
Citation: Xu, X.; Guan, L.; Gao, Y.;

Chen, Y.; Liu, Z. Enhanced Strapdown

Inertial Navigation System

(SINS)/LiDAR Tightly Integrated

Simultaneous Localization and

Mapping (SLAM) for Urban

Structural Feature Weaken Occasions

in Vehicular Platform. Remote Sens.

2024, 16, 2527. https://doi.org/

10.3390/rs16142527

Academic Editors: Wanshou Jiang,

San Jiang, Duojie Weng and

Jianchen Liu

Received: 29 April 2024

Revised: 5 July 2024

Accepted: 7 July 2024

Published: 10 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Enhanced Strapdown Inertial Navigation System (SINS)/LiDAR
Tightly Integrated Simultaneous Localization and Mapping
(SLAM) for Urban Structural Feature Weaken Occasions in
Vehicular Platform
Xu Xu , Lianwu Guan * , Yanbin Gao, Yufei Chen and Zhejun Liu

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
xuxu66@hrbeu.edu.cn (X.X.)
* Correspondence: guanlianwu@hrbeu.edu.cn

Abstract: LiDAR-based simultaneous localization and mapping (SLAM) offer robustness against
illumination changes, but the inherent sparsity of LiDAR point clouds poses challenges for continuous
tracking and navigation, especially in feature-deprived scenarios. This paper proposes a novel
LiDAR/SINS tightly integrated SLAM algorithm designed to address the localization challenges in
urban environments characterized in sparse structural features. Firstly, the method extracts edge
points from the LiDAR point cloud using a traditional segmentation method and clusters them to form
distinctive edge lines. Then, a rotation-invariant feature—line distance—is calculated based on the
edge line properties that were inspired by the traditional tightly integrated navigation system. This
line distance is utilized as the observation in a Kalman filter that is integrated into a tightly coupled
LiDAR/SINS system. This system tracks the same edge lines across multiple frames for filtering and
correction instead of tracking points or LiDAR odometry results. Meanwhile, for loop closure, the
method modifies the common SCANCONTEXT algorithm by designating all bins that do not reach
the maximum height as special loop keys, which reduce false matches. Finally, the experimental
validation conducted in urban environments with sparse structural features demonstrated a 17%
improvement in positioning accuracy when compared to the conventional point-based methods.

Keywords: 3D LiDAR navigation; SLAM; tightly integrated navigation; LiDAR odometry and
mapping; urban structural feature weaken occasions

1. Introduction

In recent years, the domain of simultaneous localization and mapping (SLAM) [1]
has been an integral part of autonomous navigation, especially in environments where
the reception of global navigation satellite system (GNSS) signals is unreliable or absent
and where dynamic environmental conditions are the norm. SLAM aims to determine a
robot’s pose while simultaneously generating a map of its environment using onboard
sensors. This process occurs in environments that may be unknown or partially known.
The diversity of applicable sensors in use has naturally led to the bifurcation of SLAM
into two primary SLAM categories: LiDAR-based SLAM and visual SLAM. Visual SLAM
encompasses various subtypes, including monocular, stereo, and RGB-D [2]. LiDAR-
based approaches demonstrate superior accuracy in pose estimation and maintain robust
performance across varying environmental conditions, such as time of day and weather.
In contrast, visual SLAM, as illustrated in Figure 1, is highly susceptible to factors like
lighting and the availability of distinctive features, thus potentially limiting its effectiveness
in certain settings [3]. Therefore, this paper concentrates on navigation systems leveraging
LiDAR technology.

Remote Sens. 2024, 16, 2527. https://doi.org/10.3390/rs16142527 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16142527
https://doi.org/10.3390/rs16142527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0001-7316-3412
https://orcid.org/0000-0001-8803-910X
https://doi.org/10.3390/rs16142527
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16142527?type=check_update&version=1

Remote Sens. 2024, 16, 2527 2 of 21

Remote Sens. 2024, 16, x FOR PEER REVIEW 2 of 21

lighting and the availability of distinctive features, thus potentially limiting its effective-
ness in certain seĴings [3]. Therefore, this paper concentrates on navigation systems lev-
eraging LiDAR technology.

(a) (b)

(c)

Figure 1. The figures illustrate the impact of the environment on different sensors; (a,b) show the
effect of darkness and illumination on the visual sensor, respectively, while (c) indicates that LiDAR
can work normally under such conditions.

The last two decades have witnessed significant strides in LiDAR-based SLAM meth-
odologies, fueled by advancements in computer processing power and optimization algo-
rithms. While machine learning-based LiDAR SLAM methods are constrained by the
scope and quality of training data, two primary categories dominate the current land-
scape: normal distributions transform (NDT) [4] and iterative closest point (ICP) [5] algo-
rithm. The NDT approach, which has seen extensive application in 2D LiDAR SLAM sce-
narios, entails the discretization of the point cloud data into a grid-like structure, the com-
putation of Gaussian distributions for each cell, and subsequent alignment-based match-
ing and fiĴing procedures [4]. However, the transition from 2D to 3D applications has
exponentially increased computational demands, posing a significant challenge in meet-
ing the stringent requirements for real-time processing [6]. To put it simply, when classi-
fied solely based on the quantity of point clouds and meshes, the computational data of
the most basic 3D LiDAR are at least 16 times that of a 2D LiDAR, as they have at least 16
scanning projection planes. Although efforts to mitigate this issue have been made
through algorithms such as SEO-NDT [7] and KD2D-NDT [8], they have occasionally re-
sulted in trade-offs concerning accuracy and processing time in certain scenarios. ICP-
based methods face similar challenges. However, the advent of LiDAR odometry and
mapping (LOAM) [9] has marked a pivotal shift in focus; LOAM focuses the iteration
process towards feature-rich points rather than the entire point cloud. This paradigm shift
has propelled the widespread implementation of LOAM-inspired ICP techniques in ad-
dressing LiDAR SLAM challenges over the past decades.

LOAM distinguishes itself from conventional ICP techniques by classifying points in
the point cloud based on their smoothness. This involves identifying and extracting “edge
points”, which are characterized by coarse texture, and “planar points”, which exhibit fine

Figure 1. The figures illustrate the impact of the environment on different sensors; (a,b) show the
effect of darkness and illumination on the visual sensor, respectively, while (c) indicates that LiDAR
can work normally under such conditions.

The last two decades have witnessed significant strides in LiDAR-based SLAM
methodologies, fueled by advancements in computer processing power and optimiza-
tion algorithms. While machine learning-based LiDAR SLAM methods are constrained
by the scope and quality of training data, two primary categories dominate the current
landscape: normal distributions transform (NDT) [4] and iterative closest point (ICP) [5]
algorithm. The NDT approach, which has seen extensive application in 2D LiDAR SLAM
scenarios, entails the discretization of the point cloud data into a grid-like structure, the
computation of Gaussian distributions for each cell, and subsequent alignment-based
matching and fitting procedures [4]. However, the transition from 2D to 3D applications
has exponentially increased computational demands, posing a significant challenge in
meeting the stringent requirements for real-time processing [6]. To put it simply, when
classified solely based on the quantity of point clouds and meshes, the computational
data of the most basic 3D LiDAR are at least 16 times that of a 2D LiDAR, as they have
at least 16 scanning projection planes. Although efforts to mitigate this issue have been
made through algorithms such as SEO-NDT [7] and KD2D-NDT [8], they have occasion-
ally resulted in trade-offs concerning accuracy and processing time in certain scenarios.
ICP-based methods face similar challenges. However, the advent of LiDAR odometry and
mapping (LOAM) [9] has marked a pivotal shift in focus; LOAM focuses the iteration
process towards feature-rich points rather than the entire point cloud. This paradigm
shift has propelled the widespread implementation of LOAM-inspired ICP techniques in
addressing LiDAR SLAM challenges over the past decades.

LOAM distinguishes itself from conventional ICP techniques by classifying points in
the point cloud based on their smoothness. This involves identifying and extracting “edge
points”, which are characterized by coarse texture, and “planar points”, which exhibit
fine texture. Subsequently, the derived feature points are systematically selected through
a sector-based averaging technique. The system leverages these refined point clouds;
the system performs odometry calculations at a frequency of 10 Hz using LiDAR data.
Following the odometry computation, the aggregated point clouds are then employed for

Remote Sens. 2024, 16, 2527 3 of 21

mapping at a reduced frequency of 1 Hz, thereby achieving a more accurate and efficient
representation of the environment. To address LOAM’s limitations in computational
demands and loop closure, Shan and Englot proposed LeGO-LOAM [10]. This method,
which stands for lightweight and ground-optimized LiDAR odometry and mapping, is
specifically tailored for real-time six-degrees-of-freedom pose estimation with ground
vehicles. However, further experiments have shown that the strategy of entirely segregating
ground points from the surrounding point cloud environment for separate matching can
result in a notable vertical drift. Furthermore, the methodologies for loop closure still face
certain challenges.

Li He and colleagues investigated the application of Multiview 2D projection (M2DP) [11]
to describe 3D points to achieve loop closure, but their findings showed limited scope and
efficacy. Scan Context [12] and its advanced iteration, Scan Context++ [13], were introduced by
Giseop Kim in 2018 and 2021, respectively. These innovative approaches have rapidly gained
recognition as leading solutions for loop closure in 3D LiDAR-based SLAM. This is a non-
histogram-based global descriptor that directly captures egocentric structural information from
the sensor’s field of view without relying on prior training. However, the aforementioned
methods and their derivatives, such as F-LOAM [14], do not utilize strapdown inertial
navigation systems (SINSs) or only use them for the rectification of LiDAR point clouds.

Compared to the mature field of vision-aided SINS, the integration of SINS and
LiDAR within LiDAR-based SLAM algorithms remains largely unexplored. A study [15]
employed a loosely coupled extended Kalman filter (EKF) to fuse IMU and LiDAR data
within a two-dimensional framework. However, this approach lacked the robustness to
handle the complexities of three-dimensional or multifaceted environments. Furthermore,
a scholarly review published in 2022 [16] emphasized that within the majority of current
systems employing the SINS/LiDAR integration systems, the SINS primarily functions
to smooth trajectories and mitigate distortions. IMU data are often optionally integrated
to predict platform motion and enhance registration accuracy during abrupt maneuvers.
However, only gyroscopic measurements between consecutive LiDAR scans are utilized.
Although these studies and related works often self-identify as “loose integration” based
on the data fusion strategies outlined in this article, a more accurate designation would be
“pseudo integration”.

