
Citation: Vazquez-Cuervo, J.; Steele,

M.; Wethey, D.S.; Gómez-Valdés, J.;

García-Reyes, M.; Spratt, R.; Wang, Y.

Validation and Application of

Satellite-Derived Sea Surface

Temperature Gradients in the Bering

Strait and Bering Sea. Remote Sens.

2024, 16, 2530. https://doi.org/

10.3390/rs16142530

Academic Editor: Chung-Ru Ho

Received: 25 May 2024

Revised: 4 July 2024

Accepted: 5 July 2024

Published: 10 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Validation and Application of Satellite-Derived Sea Surface
Temperature Gradients in the Bering Strait and Bering Sea
Jorge Vazquez-Cuervo 1,* , Michael Steele 2, David S. Wethey 3 , José Gómez-Valdés 4 , Marisol García-Reyes 5,
Rachel Spratt 1 and Yang Wang 2

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
rachel.m.spratt@jpl.nasa.gov

2 Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA; masxxx@uw.edu (M.S.);
ktywang@uw.edu (Y.W.)

3 Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
wethey@biol.sc.edu

4 CICESE Institute, Center for Scientific Research and Higher Education, Ensenada 22860, Mexico;
jgomez@cicese.mx

5 Farallon Institute, Petaluma, CA 94952, USA; marisolgr@faralloninstitute.org
* Correspondence: jorge.vazquez@jpl.nasa.gov

Abstract: The Arctic is one of the most important regions in the world’s oceans for understanding
the impacts of a changing climate. Yet, it is also difficult to measure because of extreme weather and
ice conditions. In this work, we directly compare four datasets from the Group for High-Resolution
Sea Surface Temperature (GHRSST) with a NASA Saildrone deployment along the Alaskan Coast
and the Bering Sea and Bering Strait. The four datasets used are the Remote Sensing Systems
Microwave Infrared Optimally Interpolated (MWIR) product, the Canadian Meteorological Center
(CMC) product, the Daily Optimally Interpolated Product (DOISST), and the Operational Sea Surface
Temperature and Ice Analysis (OSTIA) product. Spatial sea surface temperature (SST) gradients
were derived for both the Saildrone deployment and GHRSST products, with the GHRSST products
collocated with the Saildrone deployment. Overall, statistics indicate that the OSTIA product had a
correlation of 0.79 and a root mean square difference of 0.11 ◦C/km when compared with Saildrone.
CMC had the highest correlation of 0.81. Scatter plots indicate that OSTIA had the slope closest
to one, thus best reproducing the magnitudes of the Saildrone gradients. Differences increased at
latitudes > 65◦N where sea ice would have a greater impact. A trend analysis was then performed on
the gradient fields. Overall, positive trends in gradients occurred in areas along the coastal regions. A
negative trend occurred at approximately 60◦N. A major finding of this study is that future work
needs to revolve around the impact of changing ice conditions on SST gradients. Another major
finding is that a northward shift in the southern ice edge occurred after 2010 with a maxima at
approximately 2019. This indicates that the shift of the southern ice edge is not gradual but has
dramatically increased over the last decade. Future work needs to revolve around examining the
possible causes for this northward shift.

Keywords: Arctic; SST; gradients; sea ice

1. Introduction

The Arctic is one of the most important regions in the world’s oceans for understanding
the impacts of a changing climate. Yet, it is also difficult to measure because of extreme
weather and ice conditions. This paper focuses on three primary issues. First, satellite-
derived sea surface temperature (SST) gradients will be validated in the eastern Bering Strait
and Bering Sea, including the region off the Alaskan Coast, by comparing directly with SST
gradients derived from a Saildrone (uncrewed vehicle). Second, trends in SST gradients
will be derived for this same area. The ability to monitor changes in SST gradients in the
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Arctic will allow for improved monitoring of coastal regions. Third, a methodology will be
introduced to determine the relationship between sea ice concentration (SIC) gradients and
SST gradients, which will be used to determine possible shifts in the sea ice edge between
2002 and 2022.

Satellite observations face severe challenges in measuring the Arctic marine environ-
ment. For SST, one limitation is that some algorithms (such as multiple products from
the Group for High-Resolution Sea Surface Temperature (GHRSST)) apply data fusion
from different satellites and rely on nighttime data to reference all SSTs to a foundation
temperature [1]. This is defined as the depth where the temperature is no longer impacted
by diurnal changes [1]. This technique is problematic in the Arctic where extended periods
of time with no nighttime temperatures can lead to large data gaps. Another issue is
the difficulty in determining sea ice masks in the Arctic to accurately determine areas of
the ocean that are ice-free, especially in the summer; improving these masks is especially
critical to understanding decadal signals. Because satellite-derived SSTs have now existed
for over 40 years [2], the opportunity exists for the application of satellite-derived SSTs to
examine changes in decadal time sales. In this study, the focus will be on the Bering Strait
and the Bering Sea. The intent is to show the utility of satellite products in the area and
motivate future work.

