative comparisons were made on the ISPRS Vaihingen
dataset against state-of-the-art models, as shown in Table 1. We compared classic semantic
segmentation algorithms such as FCN [52] and DeepLabV3+ [53], as well as advanced CNN-
encoder-based algorithms including MAResU-Net [54], ABCNet [55], BANet [56], UNet-
Formor [35], and MANet [57]. Additionally, we compared advanced large models based on
Transformer-encoder, namely DC-Swin [58], Mask2Former [59], and FT-UNetformer [35].
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The experimental results demonstrate that BAFormer achieved outstanding segmentation
performance on the Vaihingen dataset, achieving 91.5% MeanF1, 91.8% OA, and 84.5%
mIoU. Compared to advanced models using ResNet-18 blocks as encoders, BAFormer
outperformed UNetFormer by 1.8% mIoU. Even when compared to large models based on
Swin encoders, the proposed lightweight model BAFormer-T surpassed the performance
of FT-UNetformer, yielding satisfactory results. Notably, the method achieved a score of
91.2% in the “car” class, surpassing most advanced models by approximately 1–2%. This
improvement can be attributed to DWLK-MLP, which facilitates the fusion of convolution
and self-attention, enhancing the capture of boundary information through a large receptive
field, thereby improving the accuracy of small object recognition.

Table 1. Quantitative comparisons with existing methods were performed on the Vaihingen dataset.
The best values in each column are shown in bold.

Method Backbone
Per-Class F1 (%)

MeanF1 (%) OA (%) mIoU (%)
Imp.surf Building Low.veg Tree Car

FCN [52] VGG-16 88.2 93.0 81.5 83.6 75.4 84.3 87.0 74.2
DeepLabv3+ [53] ResNet-50 88.0 94.2 81.3 87.8 78.1 85.9 88.9 76.3
MAREsU-Net [54] ResNet-18 92.0 95.0 83.7 89.3 78.3 87.7 89.7 78.6
ABCNet [55] ResNet-18 92.7 95.2 84.5 89.7 85.3 89.5 90.7 81.3
BANet [56] ResT-Lite 92.2 95.2 83.8 89.9 86.8 89.6 90.5 81.4
UNetFormer [35] ResNet-18 92.7 95.3 84.9 90.6 88.5 90.4 91.0 82.7
MANet [57] ResNet-50 93.0 95.5 84.6 90.0 89.0 90.4 91.0 82.7
Mask2Former [59] Swin-B 92.9 94.5 85.3 90.4 88.5 90.3 90.8 83.0
DC-Swin [58] Swin-S 93.6 96.2 85.8 90.4 87.6 90.7 91.6 83.2
FT-UNetFormer [35] Swin-B 93.5 96.0 85.6 90.8 90.4 91.3 91.6 84.1
BAFormer-T ResNet-18 93.7 95.7 85.4 90.2 91.0 91.2 91.6 84.2
BAFormer ResNet-18 93.7 96.0 85.7 90.9 91.2 91.5 91.8 84.5

The qualitative comparisons of the ISPRS Vaihingen test set are shown in Figure 7.
We selected three representative instances to evaluate the effectiveness of our model, high-
lighting specific areas of interest with black dashed boxes. In the first row of results, three
buildings with distinct shadows, similar colors, and textures to low-level vegetation exhibit
significant inter-class similarity. Convolution-based semantic segmentation methods like
BANet and UNetFormer misclassified this building area as low-level vegetation, whereas
our model made accurate predictions. This demonstrates that our BAFormer method
effectively learns global spatial context relationships, capturing inter-class differences be-
yond local color and texture features. In the second row of results, debris on an opaque
foreground road shows notable texture and shape differences compared to surrounding
roads, indicating substantial intra-class variability. Other models misclassified most of
this debris area as “Imp.surf”, whereas our BAFormer accurately extracted interactive
representations between foreground and background for correct classification. This interac-
tion highlights the importance of foreground-background class balance in remote sensing
semantic segmentation, a critical issue previous methods have not adequately addressed.
In the third row of results, within a complex area surrounded by low-level vegetation,
sensor imaging, and image processing led to significant category distortions beyond human
visual recognition. Our proposed method achieved results closest to ground truth labels,
capturing more precise boundary details.