As illustrated in Figure 2, the concept of loose integration in LiDAR/SINS systems
can be redefined from the GNSS/SINS loose integration navigation system. This approach
involves combining position and other navigation data obtained from different sensors.
In this process, none of the sensors involved in the integration have undergone in-depth
data integration, but only a simple integration of the navigation results. By applying this
redefined concept of loose integration, it becomes evident that studies such as [17,18], while
claiming to employ tight integration, actually align more closely with the characteristics
of loose integration. Specifically, these studies treat the individual systems as black boxes,
focusing solely on integrating their outputs to generate the final navigation solution rather
than performing in-depth data extraction and analysis.

To achieve a deeper level of sensor fusion than loose integration, the integration pro-
cess should occur before the generation of individual navigation solutions. For instance,
in a GNSS/SINS system, this translates to integrating data during the pseudorange mea-
surement stage, prior to GNSS position determination. A key advantage of tightly coupled
GNSS/SINS integration [19] over the loosely coupled approach is its reduced reliance
on a high number of visible satellites. This integration scheme can function even with a
single observable satellite, unlike loose integration, which typically requires at least four.
Investigating tight integration within SLAM systems necessitates understanding the nature
of the data employed for navigation. In LiDAR-based systems, these data comprise point
clouds, while vision-based systems utilize feature point information. Some studies [20,21]
have demonstrated that within the SLAM framework, the concept of lines exhibits greater
stability than points, particularly during data transformations (rotation and translation)
across multiple frames. Similarly, research on multi-frame feature tracking within multi-

Remote Sens. 2024, 16, 2527 4 of 21

state constrained Kalman filters for vision-aided inertial navigation [22] has validated
the enhanced accuracy and robustness of this approach compared to traditional methods.
This has led to the development of a prototype tightly integrated LiDAR/SINS navigation
system that utilizes line features extracted from the LiDAR point cloud as observations.
The system employs continuous, multi-frame tracking of these line features to refine the
SINS data. However, due to the sparse nature of the LiDAR point cloud, it is difficult
to accurately track the same line. Consequently, revisiting the concept of distance as a
measurement, akin to its application in GNSS/SINS systems, becomes crucial. Notably,
distance, being a scalar quantity, offers a significant advantage—rotational invariance. This
property can substantially reduce the computational burden of the integration process. The
algorithm’s core principle centers on leveraging shared features, specifically line distances,
across multiple frames to enhance Kalman filter accuracy. In summary, this paper presents
the following contributions:

1. This paper refines the edge point extraction process of the LOAM algorithm by
implementing a more granular clustering approach. By classifying clustered edge
points as either convex or concave, the mapping precision is enhanced. Leveraging
the rotational invariance of line distances, a Kalman filter is developed that employs
line distance error as its primary observation metric. This approach improves the
system’s robustness and accuracy.

2. This paper presents structural modifications to the LOAM algorithm that are predi-
cated on the Scan Context framework to optimize its performance and ensure the data
processing occurs more efficiently. The experiments have proven that the situation of
incorrect loop closures in LiDAR SLAM has been mitigated effectively.

3. Extensive experiments conducted in various on-campus and off-campus environments
validate the proposed algorithm and offer comparisons with traditional methods.
These experiments highlight the superior performance of the proposed algorithm.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 21

the data employed for navigation. In LiDAR-based systems, these data comprise point
clouds, while vision-based systems utilize feature point information. Some studies [20,21]
have demonstrated that within the SLAM framework, the concept of lines exhibits greater
stability than points, particularly during data transformations (rotation and translation)
across multiple frames. Similarly, research on multi-frame feature tracking within multi-
state constrained Kalman filters for vision-aided inertial navigation [22] has validated the
enhanced accuracy and robustness of this approach compared to traditional methods.
This has led to the development of a prototype tightly integrated LiDAR/SINS navigation
system that utilizes line features extracted from the LiDAR point cloud as observations.
The system employs continuous, multi-frame tracking of these line features to refine the
SINS data. However, due to the sparse nature of the LiDAR point cloud, it is difficult to
accurately track the same line. Consequently, revisiting the concept of distance as a meas-
urement, akin to its application in GNSS/SINS systems, becomes crucial. Notably, dis-
tance, being a scalar quantity, offers a significant advantage—rotational invariance. This
property can substantially reduce the computational burden of the integration process.
The algorithm’s core principle centers on leveraging shared features, specifically line dis-
tances, across multiple frames to enhance Kalman filter accuracy. In summary, this paper
presents the following contributions:
1. This paper refines the edge point extraction process of the LOAM algorithm by im-

plementing a more granular clustering approach. By classifying clustered edge
points as either convex or concave, the mapping precision is enhanced. Leveraging
the rotational invariance of line distances, a Kalman filter is developed that employs
line distance error as its primary observation metric. This approach improves the sys-
tem’s robustness and accuracy.

2. This paper presents structural modifications to the LOAM algorithm that are predi-
cated on the Scan Context framework to optimize its performance and ensure the
data processing occurs more efficiently. The experiments have proven that the situa-
tion of incorrect loop closures in LiDAR SLAM has been mitigated effectively.

3. Extensive experiments conducted in various on-campus and off-campus environ-
ments validate the proposed algorithm and offer comparisons with traditional meth-
ods. These experiments highlight the superior performance of the proposed algo-
rithm.

Do not combine, only use
SINS data for interpolation

or weighted averaging

Combine the velocity and
position outputs from

GNSS with SINS

Estimate the pseudorange
of GNSS satellites using

SINS data for combination.

SINS data are solely used
for smoothing and

eliminating distortions.

Combine the attitude and
position outputs from

LiDAR with SINS

Use SINS to estimate the
line distances of the LiDAR

point cloud and perform
the combination.

Pseudo Integration

Loose Integration

Tight Integration

Figure 2. Use the concept of traditional SINS/GNSS integrated navigation systems to redefine the
LiDAR integrated navigation system.

Figure 2. Use the concept of traditional SINS/GNSS integrated navigation systems to redefine the
LiDAR integrated navigation system.

2. Method

This section outlines the workflow of our algorithm. This includes an insightful
overview of the foundational principles that govern the pertinent hardware components,
coupled with a thorough elucidation of the methodologies employed for the preprocessing
of data. Section 3 will then delve into the system error model and measurement model,
providing a comprehensive analysis of these crucial framework elements. Additionally, to

Remote Sens. 2024, 16, 2527 5 of 21

elucidate the algorithmic details, the subsequent sections of this paper will operate under
the assumption that the LiDAR point cloud was sourced from a 16-line LiDAR system
by default. This is representative of commonly used systems such as Velodyne’s VLP-16
(Velodyne Acoustics GmbH, Hamburg, Germany) and the LeiShen MS-C16 [23] (Leishen
Intelligent System Co., Ltd., located in Shenzhen, China) employed in the experiments
of this paper. These systems, with a horizontal angular resolution of 0.2◦ and a vertical
resolution of 2◦, generate a range image of 1800 by 16 pixels [23]. This translates to a point
cloud with 16 projection planes, each containing 1800 points.

2.1. Algorithm Overview

Figure 3 provides the overview of a tightly integrated LiDAR/SINS SLAM algorithm.
Let P be the original points received in a laser scan. However, because scanning occurs
over a timeframe t (typically exceeding 0.1 s), the resulting point cloud represents the
environment over this duration rather than instantaneously. Consequently, in dynamic
environments, the recorded point cloud may exhibit distortions caused by movements,
particularly pronounced during significant angular variations. To mitigate this, it is essential
to utilize the high-frequency motion data provided by the SINS to project all points onto
the reference timestamps, either the beginning of the period tk−1 or the end tk.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 21

2. Method
This section outlines the workflow of our algorithm. This includes an insightful over-

view of the foundational principles that govern the pertinent hardware components, cou-
pled with a thorough elucidation of the methodologies employed for the preprocessing of
data. Section 3 will then delve into the system error model and measurement model,
providing a comprehensive analysis of these crucial framework elements. Additionally,
to elucidate the algorithmic details, the subsequent sections of this paper will operate un-
der the assumption that the LiDAR point cloud was sourced from a 16-line LiDAR system
by default. This is representative of commonly used systems such as Velodyne’s VLP-16
(Velodyne Acoustics GmbH, Hamburg, Germany) and the LeiShen MS-C16 [23] (Leishen
Intelligent System Co., Ltd., located in Shenzhen, China) employed in the experiments of
this paper. These systems, with a horizontal angular resolution of 0.2° and a vertical reso-
lution of 2°, generate a range image of 1800 by 16 pixels [23]. This translates to a point
cloud with 16 projection planes, each containing 1800 points.

2.1. Algorithm Overview
Figure 3 provides the overview of a tightly integrated LiDAR/SINS SLAM algorithm.

Let 𝑃 be the original points received in a laser scan. However, because scanning occurs
over a timeframe t (typically exceeding 0.1 s), the resulting point cloud represents the en-
vironment over this duration rather than instantaneously. Consequently, in dynamic en-
vironments, the recorded point cloud may exhibit distortions caused by movements, par-
ticularly pronounced during significant angular variations. To mitigate this, it is essential
to utilize the high-frequency motion data provided by the SINS to project all points onto
the reference timestamps, either the beginning of the period 𝑡ିଵ or the end 𝑡.

LiDAR

Point cloud registration
and distortion removal

Point cloud classification

10 Hz LiDAR odometry

1 Hz LiDAR mapping

Keyframe extraction

Scan-Context based
loopback check

SINS

Navigation algorithm
computation

Reference line
distance estimation

Extended Kalman filter
and IMU error estimation

Point cloud line extraction
and distance calculation

Vehicle navigation result
output in global frame

10 Hz Points
Cloud Output

100 Hz

1 Hz Error Correction

100 Hz Vehicle Navigation
Data in Body Frame

100 Hz Inertial
Data Output

Figure 3. The algorithm overview of SINS-based 3D LiDAR tightly integrated SLAM.