The focus on gradients is two-fold; it involves examining both SST and sea ice gradi-
ents. The rationale for this can be seen in multiple ways. Freshwater fluxes from rivers
can cause changes in SST, which will impact gradients. Additionally, changes in SST will
impact sea ice formation. Of course, another motivating factor for focusing on gradients is
the importance of air–sea coupling. A major goal of the work is to examine the possible
movement of the southern ice edge over the last 20 years. For this purpose, gradients of sea
ice concentration are crucial. Overall, to our best knowledge, there has not been extensive
research on the topics of gradients in the Bering Strait and Bering Sea. A review of this
work will be highlighted as the results are presented in Sections 3 and 4.

Previous studies have shown that the Arctic is impacted by freshwater fluxes from
rivers, ice melt, and precipitation [3]. The major source of freshwater is the Arctic rivers.
Hall et al. [3] determined a negative trend in freshening on the Russian shelf. The Russian
shelf was responsible for 16 percent of the freshwater volume. Zhang et al. [4] determined
that the Beaufort gyre had increased freshening by 40 percent in the last two decades.
Additionally, atmospheric/ocean coupling can drive changes in the ocean circulation,
impacting ocean temperatures. The impacts of river and atmospheric circulations should
create gradients in both SSTs and SICs in the Arctic.

One major issue in examining the relationship between SST and SIC is how ice masks
are applied, specifically to the GHRSST products. In a detailed analysis, Castro et al. [5]
examined the relationship between the sea ice edge and sea surface temperature. They
developed a filter to remove outliers based on the SST and SIC, which significantly im-
proved SST at the ice edge (compared to in situ observations). We will follow a similar
methodology by directly comparing SST L4 products with in situ observations taken by a
Saildrone (uncrewed vehicle) near the Alaskan Coast. This paper is divided into five sec-
tions: Sections 1 and 2, where the data used are described as well as the methodology for
collocation and validation; Section 3, where the major results are presented; Section 4, where
the results are interpreted in terms of possible impacts in the region; and Section 5. Section 4
will focus on the validation of satellite SST gradients compared with Saildrone-derived
gradients. Additionally, trends in SST gradients will be examined. The Discussion section
will focus on examining the relationship between SST gradients and SIC and possible
relationships to changes in the southern ice edge.

2. Material and Methods
2.1. Data

Four products from GHRSST were analyzed: the microwave-infrared merged product
produced by remote sensing systems (MWIR), the Canadian Meteorological Center SST
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product (CMC), the daily optimally interpolated sea surface temperature product (DOISST)
produced by the National Centers for Environmental Information (NCEI), and the opera-
tional sea surface temperature and sea ice analysis (OSTIA) product produced by the United
Kingdom Met Office. All of these products are available through the Physical Oceanog-
raphy Distributed Active Archive Center (PO.DAAC) (http://podaac.jpl.nasa.gov). All
the products are available in the GHRSST Data Specification version 2.0 (GDS2) netcdf4
format. Information on the GDS2 specifications may be found at: https://archive.podaac.
earthdata.nasa.gov/podaac-ops-cumulus-docs/ghrsst/open/docs/GDS20r5.pdf. All the
data were accessed on 10 January 2024. This includes the remote sensing products as well
as the Saildrone data.

2.1.1. MWIR

The MWIR product is optimally interpolated onto a 0.09-degree equirectangular
global grid on a daily time scale, covering the years 2003–present. MWIR uses microwave
(MW) sensors from the Global Precipitation Measurement Microwave Imager, the Tropical
Rainfall Measuring Mission Microwave Imager, the NASA Advanced Microwave Scanning
Radiometer-EOS, the Advanced Microwave Scanning Radiometer 2 onboard the GCOM-
W1 satellite, and WindSat. Infrared (IR) sensors include the Moderate Resolution Imaging
Spectroradiometer on the NASA Aqua and Terra platforms and the Visible Infrared Imaging
Radiometer Suite on the Suomi-NPP satellite. Infrared sensors allow for resolving features
at a high spatial resolution but are limited to cloud-free conditions. Microwave sensors
resolve SST at a lower spatial resolution (>25 km) but have the advantage of resolving SST
under cloudy conditions. Sea ice concentration can be resolved at a higher spatial resolution
of <10 km. An additional critical component of the MWIR product is the application of
a diurnal model. The application of the diurnal model allows for the SSTs to be derived
as a foundation temperature and not impacted by daily heating and cooling. MWIR does
not incorporate in situ data. Version 5.1 was used in the analysis for this study. More
information can be found at https://podaac.jpl.nasa.gov/cloud-datasets?search=SST%20
REMSS. Information on the algorithm may be found in [6].