Overall, our BAFormer method effectively learns global contextual correlations, com-
prehensively extracts inter-class differences and intra-class variabilities, models dependen-
cies between foreground and background, and generates segmentation maps with higher
accuracy and richer details.
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Figure 7. Qualitative comparisons under ISPRS Vaihaigen (top) and ISPRS Postdam (bottom) test
sets. We add some black dotted boxes to highlight the differences to facilitate model comparisons.

4.2.2. Results on Potsdam Dataset

On the ISPRS Potsdam test set, we conducted quantitative comparisons with state-
of-the-art models, as presented in Table 2. We evaluated prominent methods including
FCN [52], DeepLabV3+ [53], MAResU-Net [54], ABCNet [55], BANet [56], UNetFormor [35],
MANet [57], Mask2Former [59], SwinTF-FPN [60], and FT-UNetFormer [35]. Our proposed
BAFormer achieved significant scores on this dataset: 87.3% mIoU, 93.2% F1, and 92.2% OA,
surpassing the state-of-the-art Mask2Former and FT-UNetFormer models in large-scale
semantic segmentation. Notably, it achieved the highest precision in easily discernible
categories such as “Car” and “ Building”, surpassing other convolution-based advanced
models by 1–2% in F1. These results underscore our method’s superior feature recognition
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capabilities for both small- and large-scale geographical features. Additionally, BAFormer
also demonstrated the highest accuracy in the most challenging category “Low.veg”, further
validating its robust feature learning and representation abilities.

Table 2. The Potsdam dataset was quantitatively compared with existing methods. The best values in
each column are shown in bold. ‘#’ signifies results obtained by us, while other results are copied
from the original paper.

Method Backbone
Per-Class F1 (%)

MeanF1 (%) OA (%) mIoU (%)
Imp.surf Building Low.veg Tree Car

FCN [52] VGG-16 88.5 89.9 78.3 85.4 88.8 86.2 86.6 78.5
DeepLabv3+ [53] ResNet-50 90.4 90.7 80.2 86.8 90.4 87.7 87.9 80.6
MAREsU-Net [54] ResNet-18 91.4 85.6 85.8 86.6 93.3 88.5 89.0 83.9
BANet [56] ResT-Lite 93.3 95.7 87.4 89.1 96.0 92.3 91.0 85.3
ABCNet [55] ResNet-18 93.5 95.9 87.9 89.1 95.8 92.4 91.3 85.5
SwinTF-FPN [60] Swin-S 93.3 96.8 87.8 88.8 95.0 92.3 91.1 85.9
UNetFormer # [35] ResNet-18 93.6 96.8 87.7 88.9 95.8 92.6 91.3 86.0
MANet [57] ResNet-50 93.4 96.7 88.3 89.3 96.5 92.8 91.3 86.4
Mask2Former [59] Swin-B 98.0 96.9 88.4 90.7 84.6 91.7 92.5 86.6
FT-UNetFormer # [35] Swin-B 93.5 97.2 88.4 89.6 96.6 93.2 91.6 87.0
BAFormer-T ResNet-18 93.5 96.8 88.2 89.2 96.4 92.8 91.3 86.4
BAFormer ResNet-18 93.7 97.3 88.5 89.7 96.8 93.2 92.2 87.3

Similarly, qualitative experimental comparisons were conducted on the ISPRS Potsdam
test set, and localized visualization results are depicted in Figure 7. We selected three
representative samples for qualitative analysis. As shown in the results of the fourth
row, the central area of a building complex includes an opaque water surface (plaza),
posing challenges in visually distinguishing between building structures, opaque water,
or background. Other models either misclassify it as background or predict rough, blurry
boundaries. In contrast, our proposed BAFormer achieved satisfactory segmentation results,
closely approaching the ground truth. This outcome highlights our method’s capability
to understand long-range spatial contextual dependencies. In the fifth row of results,
within the dashed box surrounding buildings, there is a ring of blurry noise, indicating
intra-class abrupt changes in the background category. Other models erroneously classify
such intra-class changes as part of the building structure, whereas only our BAFormer
effectively identifies these anomalous intra-class samples and makes accurate predictions.
The sixth row of results reveals discrete low-level vegetation and trees within the dashed
box, showing significant yet subtle differences. BAFormer uniquely captures inter-class
disparities, resulting in more precise edge detection.

In summary, BAFormer extracts richer global-local detail features, thereby achieving
more accurate visual results across various scenarios.