After processing, the point cloud is denoted as 𝑃 and proceeds to the next stage.
Here, each point undergoes a meticulous classification into four categories based on its
properties: (a) ground points, representing the surface on which the vehicle travels; (b)
planar points, indicative of flat surfaces except the ground; (c) edge points, which demar-
cate boundaries or the perimeter of objects; and (d) the others, encompassing all points
that do not fit into the previous categories. The subsequent section will elaborate on the
point cloud classification technique, ensuring a thorough understanding. All points out-
side the ground in a key frame are compressed into scan context descriptors, and the key
frames are set based on distance and the structure of the point clouds. Concurrently, after
the clustering process, edge points are re-extracted to form edge lines. These edge lines
will then serve as a basis for further computation of the reference line distances and facil-
itate tightly coupled filtering.

Figure 3. The algorithm overview of SINS-based 3D LiDAR tightly integrated SLAM.

After processing, the point cloud is denoted as P̂ and proceeds to the next stage. Here,
each point undergoes a meticulous classification into four categories based on its properties:
(a) ground points, representing the surface on which the vehicle travels; (b) planar points,
indicative of flat surfaces except the ground; (c) edge points, which demarcate boundaries
or the perimeter of objects; and (d) the others, encompassing all points that do not fit
into the previous categories. The subsequent section will elaborate on the point cloud
classification technique, ensuring a thorough understanding. All points outside the ground
in a key frame are compressed into scan context descriptors, and the key frames are set
based on distance and the structure of the point clouds. Concurrently, after the clustering
process, edge points are re-extracted to form edge lines. These edge lines will then serve
as a basis for further computation of the reference line distances and facilitate tightly
coupled filtering.

The LiDAR/SINS odometry primarily relies on the SINS navigation results, and the
outputs further processed by LiDAR mapping, which matches and registers the undistorted
point cloud onto a map at a frequency of 1 Hz. The Scan Context system performs loop
closure detection based on both time and the distance traveled. When the similarity
measure in the loop closure detection reaches a certain threshold, it is considered that the
vehicle has returned to a previously visited location. Subsequently, the system optimizes

Remote Sens. 2024, 16, 2527 6 of 21

the overall trajectory using this information. Successful loop closure detections will also
contribute to the refinement of the SINS navigation and Kalman filtering processes.

2.2. Point Cloud Classification and Point Cloud Lines Extraction

Figure 4 shows the undistorted raw point cloud, ground points, edge points, and
planar points, as well as edge line points, respectively. The following will detail the
extraction methods for each point type.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 21

The LiDAR/SINS odometry primarily relies on the SINS navigation results, and the
outputs further processed by LiDAR mapping, which matches and registers the un-
distorted point cloud onto a map at a frequency of 1 Hz. The Scan Context system per-
forms loop closure detection based on both time and the distance traveled. When the sim-
ilarity measure in the loop closure detection reaches a certain threshold, it is considered
that the vehicle has returned to a previously visited location. Subsequently, the system
optimizes the overall trajectory using this information. Successful loop closure detections
will also contribute to the refinement of the SINS navigation and Kalman filtering pro-
cesses.

2.2. Point Cloud Classification and Point Cloud Lines Extraction
Figure 4 shows the undistorted raw point cloud, ground points, edge points, and

planar points, as well as edge line points, respectively. The following will detail the ex-
traction methods for each point type.

(a) (b)

(c) (d)

Figure 4. Feature extraction process for a scan in noisy environment. The original point cloud is
shown in (a). (b) The red points are labeled as ground points. The rest of the points are the points
that remain after segmentation. This method will be shown in Section 2.2.1. (c) Green and pink
points indicate edge and planar features, which are mentioned in Section 2.2.2. (d) The blue points
represent edge line points. The specific extraction method is explained in Section 2.2.3.

2.2.1. Ground Points
LeGO-LOAM employs a straightforward and efficient ground point extraction

method, which involves specifically examining the 8 lines out of the total 16 that are posi-
tioned below 0° for detection [23].

In point cloud 𝑃, point clouds are labeled with rings and scan sequence; let 𝑝, ∈ 𝑃,
𝑖 = 1,2,3 ⋯ 16, 𝑎𝑛𝑑 𝑗 = 1,2,3 ⋯ 1800. As shown in Figure 5, to calculate the angle between
adjacent points 𝑝, and 𝑝ାଵ, , this paper assumes their coordinate differences are de-
noted as 𝑑𝑖𝑓𝑓x, 𝑑𝑖𝑓𝑓y and 𝑑𝑖𝑓𝑓z. The angle 𝜃 could be set as:

𝜃 = tanିଵ ቀ𝑑𝑖𝑓𝑓z, ඥ𝑑𝑖𝑓𝑓xଶ + 𝑑𝑖𝑓𝑓yଶቁ (1)

Figure 4. Feature extraction process for a scan in noisy environment. The original point cloud is
shown in (a). (b) The red points are labeled as ground points. The rest of the points are the points that
remain after segmentation. This method will be shown in Section 2.2.1. (c) Green and pink points
indicate edge and planar features, which are mentioned in Section 2.2.2. (d) The blue points represent
edge line points. The specific extraction method is explained in Section 2.2.3.

2.2.1. Ground Points

LeGO-LOAM employs a straightforward and efficient ground point extraction method,
which involves specifically examining the 8 lines out of the total 16 that are positioned
below 0◦ for detection [23].

In point cloud P̂, point clouds are labeled with rings and scan sequence; let pi,j ∈ P̂,
i = 1, 2, 3 · · · 16, and j = 1, 2, 3 · · · 1800. As shown in Figure 5, to calculate the angle between
adjacent points pi,j and pi+1,j, this paper assumes their coordinate differences are denoted
as di f f x, di f f y and di f f z. The angle θ could be set as:

θ = tan−1
(

di f f z,
√

di f f x2 + di f f y2
)

(1)

Remote Sens. 2024, 16, 2527 7 of 21

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 21

Once 𝜃 < 10°, points are marked as candidate ground points. Furthermore, an ad-
vanced point cloud sieving process [24] will utilize the RANSAC (random sample consen-
sus) [25] technique to confirm the identification of ground points. This step is critical to
avoid the misclassification of non-ground points as ground points, thereby ensuring the
accuracy and reliability of the ground detection process. The fiĴed ground equation is as
follows:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝑑 = 0 (2)

Then, an image-based segmentation method [26] is applied to the range image to
group points into many clusters. Points from the same cluster are assigned a unique label.

2 2(x y)diff diff

z
di

ff

Figure 5. Ground points extracted from the point cloud 𝑃.

2.2.2. Edge and Planar Points
The feature extraction process is similar to the method used in [9]; but, instead of

extracting from the raw point cloud 𝑃 , we exclusively utilize the portion of the point
cloud that remains unmarked as ground points. Let 𝑆 be the set of points of 𝑝 from the
same ring of the point clouds. Half of the points are on either side of 𝑝 . The set for this
paper is presented in Table A1. Using the range values computed during segmentation,
we can evaluate the roughness of point 𝑝 in 𝑆,

𝑐 =
1

|𝑆| ∙ ‖𝑟‖
ቯ (𝑟 − 𝑟)

∈ௌ,ஷ

ቯ (3)

where 𝑟 means the range from 𝑝 to the center of LiDAR.
Similar to LOAM, we use a threshold 𝑐௧ to distinguish different types of features.

We call the points with 𝑐 larger than 𝑐௧ edge points, and the points with 𝑐 smaller
than 𝑐௧ planar points. Then, we sort the edge and planar points from minimum to max-
imum. The point cloud is segmented into several distinct parts, and a specific number of
feature points are extracted from within each segment.

Following the extraction of feature points, another aĴribute will be computed, spe-
cifically, the concavity or convexity of the edge points. Figure 6 shows the difference be-
tween the concave points and convex points. Compare the distances between a specific
point 𝑝 and the remaining points within set 𝑆. If the majority of these points have dis-
tances greater than that of 𝑝 , then 𝑝 is considered a convex point. Otherwise, it is a con-
cave point.

Figure 5. Ground points extracted from the point cloud P̂.

Once θ < 10◦, points are marked as candidate ground points. Furthermore, an
advanced point cloud sieving process [24] will utilize the RANSAC (random sample
consensus) [25] technique to confirm the identification of ground points. This step is critical
to avoid the misclassification of non-ground points as ground points, thereby ensuring
the accuracy and reliability of the ground detection process. The fitted ground equation is
as follows:

Ax + By + Cz + d = 0 (2)

Then, an image-based segmentation method [26] is applied to the range image to
group points into many clusters. Points from the same cluster are assigned a unique label.

2.2.2. Edge and Planar Points

The feature extraction process is similar to the method used in [9]; but, instead of
extracting from the raw point cloud P̂, we exclusively utilize the portion of the point cloud
that remains unmarked as ground points. Let S be the set of points of pi from the same
ring of the point clouds. Half of the points are on either side of pi. The set for this paper
is presented in Table A1. Using the range values computed during segmentation, we can
evaluate the roughness of point pi in S,

c =
1

|S|·∥ri∥

∥∥∥∥∥ ∑
j∈S,j ̸=i

(
rj − ri

)∥∥∥∥∥ (3)

where rj means the range from pi to the center of LiDAR.
Similar to LOAM, we use a threshold cth to distinguish different types of features. We

call the points with c larger than cth edge points, and the points with c smaller than cth
planar points. Then, we sort the edge and planar points from minimum to maximum. The
point cloud is segmented into several distinct parts, and a specific number of feature points
are extracted from within each segment.

Following the extraction of feature points, another attribute will be computed, specifi-
cally, the concavity or convexity of the edge points. Figure 6 shows the difference between
the concave points and convex points. Compare the distances between a specific point pi
and the remaining points within set S. If the majority of these points have distances greater
than that of pi, then pi is considered a convex point. Otherwise, it is a concave point.