2.1.2. CMC

The CMC dataset is produced by the Canadian Meteorological Center. For this study,
version 2.0 was used, covering the years 2003–2017.

The CMC product merges IR SST from the Advanced Very High-Resolution Radiome-
ter (AVHRR) from NOAA-18,19, the European Meteorological Operational-A (METOP-A)
and Operational-B (METOP-B), and microwave data from the Advanced Microwave Scan-
ning Radiometer 2 (AMSR2) on the GCOM-W satellite. In situ data are also included
from drifting buoys and ships from the ICOADS program. The previous day’s analy-
sis is implemented as the background field for the statistical/optimal interpolation used
to assimilate the satellite and in situ observations. The final product is produced on a
daily time scale at a 0.2-degree equirectangular gridded resolution. More information
can be found at https://podaac.jpl.nasa.gov/dataset/CMC0.2deg-CMC-L4-GLOB-v2.0
at the Canada Meteorological Center, 2012; CMC 0.2 deg global sea surface temperature
analysis. Ver. 2.0. PO.DAAC, CA, USA. The dataset was accessed on 10 January 2024
at https://doi.org/10.5067/GHCMC-4FM02. Detailed information about the processing
algorithm and the product itself can be found in [7]. The final product is considered a
foundation temperature, the depth of which can vary over time.

2.1.3. DOISST

The Daily Optimally Interpolated Sea Surface Temperature product is produced by
the National Centers for Environmental Information (NCEI) at NOAA. Version 2.0 of the
dataset was used, covering the years 2003–2019. Optimal interpolation is applied to the
SSTs derived from AVHRR. In situ data from ships and buoys are also interpolated to
create a 0.25-degree daily gridded product that dates back to 1981. Proxy SST values are

http://podaac.jpl.nasa.gov
https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-docs/ghrsst/open/docs/GDS20r5.pdf
https://archive.podaac.earthdata.nasa.gov/podaac-ops-cumulus-docs/ghrsst/open/docs/GDS20r5.pdf
https://podaac.jpl.nasa.gov/cloud-datasets?search=SST%20REMSS
https://podaac.jpl.nasa.gov/cloud-datasets?search=SST%20REMSS
https://podaac.jpl.nasa.gov/dataset/CMC0.2deg-CMC-L4-GLOB-v2.0
https://doi.org/10.5067/GHCMC-4FM02
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generated under sea ice. More information on this dataset can be found at https://podaac.
jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0 with the data accessible through
https://doi.org/10.1175/JCLI-D-12-00787.1. As with all GHRSST products, the data are
available in the GHRSST Data Specification Version 2.0 format. Details on the algorithm
and processing may be found in [7]. Although there is no specific diurnal model applied to
DOISST, it should be considered a foundation temperature as in situ data from 0–5 m in
depth are incorporated in the optimal interpolation.

2.1.4. OSTIA

The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) is produced
by the UK Met Office. SSTs from multiple sensors are optimally interpolated to create daily
gridded 0.05◦ maps. Version 2.0 of the OSTIA-Reprocessed product covering the years
2003–2022 was used here. The data are available in the GHRSST Data Specification Version
2.0 netcdf CF compliant format.

OSTIA uses satellite data from over 10 unique sensors that include the Advanced
Very High-Resolution Radiometer (AVHRR), the Spinning Enhanced Visible and Infrared
Imager (SEVIRI), the Geostationary Operational Environmental Satellite imager, the In-
frared Atmospheric Sounding Interferometer, the Tropical Rainfall Measuring Mission
Microwave Imager (TMI) and in situ data from ships and buoys (both drifting and moored).
A major difference between this analysis and the others is the integration of geostationary
sensors. The dataset can be accessed through https://podaac.jpl.nasa.gov/dataset/OSTIA-
UKMO-L4-GLOB-REP-v2.0 and https://doi.org/10.5067/GHOST-4FK02. More details
on the dataset and processing may be found in [8–10]. The data are representative of the
foundation temperature.

2.1.5. Saildrone

Saildrone is an uncrewed surface vehicle. Deployments in the Arctic occurred as
part of the Multi-Sensor Improved Sea Surface Temperature Project (MISST; [11,12]). The
deployments were funded as part of a collaborative effort between NOAA and NASA.