4.2.3. Results on LoveDA Dataset

To further assess the effectiveness of the model, extensive comparative experiments
were conducted on the LoveDA dataset, involving comprehensive evaluations in both
quantitative and qualitative aspects. Quantitative results are presented in Table 3, and
qualitative assessments are depicted in Figure 8. In our experiments, we compared our
proposed BAFormer with state-of-the-art models including FCN [52], DeepLabV3+ [53],
SemanticFPN [61], FarctSeg [62], TransUNet [63], BANet [56], UNetFormer [35], SwinUper-
Net [41], DC-Swin [58], and MaskFormer [64]. From the experimental results, BAFormer
achieved the highest mIoU of 53.5%, surpassing the advanced UNetFormer model by
1.1% mIoU and outperforming the Transformer-encoder based MaskFormer by 2.7% mIoU.
It demonstrated strong segmentation performance in prominent terrain features such as
“Road”, “Water”, and “Forest” classes. However, recognition in complex and variable
non-prominent terrain classes such as “Background” and “Barren” was less satisfactory.
This observation indicates that our proposed method enhances learning and discrimination
capabilities for prominent features but shows some limitations compared to MaskFormer
in handling complex non-prominent features using mask-based processing.
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Table 3. Quantitative comparisons were made between our method and existing methods on the
LoveDA dataset. The best values in each column are shown in bold.

Method Backbone
Per-Class IoU (%)

mIoU (%)
Background Building Road Water Barren Forest Agriculture

FCN [52] VGG-16 42.6 49.5 48.1 73.1 11.8 43.5 58.3 46.7
DeepLabv3+ [53] ResNet-50 43.0 50.9 52.0 74.4 10.4 44.2 58.5 47.6
SemanticFPN [61] ResNet-50 42.9 51.5 53.4 74.7 11.2 44.6 58.7 48.2
FarctSeg [62] ResNet-50 42.6 53.6 52.8 76.9 16.2 42.9 57.5 48.9
TransUNet [63] Vit-R50 43.3 56.1 53.7 78.0 9.3 44.9 56.9 48.9
BANet [56] ResT-Lite 43.7 51.5 51.1 76.9 16.6 44.9 62.5 49.6
SwinUperNet [41] Swin-Tiny 43.3 54.3 54.3 78.7 14.9 45.3 59.6 50.1
DC-Swin [58] Swin-Tiny 41.3 54.5 56.2 78.1 14.5 47.2 62.4 50.6
MaskFormer [64] Swin-Base 52.5 60.4 56.0 65.9 27.7 38.8 54.3 50.8
UNetFormer [35] ResNet-18 44.7 58.8 54.9 79.6 20.1 46.0 62.5 52.4
BAFormer-T ResNet-18 45.9 57.9 58.2 79.0 19.0 47.3 61.4 52.7
BAFormer ResNet-18 44.9 60.6 58.6 80.4 21.3 47.5 61.5 53.5

Background Building Road Water Barren Forest Agriculture

GT

BANet

DCSwin

UNetFormer

BAFormer

Image

Figure 8. Qualitative comparisons with different methods on the LoveDA validation set. We add
some dotted boxes to highlight the differences to facilitate model comparisons.
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4.2.4. Results on Mapcup Dataset

In order to evaluate the effectiveness of the models for segmentation in real produc-
tion environments, we further conducted experimental tests on a homemade Mapcup
dataset, and the quantitative results are shown in Table 4. In this experiment, we com-
pared several excellent state-of-the-art models, including FCN [52], DeepLabV3+ [53],
A2FPN [65], ABCNet [55], MANet [57], BANet [56], DC-Swin [58], UNetFormer [35], and
FT-UNetFormer [35]. From the experimental results, BAFormer achieves satisfactory results,
obtaining 90.7% F1, 90.8% OA, and 83.1% mIoU, which are attributed to the model’s hybrid
extraction and selection of high-frequency features and low-frequency features. Especially
in the segmentation of the “Cropland” category, BAFormer demonstrated significantly
improved representation capability. Compared to the state-of-the-art UNetFormer model
based on convolution, BAFormer outperformed by 2.5% mIoU. Furthermore, compared
to the state-of-the-art FT-UNetFormer model based on Transformer, BAFormer exceeded
1.5% mIoU. Our proposed model not only achieves the best segmentation results among
models with the same volume but also outperforms larger models like DC-Swin and FT-
UNetFormer, achieving a better balance between model parameters and accuracy. This
result fully demonstrates the advancement of our proposed BAFormer model.