Remote Sens. 2024, 16, 2527 8 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 21

 Forward

Concave

Convex

 Forward

Concave

Convex

Figure 6. The concavity or convexity of the edge points.

2.2.3. Edge Lines
After classifying edge points as concave or convex, this paper employs K-means clus-

tering [27] to group them into lines. Similarly, these lines will inherit concavity or convex-
ity from the points that constitute them. This choice of using edge lines instead of individ-
ual edge points for subsequent computations stems from the inherent sparsity of LiDAR
point clouds. Ensuring the capture of the exact same point across consecutive scans is a
challenging proposition. In contrast, lines, when considered as collective entities, offer a
higher degree of continuity and are much more amenable to persistent tracking. This ap-
proach enhances the reliability and robustness of the subsequent processing steps.

Section 3 will elaborate on the method for calculating point-to-line distances and the
line selection criteria.

2.3. Scan Context
Scan Context was inspired by Shape Context [28], proposed by Belongie et al.; it is an

algorithm for place recognition using 3D LiDAR scans. It works by:
1. Partitioning the point cloud into bins based on azimuthal and radial directions.
2. Encoding the point cloud into a matrix where each bin’s value is the maximum height

of points within it.
3. Calculating similarity between scan contexts using a column-wise distance measure.
4. Employing a two-phase search for loop detection that is invariant to viewpoint

changes.
Figure 7 shows the bin division along azimuthal and radial directions. Using the top

view of a point cloud from a 3D scan, the paper [10] partitioned ground areas into bins,
which were split according to both azimuthal (from 0 to 2π within a LiDAR frame) and
radial (from center to maximum sensing range) directions. They referred to the yellow
area as a ring, the cyan area as a sector, and the black-filled area as a bin.

Figure 7. The scan context bins.

Figure 6. The concavity or convexity of the edge points.

2.2.3. Edge Lines

After classifying edge points as concave or convex, this paper employs K-means
clustering [27] to group them into lines. Similarly, these lines will inherit concavity or
convexity from the points that constitute them. This choice of using edge lines instead of
individual edge points for subsequent computations stems from the inherent sparsity of
LiDAR point clouds. Ensuring the capture of the exact same point across consecutive scans
is a challenging proposition. In contrast, lines, when considered as collective entities, offer
a higher degree of continuity and are much more amenable to persistent tracking. This
approach enhances the reliability and robustness of the subsequent processing steps.

Section 3 will elaborate on the method for calculating point-to-line distances and the
line selection criteria.

2.3. Scan Context

Scan Context was inspired by Shape Context [28], proposed by Belongie et al.; it is an
algorithm for place recognition using 3D LiDAR scans. It works by:

1. Partitioning the point cloud into bins based on azimuthal and radial directions.
2. Encoding the point cloud into a matrix where each bin’s value is the maximum height

of points within it.
3. Calculating similarity between scan contexts using a column-wise distance measure.
4. Employing a two-phase search for loop detection that is invariant to viewpoint changes.

Figure 7 shows the bin division along azimuthal and radial directions. Using the top
view of a point cloud from a 3D scan, the paper [10] partitioned ground areas into bins,
which were split according to both azimuthal (from 0 to 2π within a LiDAR frame) and
radial (from center to maximum sensing range) directions. They referred to the yellow area
as a ring, the cyan area as a sector, and the black-filled area as a bin.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 21

 Forward

Concave

Convex

 Forward

Concave

Convex

Figure 6. The concavity or convexity of the edge points.

2.2.3. Edge Lines
After classifying edge points as concave or convex, this paper employs K-means clus-

tering [27] to group them into lines. Similarly, these lines will inherit concavity or convex-
ity from the points that constitute them. This choice of using edge lines instead of individ-
ual edge points for subsequent computations stems from the inherent sparsity of LiDAR
point clouds. Ensuring the capture of the exact same point across consecutive scans is a
challenging proposition. In contrast, lines, when considered as collective entities, offer a
higher degree of continuity and are much more amenable to persistent tracking. This ap-
proach enhances the reliability and robustness of the subsequent processing steps.

Section 3 will elaborate on the method for calculating point-to-line distances and the
line selection criteria.

2.3. Scan Context
Scan Context was inspired by Shape Context [28], proposed by Belongie et al.; it is an

algorithm for place recognition using 3D LiDAR scans. It works by:
1. Partitioning the point cloud into bins based on azimuthal and radial directions.
2. Encoding the point cloud into a matrix where each bin’s value is the maximum height

of points within it.
3. Calculating similarity between scan contexts using a column-wise distance measure.
4. Employing a two-phase search for loop detection that is invariant to viewpoint

changes.
Figure 7 shows the bin division along azimuthal and radial directions. Using the top

view of a point cloud from a 3D scan, the paper [10] partitioned ground areas into bins,
which were split according to both azimuthal (from 0 to 2π within a LiDAR frame) and
radial (from center to maximum sensing range) directions. They referred to the yellow
area as a ring, the cyan area as a sector, and the black-filled area as a bin.

Figure 7. The scan context bins. Figure 7. The scan context bins.

However, assigning the maximum height of points within a bin a value in the scan
context can be problematic in certain situations. As depicted in Figure 8, due to the forma-
tion principle of LiDAR point clouds, the point cloud does not fully unfold at close ranges,

Remote Sens. 2024, 16, 2527 9 of 21

which may result in the highest point not accurately representing the actual environmental
point cloud.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 21

However, assigning the maximum height of points within a bin a value in the scan
context can be problematic in certain situations. As depicted in Figure 8, due to the for-
mation principle of LiDAR point clouds, the point cloud does not fully unfold at close
ranges, which may result in the highest point not accurately representing the actual envi-
ronmental point cloud.

A straightforward and effective solution is to perform a ring-based search for the
highest point. If the highest point lies within the outermost ring of the 3D LiDAR and is
lower than the adjacent bins, an additional annotation is made to record that the highest
point has not been detected. The marked bin can then serve as a ring-key in scan context
for the initial match.

Figure 8. Close-range point cloud scanning scenario in Cloud-Compare software (2.13).

Simultaneously, because the point cloud distribution is dense near and sparse far, for
each point cloud P selected as a key frame, we can first calculate its centroid:

𝑃(𝑂) =
1

𝑛
 𝑝, , 𝑝ప,ఫതതതത = 𝑝, − 𝑃(𝑂) (4)

where 𝑛 is the total number of the point cloud and 𝑝ప,ఫതതതത is the point cloud 𝑝, trans-
formed back to the center of the original point cloud.

As is shown in Figure 9, the transformed point cloud will have a common center,
which will save a significant amount of time in subsequent scan context description and
matching processes.

Figure 9. Transformed point clouds stacked in Cloud-Compare software (2.13).

3. LiDAR/SINS System Model
3.1. System Error Model

The SINS integrated navigation system error model was designed following the list
in [29]:

𝛿�̇� = 𝐹𝛿𝑥 + 𝐺𝑤 (5)

𝐹 =

⎣
⎢
⎢
⎢
⎡

𝐹ଵଵ 𝐹ଵଶ 0ଷ∗ଷ 0ଷ∗ଷ 0ଷ∗ଷ

𝐹ଶଵ 𝐹ଶଶ 𝐹ଶଷ 0ଷ∗ଷ 𝑅

𝐹ଷଵ 𝐹ଷଶ 𝐹ଷଷ 𝑅
 0ଷ∗ଷ

0ଷ∗ଷ 0ଷ∗ଷ 0ଷ∗ଷ 𝐹ସସ 0ଷ∗ଷ

0ଷ∗ଷ 0ଷ∗ଷ 0ଷ∗ଷ 0ଷ∗ଷ 𝐹ହହ ⎦
⎥
⎥
⎥
⎤

 (6)

Figure 8. Close-range point cloud scanning scenario in Cloud-Compare software (2.13).

A straightforward and effective solution is to perform a ring-based search for the
highest point. If the highest point lies within the outermost ring of the 3D LiDAR and is
lower than the adjacent bins, an additional annotation is made to record that the highest
point has not been detected. The marked bin can then serve as a ring-key in scan context
for the initial match.

Simultaneously, because the point cloud distribution is dense near and sparse far, for
each point cloud P selected as a key frame, we can first calculate its centroid:

P̂(O) =
1
n∑ pi,j, pi,j = pi,j − P̂(O) (4)

where n is the total number of the point cloud and pi,j is the point cloud pi,j transformed
back to the center of the original point cloud.

As is shown in Figure 9, the transformed point cloud will have a common center,
which will save a significant amount of time in subsequent scan context description and
matching processes.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 21

However, assigning the maximum height of points within a bin a value in the scan
context can be problematic in certain situations. As depicted in Figure 8, due to the for-
mation principle of LiDAR point clouds, the point cloud does not fully unfold at close
ranges, which may result in the highest point not accurately representing the actual envi-
ronmental point cloud.

A straightforward and effective solution is to perform a ring-based search for the
highest point. If the highest point lies within the outermost ring of the 3D LiDAR and is
lower than the adjacent bins, an additional annotation is made to record that the highest
point has not been detected. The marked bin can then serve as a ring-key in scan context
for the initial match.

Figure 8. Close-range point cloud scanning scenario in Cloud-Compare software (2.13).

Simultaneously, because the point cloud distribution is dense near and sparse far, for
each point cloud P selected as a key frame, we can first calculate its centroid:

𝑃(𝑂) =
1

𝑛
 𝑝, , 𝑝ప,ఫതതതത = 𝑝, − 𝑃(𝑂) (4)

where 𝑛 is the total number of the point cloud and 𝑝ప,ఫതതതത is the point cloud 𝑝, trans-
formed back to the center of the original point cloud.

As is shown in Figure 9, the transformed point cloud will have a common center,
which will save a significant amount of time in subsequent scan context description and
matching processes.

Figure 9. Transformed point clouds stacked in Cloud-Compare software (2.13).