Table 4. Comparison of different methods on the Mapcup dataset. The best values in each column
are shown in bold. ’#’ signifies results obtained by ourselves.

Method Backbone
Per-Class F1 (%)

MeanF1 (%) OA (%) Training Time (h) Boundary IoU (%) mIoU (%)
Cropland Non-Cropland

FCN # [52] VGG-16 81.6 86.8 84.2 84.7 0.9 44.8 72.5
DeepLabv3+ # [53] ResNet-50 82.7 87.5 85.1 85.5 1.2 47.6 74.2
A2FPN # [65] ResNet-18 83.2 87.8 85.5 85.9 0.4 48.0 74.8
ABCNet # [55] ResNet-18 84.0 88.1 86.1 86.4 0.6 48.4 75.6
MANet # [57] ResNet-50 86.0 89.3 87.7 87.7 0.7 51.3 78.1
BANet # [56] ResT-Lite 86.7 89.8 88.3 88.5 1.0 53.9 79.0
DC-Swin # [58] Swin-S 86.8 89.7 88.2 88.4 1.0 55.1 79.0
UNetFormer # [35] ResNet-18 87.2 90.3 88.8 88.5 0.2 53.8 79.6
FT-UNetFormer # [35] Swin-B 88.7 91.0 89.8 90.0 1.1 55.8 81.6
BAFormer-T ResNet-18 88.2 90.8 89.5 89.6 0.4 54.9 81.0
BAFormer ResNet-18 89.8 91.7 90.7 90.8 1.0 56.4 83.1

Qualitative results on the Mapcup test set are shown in Figure 9, displaying six selected
visualizations. Observing the results in the first, second, and third rows, distinct types of
farmland can be identified within dashed boxes, including rice fields at different growth
stages, cultivated land covered by low-level vegetation, and recreational areas. These
variations in farmland exhibit significant differences in color and texture, with considerable
intra-class variability. In contrast, the BAFormer model effectively learns similarities among
different variants, achieving the best identification of variants. This outcome demonstrates
the method’s robust feature learning and fitting capabilities. In the fourth row of results,
there is a road between the areas of cropland in the dotted box that is barely noticeable
to the naked eye, yet BAFormer can represent and distinguish less prominent category
differences. This capability is further demonstrated in the results of the fifth and sixth rows.
The proposed BAFormer method effectively showcases its ability to discern inter-class
differences and judge intra-class variability when handling complex scenes.

To assess the optimization effects of the model on edges, we introduce the Boundary
IoU measurement metric, with quantitative results presented in Table 4. Furthermore, we
conduct visual comparisons of edges extracted by calculating Boundary IoU, showcasing
qualitative results in Figure 10. A comprehensive evaluation from both quantitative and
qualitative perspectives reveals that the proposed BAFormer achieves higher edge quality
than mainstream methods.
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Figure 9. Qualitative comparisons with different methods on the Mapcup test set. We add some
white dotted boxes to highlight the differences to facilitate model comparisons.

(a) Image (b) GT (c) BAFormer (d) BAFormer-T (e) FT-UNetFormer (f) UNetFormer

(g) DC-Swin (h) BANet (i) MANet (j) ABCNet (k) A2FPN (l) DeepLabV3+

Figure 10. Visual comparisons of boundary extracted by different methods on the Mapcup test set
will be conducted, and the resulting edges will be utilized for calculating Boundary IoU.

To further observe the performance of the model in the production environment,
we randomly selected some areas for inference visualization, with the results shown
in Figure 11. By analyzing the inference results from the visualization, we find that
BAFormer can effectively eliminate the interference from the feature background, has
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accuracy in boundary identification for various complex targets, and achieves satisfactory
segmentation quality.

(a) Large Image (b) Inference Image

Figure 11. Inference visualization was performed in a randomly selected region in the north. Red
represents cropland and black represents non-cropland. (a) High-resolution remote sensing large
image. (b) Visualization of model inference.

4.3. Ablation Experiment
4.3.1. Each Component of BAFormer

In BAFormer, we effectively enhance the accuracy of the model for boundary-aware
segmentation by improving three aspects: feature extraction, feature fusion, and loss
constraints. To further verify the effectiveness of each module, we conducted extensive
ablation experiments on the Vaihingen dataset, and the results are shown in Table 5. It
should be noted that for a fair comparison, we uniformly adopted the same stochastic
enhancement strategy and test-time enhancement strategy, with relevant hyperparameters
consistent with the benchmark model UNetFormer by default.

Table 5. Ablation study of BAFormer for each component on the Vaihingen dataset.

Dataset Base
Component

mIoU (%)
FAM RAF DWLK-MLP Edge Constraint

✓ 82.50
✓ ✓ 83.61
✓ ✓ 83.09

Vaihingen ✓ ✓ 83.44
✓ ✓ 83.26
✓ ✓ ✓ 83.89
✓ ✓ ✓ ✓ 84.22
✓ ✓ ✓ ✓ ✓ 84.48

4.3.2. Selection of Large Kernel Convolution

The DWLK-MLP module is designed to enhance the completeness of boundary ex-
traction by deeply decomposing large kernel sensory fields. To further explore the effect of
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using large kernel convolution in this module, we conducted correlation validation on the
Mapcup and Vaihingen datasets, and the results are shown in Table 6. The experimental
results demonstrate that choosing a large kernel convolution with a size of 23 yields the
highest accuracy. Further increasing the kernel size reduces accuracy and increases model
complexity. Therefore, we set the size of the large kernel convolution to 23 by default and
use a sequence of small kernel convolutions with sizes 5 and 7 for DW decomposition. This
approach not only maintains the sensing field of the large kernel but also avoids excessive
computational complexity and increases model depth, thereby improving the model’s
generalization ability.

Table 6. Ablation of large kernel in DWLK-MLP. Here, K represents the size of the convolution kernel,
and D represents the dilation rate of the convolution.

Kernel_Size (K,D) Sequence Flops (G) Paras (M) Mapcup mIoU (%) Vaihingen mIoU (%)

11 (3,1) → (5,2) 18.40 12.74 82.77 84.16
23 (5,1) → (7,3) 18.62 12.78 83.11 84.47
29 (3,1) → (5,2) → (7,3) 18.67 12.79 82.86 84.22
35 (5,1) → (11,3) 19.02 12.85 82.54 84.08

4.3.3. Lightweight Model

To evaluate the outstanding lightweight features of BAFormer-T, we compared it with
the current state-of-the-art lightweight models on the Vaihingen public dataset. By compar-
ing the results (see Table 7), we found that BAFormer-T outperforms the lightest DANet
model, improving the mIoU score by 15.3%. In addition, compared to the similarly sized
state-of-the-art lightweight model UNetFormer, BAFormer-T has hardly increased memory
consumption, parameter count, or computational complexity, yet achieved a satisfactory
mIoU score of 84.1%, surpassing UNetFormer’s mIoU by 1.4%. This fully demonstrates
the perfect balance between model accuracy and complexity achieved by BAFormer-T. Fur-
thermore, this lightweight high-accuracy result further proves the effectiveness of channel
fusion-based mixed-frequency feature extraction and Depthwise Large Kernel Multi-Layer
Perceptron methods. They can efficiently run models in resource-constrained environments
and provide feasible solutions for saving computational resources and deployment costs.
By incorporating these excellent lightweight techniques into model design, we can achieve
more efficient, flexible, and cost-effective model deployments, bringing more opportunities
and challenges to various industries.

Table 7. Comparison with current state-of-the-art lightweight networks on the Vaihingen dataset and
testing their complexity and model parameters.

Method Backbone Memory (M) Params (M) Complexity (G) mIoU (%)

DANet [56] ResNet-18 611.1 12.6 39.6 68.8
BiSeNet [66] ResNet-18 970.6 12.9 51.8 69.1
Segmenter [67] ViT-Tiny 933.2 13.7 63.3 73.6
BoTNet [68] ResNet-18 710.5 17.6 49.9 74.3
FANet [69] ResNet-18 971.9 13.6 86.8 75.6
ShelfNet [70] ResNet-18 579.0 14.6 46.7 78.3
SwifNet [71] ResNet-18 835.8 11.8 51.6 79.9
ABCNet [55] ResNet-18 1105.1 14.0 62.9 81.3
MANet [57] ResNet-50 1169.2 12.0 51.7 82.7
UNetFormer [35] ResNet-18 1003.7 11.7 46.9 82.7
BAFormer-T ResNet-18 1067.3 12.8 51.3 84.1
BAFormer ResNet-18 2668.3 35.5 142.0 84.5