3. LiDAR/SINS System Model
3.1. System Error Model

The SINS integrated navigation system error model was designed following the list
in [29]:

𝛿�̇� = 𝐹𝛿𝑥 + 𝐺𝑤 (5)

𝐹 =

⎣
⎢
⎢
⎢
⎡

𝐹ଵଵ 𝐹ଵଶ 0ଷ∗ଷ 0ଷ∗ଷ 0ଷ∗ଷ

𝐹ଶଵ 𝐹ଶଶ 𝐹ଶଷ 0ଷ∗ଷ 𝑅

𝐹ଷଵ 𝐹ଷଶ 𝐹ଷଷ 𝑅
 0ଷ∗ଷ

0ଷ∗ଷ 0ଷ∗ଷ 0ଷ∗ଷ 𝐹ସସ 0ଷ∗ଷ

0ଷ∗ଷ 0ଷ∗ଷ 0ଷ∗ଷ 0ଷ∗ଷ 𝐹ହହ ⎦
⎥
⎥
⎥
⎤

 (6)

Figure 9. Transformed point clouds stacked in Cloud-Compare software (2.13).

3. LiDAR/SINS System Model
3.1. System Error Model

The SINS integrated navigation system error model was designed following the list
in [29]:

δ
.
x = Fδx + Gw (5)

F =

F11 F12 03∗3 03∗3 03∗3
F21 F22 F23 03∗3 Rn

b
F31 F32 F33 Rn

b 03∗3
03∗3 03∗3 03∗3 F44 03∗3
03∗3 03∗3 03∗3 03∗3 F55

 (6)

The specific parameters in Equation (6) can be referred to in Equation (A1). And
ϕ and λ are local latitude and longitude. RM and RN are meridian radius and normal

Remote Sens. 2024, 16, 2527 10 of 21

radius. The h is the geodetic height. Rn
b is the transformation matrix from body frame to

navigation frame.

For system state variables, δx =
[
δpn, δvn, δan, bn

ω, bn
f

]T
, δpn denotes the positional

errors in longitude, latitude, and height. δvn presents the velocity errors related to the
three directions above. δan is the error attitude. bn

ω and bn
f are the sensor noise errors of the

gyroscopes and accelerometers, respectively.
The w is system noise, and the corresponding system noise matrix is given by:

G =
[
09∗1

√
2βωxσ2

ωx

√
2βωyσ2

ωy
√

2βωzσ2
ωz

√
2β f xσ2

f x

√
2β f yσ2

f y

√
2β f zσ2

f z

]T
(7)

where βωx, βωy, and βωz denote reciprocals of the correlation times of the autocorrelation
sequence of bn

ω while β f x, β f y, and β f z are related to bn
f . The σ2

ωx, σ2
ωy, σ2

ωz, σ2
f x, σ2

f y, and σ2
f z

are variance associated with gyroscope and accelerometer errors.

3.2. The Observation Model

Traditionally, LiDAR-IMU integration has followed a loosely coupled approach. The
observation variables of the model defined as the estimated position errors are:

Z =

ϕLidar − ϕSINS
λLidar − λSINS
hLidar − hSINS

 (8)

However, this integration approach merely treats LiDAR and SINS as two black boxes,
simply combining their output results without any deeper level of mutual correction. This
paper draws on the concept of tight integration between GNSS and SINS, selecting the
error of the reference line distance d as the observation variable for filtering.

The selection of the error of d as the observation variable is based on the following considerations:

1. Frame invariance: In navigation systems, the relative orientation between the body
frame and the navigation frame continuously changes. Distance, however, remains
consistent across different frames.

2. Robustness to data loss: Compared to vision data, LiDAR point clouds are inherently
sparse. Using feature points and their associated information directly as observation
variables increases the susceptibility to data loss.

In three-dimensional space, the distance from a point L0 to a straight line that was
built by points L1 and L2 can be calculated as follow:

d =
|(L0 − L1)× (L2 − L1)|

|L2 − L1|
(9)

Imagine the points L1 and L2 with coordinates (xl1, yl1, zl1) and (xl2, yl2, zl2), respec-
tively, and the origin of the vehicle or robot in time tk could be estimated as

∼
pk =

(∼
xk,

∼
yk,

∼
zk

)
while the ground truth is pk = (xk, yk, zk); the relationship between them is:

∼
pk =

∼
xk
∼
yk
∼
zk

 =

xk + ∆xk
yk + ∆yk
zk + ∆zk

 (10)

where ∆xk, ∆yk, and ∆zk are the position errors in the ENU directions and
δp = (∆xk/(RN+h)cosϕ, ∆yk/(RM + h), ∆zk)′. The figure above represents the relationship
between the vehicle and the reference line in three-dimensional space, where L′

0 denotes
the actual position of the vehicle and L0 signifies the vehicle’s estimated position.

The measurement parameter in the EKF system is:

Z = ∆d = d′ − d (11)

Remote Sens. 2024, 16, 2527 11 of 21

As is shown in Figure 10, ∆d is much smaller than d or d′; it can be approximately
considered that the normal vector to the line L1L2 connecting L′

0 and L0 is consistent. Then,
the relationship between ∆d and δp could be set as follows:

∆d =
→
n .δp (12)

where
→
n =

(
nx, ny, nz

)
is the normalized vector from L0Ld. Meanwhile, the corresponding

system design matrix H is:

H =

nx1(RN + h)cosϕ, ny1(RM + h), nz1, 01∗12
nx2(RN + h)cosϕ, ny2(RM + h), nz2, 01∗12
nx3(RN + h)cosϕ, ny3(RM + h), nz3, 01∗12

. . .
nxi(RN + h)cosϕ, nyi(RM + h), nzi, 01∗12

 (13)

where i is the number of reference lines selected in the integrated system. It will always be
changed with the changing of point clouds.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 21

As is shown in Figure 10, ∆𝑑 is much smaller than 𝑑 or 𝑑ᇱ; it can be approximately
considered that the normal vector to the line 𝐿ଵ𝐿ଶ connecting 𝐿

ᇱ and 𝐿 is consistent.
Then, the relationship between ∆𝑑 and 𝛿𝑝 could be set as follows:

∆𝑑 = 𝑛ሬ⃗ . 𝛿𝑝 (12)

where 𝑛ሬ⃗ = (𝑛௫, 𝑛௬ , 𝑛௭) is the normalized vector from 𝐿𝐿ௗ. Meanwhile, the corresponding
system design matrix 𝐻 is:

𝐻 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑛௫ଵ(𝑅ே + ℎ)𝑐𝑜𝑠𝜙, 𝑛௬ଵ(𝑅ெ + ℎ), 𝑛௭ଵ, 0ଵ∗ଵଶ

𝑛௫ଶ(𝑅ே + ℎ)𝑐𝑜𝑠𝜙, 𝑛௬ଶ(𝑅ெ + ℎ), 𝑛௭ଶ, 0ଵ∗ଵଶ

𝑛௫ଷ(𝑅ே + ℎ)𝑐𝑜𝑠𝜙, 𝑛௬ଷ(𝑅ெ + ℎ), 𝑛௭ଷ, 0ଵ∗ଵଶ

…
𝑛௫(𝑅ே + ℎ)𝑐𝑜𝑠𝜙, 𝑛௬(𝑅ெ + ℎ), 𝑛௭ , 0ଵ∗ଵଶ ⎦

⎥
⎥
⎥
⎥
⎤

 (13)

where 𝑖 is the number of reference lines selected in the integrated system. It will always
be changed with the changing of point clouds.

Ld'

L1

L2

Ld

d'

L0'
L0

d

Figure 10. The distance from a point to a line.

For the LiDAR/IMU EKF system, the formulation linking the system observation var-
iables and state variables is:

𝑍 = 𝐻𝛿𝑥 + 𝑣 (14)

where 𝑍, 𝐻, and 𝛿𝑥 were defined previously and 𝑣 represents the observation noise. As
mentioned above, the LiDAR point cloud is the covariance value of 𝑣. LiDAR point clouds
exhibit sparsity, and the uncertainty of a single point affects its entire surrounding space.
The surrounding space is a truncated segment of a torus. For ease of calculation, this paper
assumes it to be a rectangular prism, and its volume represents the covariance value of
the measurement noise 𝑣.

For example, imagine a special distance of the reference line 𝑑. The covariance value
of the noise of 𝑑 is 𝑑

ଶ(sinଶ 𝜃 + sinଶ 𝜃௩) and 𝜃 is the horizontal separation angle of
the LiDAR device while 𝜃௩ is the vertical separation angle.

As mentioned above, 𝑖 refers to the number of reference lines; in this stated equa-
tion, this paper proposes that the following principles should be adhered to in controlling
the reference lines involved in the filtering process.
1. Region division: The point cloud is segmented into multiple regions based on the

scanning direction. Each region is characterized by the edge lines exhibiting distinct
convexity/concavity properties.

2. Reference line tracking: The position of each reference line is tracked across multiple
frames using SINS transformations. This ensures the consistent matching of the same
reference line over an extended period.

3. Dynamic reference line management: Due to the inherent sparsity of point clouds,
reference lines exceeding a predefined distance threshold are discarded. New refer-
ence lines are introduced to maintain robust matching.

3.3. Tracking of Reference Lines
1. The selection rules of the reference lines are mentioned in Section 3.2. Here, the track-

ing of these lines will be revealed with details.

Figure 10. The distance from a point to a line.

For the LiDAR/IMU EKF system, the formulation linking the system observation
variables and state variables is:

Z = Hδx + v (14)

where Z, H, and δx were defined previously and v represents the observation noise. As
mentioned above, the LiDAR point cloud is the covariance value of v. LiDAR point clouds
exhibit sparsity, and the uncertainty of a single point affects its entire surrounding space.
The surrounding space is a truncated segment of a torus. For ease of calculation, this paper
assumes it to be a rectangular prism, and its volume represents the covariance value of the
measurement noise v.

For example, imagine a special distance of the reference line d0. The covariance value
of the noise of d0 is d2

0
(
sin2 θh + sin2 θv

)
and θh is the horizontal separation angle of the

LiDAR device while θv is the vertical separation angle.
As mentioned above, i refers to the number of reference lines; in this stated equation,

this paper proposes that the following principles should be adhered to in controlling the
reference lines involved in the filtering process.