4.3.4. The Stability of the Model

In practical applications, the stability and adaptability of the model are particularly im-
portant when faced with different input sizes. To comprehensively evaluate the stability of
the model’s performance under various input sizes, we trained the lightweight BAFormer-T
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using square image inputs of different scales, including common scales, e.g., 512 × 512,
768 × 768, 1024 × 1024, as well as the super-large 2048 × 2048 input scale. The results are
presented in Table 8. The results demonstrate that the lightweight BAFormer-T exhibits
excellent stability and adaptability when handling various input scales. The overall mIoU
deviation is no more than 0.6%, the MeanF1 deviation is within 0.4%, and the OA deviation
is less than 0.2%. This indicates that the model can maintain good performance with input
data of different sizes, showcasing excellent robustness and generalization ability, and is
suitable for diverse practical application scenarios.

Table 8. Ablation on the Vaihingen dataset investigates the effect of different input sizes on model
stability. The experiments were carried out on a single NVIDIA GTX 3090 GPU using the BAFormer-
T model.

Input Size
Per-Class F1 (%)

MeanF1 (%) OA (%) mIoU (%)
Imp.surf Building Low.veg Tree Car

512 × 512 93.19 95.83 85.36 90.89 89.39 90.93 91.48 83.63
768 × 768 93.56 95.93 85.42 90.72 90.14 91.15 91.60 83.94
1024 × 1024 93.67 95.89 85.33 90.79 90.87 91.30 91.63 84.16
2048 × 2048 93.40 95.79 85.60 90.73 89.88 91.08 91.54 83.80

4.3.5. Number of Multi-Heads and Window Size

In BAFormer, abstract semantic features are mainly extracted by Transformer blocks.
The extraction of these features is influenced by two important hyperparameters: the
number of heads and the partition window size, which directly affect the attention per-
formance of the model. To further investigate the setting of the number of multi-heads
and window size, we conducted a series of experiments. The quantitative experimental
results regarding the number of multi-heads and window size are shown in Figure 12. In
the ablation experiment with the number of multiple heads, we found that the parameter
setting of multiple heads should conform to the law of the number of feature channels as
much as possible, instead of learning stronger with more numbers. For the lightweight
BAFormer-T model with 64 decoder channels, the best effect is achieved when num_heads
is set to 8. Setting it too large or too small will hinder the feature extraction performance of
the model. In the ablation experiments with window size, we found that a window size of
8 yielded the best overall performance. However, increasing the window size further led to
decreases in mIoU and F1-Score.
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Figure 12. Ablation study on the number of model multi-heads and window size on the Vaihin-
gen dataset.

5. Discussion
5.1. FAM Feature Visualization

The proposed FAM possesses dynamic learning capabilities. To validate its effective-
ness, we conducted visual comparisons with classical attention mechanisms such as Shift
Window Attention, Shuffle Attention, Criss-Cross Attention, and Global-Local Attention.
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We visualize the features post-attention in both spatial and frequency domains within
the decoder, as depicted in Figure 13. From the spatial perspective (a), our proposed
FAM Attention prominently preserves global and local image features. In the D1 deep
layer with semantics alone and the fusion layers D2, D3, and D4, the feature maps after
FAM further enhance boundary perception, better preserving clear edges, textures, and
other fine-grained features. In the frequency domain (b), we observe that the image’s
low-frequency features appear more rounded and extensive across F-D1, F-D2, and F-D3
layers. This results from FAM’s adaptive selection mechanism based on channel fusion
contributions, dynamically blending high and low-frequency features in varying propor-
tions across different network depths, thereby achieving a refined and comprehensive
feature representation.

Shifted Window 
Attention

Shuffle
Attention

Criss-Cross
Attention

Global-Local
Attention

FAM(Ours)

D1 D2 D3 D4 Output F-D1 F-D2 F-D3 F-D4 F-Output

(a)Attention Visualization (b)Frequency Domain Visualization

Figure 13. Feature Adaptive Mixer (FAM) feature map visualization.

5.2. About the Choice of Encoder

Considering the significant impact of encoders with different feature extraction capa-
bilities on decoder fusion, we further explored their influence on model segmentation, as
shown in Table 9. The study results indicate that ResNet-18 achieves the best overall fusion
and segmentation accuracy due to its efficient extraction of shallow features. Specifically,
the BAFormer model achieves a mIoU of 84.47%, while the lightweight model BAFormer-T
achieves 84.15% mIoU. Notably, BAFormer-T significantly reduces model parameters, com-
plexity, and flops compared to other CNN-based encoders, without compromising accuracy
levels. Moreover, compared to the Transformer-based Swin_Base encoder, BAFormer only
slightly decreases accuracy, demonstrating satisfactory performance.

Table 9. Ablation study with different encoders on the Vaihingen dataset.

Model Encoder Params (M) Complexity (G) Flops (G) mIoU (%)

ResNet-18 12.78 51.33 18.62 84.15

ResNet50 25.30 191.31 31.06 83.35

BAFormer-T ResNet101 44.30 177.36 50.56 83.30

EfficientNet 63.80 255.21 35.41 83.61

Swin_Base 112.47 452.60 230.87 84.27

BAFormer ResNet-18 34.88 141.97 147.14 84.47
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Continuing from Table 9, Transformer-based encoders generally achieve higher accu-
racy compared to CNN-based encoders. However, BAFormer benefits from the specialized
design of RAF, enabling dynamic feature fusion selection in the decoder stage based on task
requirements, thereby enriching feature granularity. This result further confirms that in
the image reconstruction phase of the decoder, besides robust high-level semantic feature
support, integrating more shallow-level fine-grained features is essential.

5.3. Further Exploration on Edge Constraint

The depth-supervised edge constraint strategy guides the model to improve edge
accuracy by applying strong constraints to the edges. For instance, on the Vaihingen dataset,
the overall mIoU accuracy improved by approximately 0.5%. However, the effectiveness
of this method may vary for image datasets with difficult-to-identify terrain categories.
Further exploration of the Vaihingen dataset reveals its characteristics of regular, flat terrain
with prominent features of terrain categories. Furthermore, a unique preprocessing method
involves dyeing low-altitude vegetation areas red during imaging, which enhances their
identification. This significantly enhances the overall recognition accuracy of the Vaihingen
dataset, with only slight boundary blurring between predicted and labeled images, as
shown in Figure 1a. In contrast, the Potsdam dataset features a more complex urban
background and lacks the same preprocessing dyeing operations as the Vaihingen dataset,
increasing the difficulty of object recognition for models. Therefore, the effectiveness of deep
edge supervision is less obvious. This finding further underscores the interdependence
between edge constraint and feature recognition capabilities. When the model achieves
high image recognition accuracy with minimal boundary-blurring, this method effectively
improves edge quality. Conversely, if the model’s ability to represent images is insufficient,
the effect of edge constraint may not be significant.

5.4. Research Difficulties and Next Steps

Cropland extraction is a challenging task. Firstly, enhancing edge perception can
improve the recognition of farmland and its boundaries to some extent. However, images
often contain objects resembling farmland, such as buildings and trees, making reliance
on individual image information insufficient for accurate patch extraction. Secondly,
insufficient spectral information complicates the distinction between farmland and other
features, particularly when they share similar spectral characteristics. Furthermore, data
inconsistency limits the model’s ability to generalize across different times and regions,
posing challenges for accurate farmland extraction.

To address these challenges, the next step will focus on multi-modal fusion. Multi-
source data fusion can provide richer information and effectively enhance the precise
extraction capability of croplands.

6. Conclusions

This paper addresses inaccurate boundary extraction in high-resolution remote sensing
images for cropland by proposing BAFormer, a UNet-like universal extraction model.
BAFormer enhances edge feature compensation through three stages: feature extraction,
feature fusion, and loss constraints. It incorporates a FAM based on channel fusion and a
DWLK-MLP module with a large receptive field to amplify high-frequency information
and feature expression, enabling it to identify more complete and accurate boundaries.
Additionally, a Relational Adaptive Fusion (RAF) strategy and edge constraint guide
the model’s attention towards edges, enhancing accuracy. The evaluation of datasets
including Vaihingen, Potsdam, LoveDA, and Mapcup demonstrates BAFormer’s promising
performance in model size reduction, generalization ability, and edge quality, validating
its effectiveness.
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