1. Region division: The point cloud is segmented into multiple regions based on the
scanning direction. Each region is characterized by the edge lines exhibiting distinct
convexity/concavity properties.

2. Reference line tracking: The position of each reference line is tracked across multiple
frames using SINS transformations. This ensures the consistent matching of the same
reference line over an extended period.

3. Dynamic reference line management: Due to the inherent sparsity of point clouds, ref-
erence lines exceeding a predefined distance threshold are discarded. New reference
lines are introduced to maintain robust matching.

Remote Sens. 2024, 16, 2527 12 of 21

3.3. Tracking of Reference Lines

1. The selection rules of the reference lines are mentioned in Section 3.2. Here, the
tracking of these lines will be revealed with details.

2. As mentioned in Section 2.3, scan context built a series of point bins to extract the point
cloud information. Imagine the attitude transformation matrix during the tracking
period is R3∗3 while the t3∗1 represents the displacement provided by SINS. The
projections L′

1, L′
2 of points L1 and L2 in the new point cloud could be calculated in

Equation (12): [
L′

1
1

]
=

[
RT

3∗3 −t3∗1
01∗3 1

][
L1
1

]
(15)

3. Connect L1 and L2 to obtain the scan context bins they pass through. By statistically
analyzing these bins with their adjacent bins, select the edge line Lnew that is also
located in the same bin area. To further determine whether it is derived from a change
in the original edge line, in addition to judging its concavity and convexity as well as
the concavity and convexity and distance of the closest edge line, a further similarity
analysis can be conducted on the line vectors.

s = 1 −
→

L′
1L′

2.
→

Lnew
→∥∥L′
1L′

2

∥∥ →
∥Lnew∥

(16)

4. The smaller the value of s is, the higher the similarity between the two lines is. Based
on the above conditions, it can be determined whether the new edge line is the target
that needs to be tracked. The final threshold selection for this paper can be referred to
in the data presented in Table 1.

Table 1. Parameters of method in this paper.

Parameters Value

Separated Point Cloud Region 8
Reference Line Distance Threshold 80 m

Set of Points 10
Edge Line Similarity Detection Threshold 0.01

4. Experiment
4.1. Algorithm Parameter Settings

As mentioned in the above text, the algorithm parameter settings for the relevant
experiments of this paper are all listed in the Table 1.

4.2. Sensors System

All the sensors were mounted on a sport utility vehicle (SUV) for data collection. The
LiDAR unit and the GNSS antennas were installed on the roof, while the SINS equipment
and power supply were secured within the SUV.

Figure 11 depicts the experimental setup, which utilized a high-performance fiber-
optic gyroscope navigation system (Self-developed experimental equipment of Harbin
Engineering University, Heilongjiang, China.) integrated with a GNSS receiver (K823 GNSS
receiver, ComNav Technology Ltd., Shanghai, China) to provide ground truth data. Table 2
summarizes the specifications of this system. The precise alignment of sensor positions
is crucial to minimize navigation errors arising from lever arm effects. Therefore, the
central positions of all sensors were carefully measured and aligned with the azimuth axis.
Detailed measurement data are available in Table A1. Note that this table omits sensors
with less stringent relative positioning requirements, such as the magnetometer used for
initial SLAM orientation.

Remote Sens. 2024, 16, 2527 13 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 21

(a) (b)

Figure 11. The experimental hardware: (a) shows the 3D LiDAR and GNSS antenna while (b) shows
the GNSS processing, fiber optic gyroscope, and MEMS.

Table 2. The specifications of reference integrated navigation system.

Reference Accuracy Specifications
Pitch <0.02°
Yaw <0.02°

Heading <0.05°
Velocity (Integrated) <0.1 m/s

Positioning (Integrated) <1 m
Output Rate 100 Hz

The LiDAR sensor employed in this study was the Leishen 16 Line 3D-LiDAR, with
performance parameters detailed in Table 3.

Table 3. The performance parameters of 3D-LiDAR.

Performance Parameters
Detection Range 200 m

Point Rate 320,000 pts/s (single echo)
Distance Measurement Accuracy ±3 cm

Laser Wavelength 905 nm
Maximum Echo Count for Reception 2

Scanning Channels 16
Field-of-View Angle 360° × −15°~15°
Scanning Frequency 5~20 Hz
Angular Resolution 5 Hz: 0.09° / 10 Hz: 0.18°

Power Supply Range 9 V ~36 V DC
Operating Temperature −20 °C~55 °C

Table 4 lists the performance parameters of the ADIS16445 (Analog Devices, Inc.
USA) Micro-Electro-Mechanical System (MEMS), a complete inertial system comprising a
tri-axial gyroscope and a tri-axial accelerometer. The UM6 (Clearpath Robotics, Canada)
magnetometer provided a static heading with an accuracy of beĴer than 2°, serving as the
initial heading for the system. Similarly, the GNSS receiver provided the initial longitude,
latitude, and altitude.

Figure 11. The experimental hardware: (a) shows the 3D LiDAR and GNSS antenna while (b) shows
the GNSS processing, fiber optic gyroscope, and MEMS.

Table 2. The specifications of reference integrated navigation system.

Reference Accuracy Specifications

Pitch <0.02◦

Yaw <0.02◦

Heading <0.05◦

Velocity (Integrated) <0.1 m/s
Positioning (Integrated) <1 m

Output Rate 100 Hz

The LiDAR sensor employed in this study was the Leishen 16 Line 3D-LiDAR, with
performance parameters detailed in Table 3.

Table 3. The performance parameters of 3D-LiDAR.

Performance Parameters

Detection Range 200 m
Point Rate 320,000 pts/s (single echo)

Distance Measurement Accuracy ±3 cm
Laser Wavelength 905 nm

Maximum Echo Count for Reception 2
Scanning Channels 16

Field-of-View Angle 360◦ × −15◦~15◦

Scanning Frequency 5~20 Hz
Angular Resolution 5 Hz: 0.09◦/10 Hz: 0.18◦

Power Supply Range 9 V~36 V DC
Operating Temperature −20 ◦C~55 ◦C

Table 4 lists the performance parameters of the ADIS16445 (Analog Devices, Inc.,
Wilmington, MA, USA) Micro-Electro-Mechanical System (MEMS), a complete inertial
system comprising a tri-axial gyroscope and a tri-axial accelerometer. The UM6 (Clearpath
Robotics, Kitchener, ON, Canada) magnetometer provided a static heading with an accuracy
of better than 2◦, serving as the initial heading for the system. Similarly, the GNSS receiver
provided the initial longitude, latitude, and altitude.

Data processing was performed on a laptop equipped with an Intel i7-6700 CPU,
a GT960m graphics card, and 12 GB of RAM. The operating system was Ubuntu 16.04,
running the ROS (robot operating system) kinetic distribution. This software environment
supports both sophisticated data simulation and advanced graphical rendering.

Remote Sens. 2024, 16, 2527 14 of 21

Table 4. The performance parameters of ADIS16445.

Performance Parameters

Gyroscope Dynamic Range ±250◦/s
Gyroscope Sensitivity 0.01◦/s

Gyroscope Nonlinearity ±0.1%
Gyroscope Bias Stability 12◦/h
Angular Random Walk 0.56◦/

√
h

Accelerometer Dynamic Range ±5 g
Accelerometer Sensitivity 0.25 mg

Accelerometer Nonlinearity ±0.2%
Accelerometer Bias Stability 0.075 mg

Velocity Random Walk 0.0735 m/s/
√

h
Bandwidth 330 Hz

Output Rate 100 Hz

4.3. Experimental Area

All data in the paper were collected in April 2023 at Harbin Engineering University and
its surrounding areas, with geographic coordinates approximately at 126.68◦ longitude and
45.77◦ latitude and an elevation of about 130 m. Based on the actual driving environment,
the driving speed of the SUV in different experiments was controlled between 15 km/h
and 30 km/h.

4.4. Result and Analysis

As shown in Figure 12, this work compared two currently popular LiDAR SLAM
methods with the algorithm proposed in the text. When the information is relatively
rich, both LOAM and the algorithm presented in this paper achieved satisfactory results.
However, due to the incorrect loop closure judgment at the end, SC-Lego-LOAM resulted in
a certain deviation in the overall outcome. When the scene information was not sufficiently
rich, such as in Figure 13, the LOAM algorithm exhibited attitude deviations at the end,
which led to errors in the navigation results. In contrast, SC-Lego-LOAM encountered
more severe errors in loop closure, rendering it entirely inoperative.

Data_1 was collected at 6 PM on 4 April 2023, near Building 61 of Harbin Engineering
University, with a total traveled distance of 1460 m. In this scenario, the SUV’s route
was to circle around the building for two laps, and the main purpose of the scene setup
was to verify the effectiveness of the algorithm in the paper under general environmental
conditions. In the initial 1000 m, SC-Lego-LOAM maintained relatively good performance.
However, after the final incorrect loop closure, the total distance was re-optimized, which
led to a significant misalignment between the final distance and the azimuth angle. The
method presented in this paper performed similarly to LOAM in the early stages, but
because the original LOAM lacked loop closure detection functionality, its errors were
bound to increase over time. Table 5 provides an overall summary of that experiment.

Data_2 was collected at 5 PM on 5 April 2023, near the parking lot of Harbin Engi-
neering University, with a total traveled distance of 1403 m. As is shown in Figure 14
and Table 6, the structural feature weakened near the parking lot; the lack of structural
features caused matching issues with the algorithm that relied on points. The experiment
was mainly designed to demonstrate the stability of the algorithm in this paper relative
to the comparative algorithms under the preset conditions of this paper. Judging from
the comparison of results, the incorrect loop closure (red circle) by SC-Lego-LOAM led
to severe issues once again, causing the method to fail entirely in this set of experiments.
After the first loop closure, LOAM began to accumulate heading errors, which resulted
in the continuous amplification of positioning errors in the subsequent SLAM due to the
heading deviation.

Remote Sens. 2024, 16, 2527 15 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 21

(a) (b)

(c) (d)

(e)

Figure 12. The result of LiDAR SLAM in Data_1: (a) was built by the LOAM; (b) was built by SC-
Lego-LOAM; (c) shows the mapping result of the method from this paper; (d) depicts a direct com-
parison between various algorithms; (e) represents the positioning errors of the algorithms meas-
ured in meters.

126.68 126.681 126.682

 Long / °

45.7745

45.775

45.7755

45.776

45.7765

45.777

Method in Paper

GroundTruth

Loam

SC-Lego-Loam

Start-Point

End-Point

Figure 12. The result of LiDAR SLAM in Data_1: (a) was built by the LOAM; (b) was built by
SC-Lego-LOAM; (c) shows the mapping result of the method from this paper; (d) depicts a direct
comparison between various algorithms; (e) represents the positioning errors of the algorithms
measured in meters.

Remote Sens. 2024, 16, 2527 16 of 21Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 21

(a) (b)

(c) (d)

(e)

Figure 13. The result of LiDAR SLAM in Data_0405: (a) was built by the LOAM; (b) was built by
SC-Lego-LOAM; (c) shows the mapping result of the method from this paper; (d) depicts a direct
comparison between various algorithms; (e) represents the positioning errors of the algorithms
measured in meters.

Data_1 was collected at 6 PM on April 4, 2023, near Building 61 of Harbin Engineering
University, with a total traveled distance of 1460 m. In this scenario, the SUV’s route was
to circle around the building for two laps, and the main purpose of the scene setup was to
verify the effectiveness of the algorithm in the paper under general environmental condi-
tions. In the initial 1000 m, SC-Lego-LOAM maintained relatively good performance.
However, after the final incorrect loop closure, the total distance was re-optimized, which

Figure 13. The result of LiDAR SLAM in Data_0405: (a) was built by the LOAM; (b) was built by
SC-Lego-LOAM; (c) shows the mapping result of the method from this paper; (d) depicts a direct
comparison between various algorithms; (e) represents the positioning errors of the algorithms
measured in meters.

Remote Sens. 2024, 16, 2527 17 of 21

Table 5. The performance of SLAM methods for Data_1.

Method LOAM SC-Lego-LOAM Method in Paper

Avg. Positioning Error (m) 3.89 4.14 3.33
Final Heading Error (◦) 2.17 5.43 2.32

Max Positioning Error (m) 6.17 10.12 5.32
Travel Distance Error (m) 17 18 13

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 21

led to a significant misalignment between the final distance and the azimuth angle. The
method presented in this paper performed similarly to LOAM in the early stages, but be-
cause the original LOAM lacked loop closure detection functionality, its errors were
bound to increase over time. Table 5 provides an overall summary of that experiment.

Table 5. The performance of SLAM methods for Data_1.

Method LOAM SC-Lego-LOAM Method in Paper
Avg. Positioning Error (m) 3.89 4.14 3.33

Final Heading Error (°) 2.17 5.43 2.32
Max Positioning Error (m) 6.17 10.12 5.32
Travel Distance Error (m) 17 18 13

Data_2 was collected at 5 PM on April 5, 2023, near the parking lot of Harbin Engi-
neering University, with a total traveled distance of 1403 m. As is shown in Figure 14 and
Table 6, the structural feature weakened near the parking lot; the lack of structural features
caused matching issues with the algorithm that relied on points. The experiment was
mainly designed to demonstrate the stability of the algorithm in this paper relative to the
comparative algorithms under the preset conditions of this paper. Judging from the com-
parison of results, the incorrect loop closure (red circle) by SC-Lego-LOAM led to severe
issues once again, causing the method to fail entirely in this set of experiments. After the
first loop closure, LOAM began to accumulate heading errors, which resulted in the con-
tinuous amplification of positioning errors in the subsequent SLAM due to the heading
deviation.

Table 6. The performance of SLAM methods for Data_2.

Method LOAM SC-Lego-LOAM Method in Paper
Avg. Positioning Error (m) 5.79 Failed 2.25

Final Heading Error (°) 6.22 Failed 1.02
Max Positioning Error (m) 15.17 Failed 4.12
Travel Distance Error (m) 22 Failed 11

Figure 14. The point clouds near the parking lot.

The remaining data were also collected from 3–5, April 2023, at Harbin Engineering
University and its surrounding areas. Data_3 had a loop closure point available shortly
after the start, which could be used to eliminate accumulated errors. Data_4 featured a
longer segment of nearly straight-line travel. These two sets of experiments were not de-
signed intentionally with specific scenarios. They were standard test experiments; hence,
they are not elaborately compared in detail within the text but are listed as supplementary
experimental data in the Table 7.

Figure 14. The point clouds near the parking lot.

Table 6. The performance of SLAM methods for Data_2.

Method LOAM SC-Lego-LOAM Method in Paper

Avg. Positioning Error (m) 5.79 Failed 2.25
Final Heading Error (◦) 6.22 Failed 1.02

Max Positioning Error (m) 15.17 Failed 4.12
Travel Distance Error (m) 22 Failed 11

The remaining data were also collected from 3–5 April 2023, at Harbin Engineering
University and its surrounding areas. Data_3 had a loop closure point available shortly
after the start, which could be used to eliminate accumulated errors. Data_4 featured
a longer segment of nearly straight-line travel. These two sets of experiments were not
designed intentionally with specific scenarios. They were standard test experiments; hence,
they are not elaborately compared in detail within the text but are listed as supplementary
experimental data in the Table 7.

Remote Sens. 2024, 16, 2527 18 of 21

Table 7. Comparison of positioning errors for other data.

Data LOAM SC-Lego-LOAM Method in Paper Travel Distance

Data_3 28.79 m 18.12 m 14.17 m 2205 m
Data_4 16.73 m 9.25 m 10.34 m 2234 m

5. Discussion
5.1. Results’ Interpretation and Contribution

It redefines the fundamental computational unit in LiDAR SLAM by shifting the
focus from LiDAR regression to an INS, rather than treating it as merely an accessory to
LiDAR. The high-frequency output from the SINS navigation significantly reduced the
computational load on the odometry component of LiDAR SLAM, thereby enhancing the
accuracy of its positioning results.

In conventional scenarios, the performance of the algorithm proposed herein was
comparable to that of LOAM. However, in scenarios where structural features were sparse
or lacking, the algorithm demonstrated superior performance. The experimental results
indicate that, while the algorithm achieved results similar to LOAM under typical con-
ditions, it excelled in environments with limited structural features. In experiments that
satisfied loop closure conditions, its relative advantage was even more pronounced. The
relative accuracy improved by approximately 17%. From Figure 12, it can be observed
that, in a general scenario, although the algorithm in the paper achieved good results, its
basic performance was consistent with the other two algorithms. This scenario was only to
verify the universal applicability of the algorithm in the paper, so there was no significant
improvement in the specific comparative data. Figure 13 (DATA_2) is a preset scenario for
the paper. Excluding the SC-Lego-LOAM algorithm, which was eliminated due to loop
closure failure, from the error in Figure 13e, it can be seen that, after entering the parking
lot environment, the error of the LOAM algorithm began to gradually increase, while the
algorithm in the paper maintained a stable trajectory tracking. This fully demonstrated
that the algorithm proposed in the paper achieved optimization for special scenarios while
maintaining universality.

At the same time, this paper reorganizes and extracts the inherent characteristics of
the point cloud. It goes a step further in the use of points, focusing the application of
LiDAR point clouds on the edges that are less susceptible to the sparsity of point clouds
and frequent changes in attitude matrices. This virtual edge composed of edge points
is inherently a form of clustering. As long as points that meet the clustering criteria can
be scanned, they can be continuously tracked in LiDAR SLAM and used to correct the
positioning results of SINS. Of course, considering that the density of the point cloud has
an attenuation characteristic with distance, in actual selection, further screening will only
be carried out when a cluster contains at least four consecutive points and the line length
exceeds 1 m. The selection of line distance rather than points, lines, or surfaces as the
observation variable effectively reduces the computational load of the filter and increases
the feasibility of real-time computation on low-performance devices.

For LiDAR SLAM loop closure based on scan context, the paper also makes certain
rules changes. Experiments have proven that it can effectively reduce the occurrence of
incorrect loop closure points and thereby enhance the overall accuracy of SLAM.

Although LiDAR SLAM algorithms based on machine learning have achieved excel-
lent results, for in-vehicle processors, due to limitations in size and power, it is still difficult
for their core to meet the real-time requirements in navigation. This work provides another
feasible path within traditional algorithms.

5.2. Further Research

The experimental results presented in this paper demonstrate that the algorithm pro-
posed within the text has superiority over traditional algorithms in both the odometry and
mapping components of LiDAR SLAM. However, the results for Data_5 also indicate that in

Remote Sens. 2024, 16, 2527 19 of 21

complex long-distance environments, relying solely on LiDAR and SINS for navigation still
cannot achieve long-term precise positioning. This suggests that the algorithm presented
in the paper should only be used as a supplementary method to maintain the original
navigation accuracy when GNSS signals are lost, rather than a complete substitute, in urban
environments. In future research, exploring how to integrate GNSS-related data to further
enhance the performance of LiDAR SLAM will be investigated.

Additionally, another point that requires attention is that, similar to other LiDAR
algorithms, the divergence issue in the height channel of the algorithm presented in the
paper has not been significantly improved. When the LiDAR is scanning in open areas
(such as forest trails), it becomes extremely difficult to obtain lateral edge lines, and at
this point, 3D LiDAR SLAM can degrade to a performance like that of 2D LiDAR SLAM.
Furthermore, how to further subdivide and utilize ground points will also be one of the
key research projects’ focuses in the future.

6. Conclusions

This paper presents a novel LiDAR/SINS tightly integrated SLAM algorithm designed
to address the localization challenges in urban environments characterized by sparse
structural features. Building upon the LOAM framework, the algorithm introduces further
processing of LiDAR point cloud classification to extract edge lines through clustering.
Leveraging the rotational invariance of distance, the algorithm constructs a Kalman filter
system based on the distance variation in edge lines. This approach contributes to enhanced
robustness and positioning accuracy.

Experimental results obtained in local urban scenarios demonstrated a 17% enhance-
ment in positioning accuracy when compared to traditional point-based methods, particu-
larly in environments characterized by sparse features. By proposing a line distance-based
observation model and detailing the associated EKF framework and parameter settings, the
proposed method redefines the concepts of loosely and tightly coupled integration within
LiDAR/SINS systems.

Future research will explore the integration of GNSS data to further enhance the
performance of the proposed LiDAR SLAM system, particularly in complex and long-
distance navigation scenarios. Additionally, key areas of focus for future work include
improving performance in open areas, particularly in the vertical channel, and optimizing
ground point utilization.

This study not only achieves significant algorithmic improvements over existing
methods but also paves a new technological pathway for autonomous driving and robotic
navigation applications.

Author Contributions: Conceptualization, X.X. and L.G.; methodology, X.X.; software, X.X.; valida-
tion, X.X., Y.C. and Z.L.; formal analysis, X.X. and L.G; investigation, X.X.; resources, X.X. and Z.L.;
data curation, X.X.; writing—original draft preparation, X.X.; writing—review and editing, X.X. and
L.G.; visualization, X.X. and Y.C.; supervision, L.G. and Y.G.; project administration, Y.G.; funding
acquisition, L.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Department of Science and Technology of Heilongjiang
Province (2023ZX01A21) and the National Natural Science Foundation of China (NSFC. 61803118).

Data Availability Statement: The datasets presented in this article are not readily available be-
cause they are part of an ongoing study. Requests to access the datasets should be directed to the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Remote Sens. 2024, 16, 2527 20 of 21

Appendix A

The parameter settings for F in Equation (6) are as follows:

F11 =

 0 0 −
.
ϕ

RM+h
.
λtanϕ 0 −

.
λ

RM+h
0 0 0

, F23 =

 0 fu − fn
− fu 0 fe

fn − fe 0

,

F12 =

 0 1
RM+h 0

1
(RN+h)cosϕ

0 0
0 0 1

, F32 =

 0 1
RM+h 0

−1
RN+h 0 0
−tanϕ
RN+h 0 0

,

F21 =

2ωe(vusinϕ + vncosϕ) +
.
λvn/cosϕ 0 0

−2ωevecosϕ −
.
λve/cosϕ 0 0

−2ωevesinϕ 0 2g/RN

,

F22 =

(vntanϕ − vu)/(RN + h)
(

2ωe +
.
λ
)

sinϕ −
(

2ωe +
.
λ
)

cosϕ

−2ωevecosϕ −
.
λve/cosϕ −vu/(RM + h) −

.
ϕ

−2ωevesinϕ 2
.
ϕ 0

,

F31 =

 0 0 −
.
ϕ/(RM + h)

ωesinϕ 0
.
λcosϕ/(RN + h)

−ωecosϕ −
.
λ/(RN + h)cosϕ 0

.
λsinϕ/(RN + h)

,

F44 =

−βωx 0 0
0 −βωy 0
0 0 −βωz

, F55 =

−β f x 0 0
0 −β f y 0
0 0 −β f z

,

F33 =

0 (ω e +

.
λ
)

sinϕ −(ω e +
.
λ
)

cosϕ

−(ω e +
.
λ
)

sinϕ 0 −
.
ϕ

(ω e +
.
λ
)

cosϕ
.
ϕ 0

(A1)

Table A1. The positions of different sensors relative to the FOG center.

Sensors Right Forward Up

MEMS 5.3 cm −22.5 cm −4.3 cm
LiDAR −32.5 cm 78 cm 113.5 cm

GNSS Antenna 21.5 cm 68.5 cm 83 cm

References
1. Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. Fast SLAM: A factored solution to the simultaneous localization and mapping

problem. In Proceedings of the AAAI-02: Eighteenth National Conference on Artificial Intelligence, Edmonton, AL, Canada,
28 July–1 August 2002; Volume 593598.

2. Huang, L. Review on LiDAR-based SLAM techniques. In Proceedings of the 2021 International Conference on Signal Processing
and Machine Learning (CONF-SPML), Stanford, CA, USA, 14 November 2021; pp. 163–168.

3. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of
simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

4. Biber, P.; Straßer, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA,
27–31 October 2003; Volume 3, pp. 2743–2748.

5. Rusinkiewicz, S.; Levoy, M. Efficient Variants of the ICP Algorithm. In Proceedings of the of the Third International Conference
on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152.

6. Hung, Y.-W.; Chen, Y.-C.; Lo, C.; So, A.G.; Chang, S.-C. Dynamic workload allocation for edge computing. IEEE Trans. Very
Large-Scale Integr. (VLSI) Syst. 2021, 29, 519–529. [CrossRef]

7. Deng, Q.; Sun, H.; Chen, F.; Shu, Y.; Wang, H.; Ha, Y. An Optimized FPGA-Based Real-Time NDT for 3D-LiDAR Localization in
Smart Vehicles. IEEE Trans. Circuits Syst. II: Express Briefs 2021, 68, 3167–3171. [CrossRef]

8. Jiang, M.; Song, S.; Li, Y.; Liu, J.; Feng, X. Scan registration for mechanical scanning imaging sonar using kD2D-NDT. In
Proceedings of the 2018 Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 6425–6430.

https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TVLSI.2021.3049520
https://doi.org/10.1109/TCSII.2021.3095764

Remote Sens. 2024, 16, 2527 21 of 21

9. Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. Robot. Sci. Syst. 2014, 2, 1–9.
10. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain.

In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018. [CrossRef]

11. He, L.; Wang, X.; Zhang, H. M2DP: A novel 3D point cloud descriptor and its application in loop closure detection. In
Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of
Korea, 9–14 October 2016. [CrossRef]

12. Kim, G.; Kim, A. Scan Context: Egocentric Spatial Descriptor for Place Recognition within 3D Point Cloud Map. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 4802–4809. [CrossRef]

13. Kim, G.; Choi, S.; Kim, A. Scan Context++: Structural Place Recognition Robust to Rotation and Lateral Variations in Urban
Environments. IEEE Trans. Robot. 2022, 38, 1856–1874. [CrossRef]

14. Wang, H.; Wang, C.; Chen, C.L.; Xie, L. F-loam: Fast lidar odometry and mapping. In Proceedings of the 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021;
pp. 4390–4396.

15. Tang, J.; Chen, Y.; Niu, X.; Wang, L.; Chen, L.; Liu, J.; Shi, C.; Hyyppa, J. Lidar scan matching aided inertial navigation system in
gnss-denied environments. Sensors 2015, 15, 16710–16728. [CrossRef] [PubMed]

16. Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M. A Review of Multi-Sensor Fusion SLAM Systems Based on
3D LIDAR. Remote Sens. 2022, 14, 2835. [CrossRef]

17. Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Globally consistent and tightly coupled 3D LiDAR inertial mapping. In Proceedings
of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5622–5628.

18. Ye, H.; Chen, Y.; Liu, M. Tightly coupled 3d lidar inertial odometry and mapping. In Proceedings of the 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150.

19. Rabbou, M.A.; El-Rabbany, A. Tightly coupled integration of GPS precise point positioning and MEMS-based inertial systems.
GPS Solut. 2015, 19, 601–609. [CrossRef]

20. Rong, H.; Gao, Y.; Guan, L.; Ramirez-Serrano, A.; Xu, X.; Zhu, Y. Point-Line Visual Stereo SLAM Using EDlines and PL-BoW.
Remote Sens. 2021, 13, 3591. [CrossRef]

21. Wang, H.; Guan, L.; Yu, X.; Zhang, Z. PL-ISLAM: An Accurate Monocular Visual-Inertial SLAM with Point and Line Features. In
Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7–10 August
2022; pp. 1141–1146. [CrossRef]

22. Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation. In Proceedings of the
2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 3565–3572.

23. 32/16-Line Mechanical Line Mechanical LiDAR|Leishen Intelligent System. Available online: https://www.lslidar.com/product/
c32-16-mechanical-lidar/ (accessed on 6 July 2024).

24. Himmelsbach, M.; Hundelshausen, F.V.; Wuensche, H.-J. Fast Segmentation of 3D Point Clouds for Ground Vehicles. In
Proceedings of the IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010; pp. 560–565.

25. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

26. Bogoslavskyi, I.; Stachniss, C. Fast Range Image-based Segmentation of Sparse 3D Laser Scans for Online Operation. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea, 9–14 October 2016;
pp. 163–169.

27. Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete algorithms (SODA), New Orleans, LA, USA, 7–9 January 2007; Volume 7, pp. 1027–1035.

28. Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach.
Intell. 2002, 24, 509–522. [CrossRef]

29. Guan, L.; Cong, X.; Sun, Y.; Gao, Y.; Iqbal, U.; Noureldin, A. Enhanced MEMS SINS aided pipeline surveying system by pipeline
junction detection in small diameter pipeline. IFAC-Pap. 2017, 50, 3560–3565. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/IROS.2018.8594299
https://doi.org/10.1109/IROS.2016.7759060
https://doi.org/10.1109/IROS.2018.8593953
https://doi.org/10.1109/TRO.2021.3116424
https://doi.org/10.3390/s150716710
https://www.ncbi.nlm.nih.gov/pubmed/26184206
https://doi.org/10.3390/rs14122835
https://doi.org/10.1007/s10291-014-0415-3
https://doi.org/10.3390/rs13183591
https://doi.org/10.1109/ICMA54519.2022.9855993
https://www.lslidar.com/product/c32-16-mechanical-lidar/
https://www.lslidar.com/product/c32-16-mechanical-lidar/
https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/34.993558
https://doi.org/10.1016/j.ifacol.2017.08.962

	Introduction
	Method
	Algorithm Overview
	Point Cloud Classification and Point Cloud Lines Extraction
	Ground Points
	Edge and Planar Points
	Edge Lines

	Scan Context

	LiDAR/SINS System Model
	System Error Model
	The Observation Model
	Tracking of Reference Lines

	Experiment
	Algorithm Parameter Settings
	Sensors System
	Experimental Area
	Result and Analysis

	Discussion
	Results’ Interpretation and Contribution
	Further Research

	Conclusions
	Appendix A
	References