The deployment used in this study was the same as that used in the study by Vazquez-
Cuervo et al. [13]. The deployments included SD1036 and SD1037. In this study, we
focused on SD1036, as both SD1037 and SD1036 followed similar tracks. The deployment
left from Dutch Harbor on 15 May 2019 and returned on 11 October 2019. The overall
track of the deployment took place north along the Alaskan Coast through the Bering
Strait into the Chukchi and Beaufort Seas. Saildrones use solar and battery energy for
the sensors and wind for propulsion. The primary instrument used here was a Seabird
37 conductivity/temperature/depth (CTD). More details on the Saildrone vehicle may be
found in [13]. The data for this cruise are available through the PO. DAAC (https://podaac.
jpl.nasa.gov/dataset/SAILDRONE_ARCTIC?ids=&values=&search=Saildrone).

2.1.6. NOAA/NSIDC Climate Data Record

The analysis also used SIC data from the National Oceanographic and Atmospheric
Administration/National Snow and Ice Data Center (NOAA/NSDIC), derived from pas-
sive microwave radiometer observations at 25 km resolution covering the years 1970-
present [14]. The data represent long-term and reproducible passive microwave SIC data
records for climate studies and monitoring; Earth Syst. Sci. Data. 5. DOI: 10.5194/essd-5-
311-2013. Data are freely available at https://catalog.data.gov/dataset/noaa-nsidc-climate-
data-record-of-passive-microwave-sea-ice-concentration-version-4-0a874.

2.2. Methodology

Step one in validating satellite SST using Saildrone was to collocate the satellite-derived
SST products with the Saildrone deployment, using the following steps:

(1) Smooth the Saildrone 1 min sampling to the daily time scales of satellite data.
(2) Derive daily SST gradients from the daily Saildrone smoothed product.

https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0
https://doi.org/10.1175/JCLI-D-12-00787.1
https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-GLOB-REP-v2.0
https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-GLOB-REP-v2.0
https://doi.org/10.5067/GHOST-4FK02
https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ARCTIC?ids=&values=&search=Saildrone
https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ARCTIC?ids=&values=&search=Saildrone
https://catalog.data.gov/dataset/noaa-nsidc-climate-data-record-of-passive-microwave-sea-ice-concentration-version-4-0a874
https://catalog.data.gov/dataset/noaa-nsidc-climate-data-record-of-passive-microwave-sea-ice-concentration-version-4-0a874
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(3) Derive SST gradients from the four satellite products based on the finite difference ap-
proach.

(4) Collocate satellite-derived SST gradients to the daily smoothed SST gradients along
the Saildrone deployment. The method used was a nearest-neighbor approach, where
for a given day, the satellite-derived SST pixel closest to the Saildrone daily average
for that day was chosen.

(5) The aspatial gradients for all datasets were computed along the Saildrone track.
(6) Linear fits were applied to the time series of the satellite-derived SST gradient maps

to examine possible trends.

For step 1, the following equation was applied:

SSTsail (x, y) = 1/N∑N
i SSTsail(i) (1)

where SSTsail (x,y) is the SST derived from the Saildrone at longitude “x” and latitude “y”
after smoothing over the sub-daily time steps “N”. The index “i” simply indicates the time
step along the Saildrone deployment track.

For step 2, the gradients are then derived at the daily smoothed locations along the
Saildrone track.

The spatial gradients are computed, such that we have the following:

SSTsailgradx (xi,yj) = [SSTsail (xi+1,yj) − SSTsail (xi−1,y)]/∆x (2)

SSTsailgrady (xi,yj) = [SSTsail (xi,yj+1) − SSTsail (xi,yj−1)]/∆y (3)

where SSTsailgradx (xi,yj) and SSTsailgrady (xi,yj) are the x (longitude) and y (latitude) compo-
nents of the gradient at the specified longitude and latitude locations along the Saildrone
deployment track. The distances ∆x and ∆y are the distances in kilometers between the
pixels at the specified longitude/latitude locations. The magnitude of the gradient at the
location (xi,yj) along the Saildrone deployment track can then be calculated as follows:

SSTsailgrad (xi, yj) =

√
SSTsailgradx(xi, yj)2 + SSTsailgrady(xi, yj)2 (4)

where SSTsailgrad (xi,yj) is the magnitude of Saildrone SST gradient at position (xi,yj) along
the Saildrone track.

For step 3, gradients were derived for the satellite MWIR, CMC, DOISST, and OSTIA
datasets for each of the daily maps covering the time period of the Saildrone deployment.
The equation used is a simple finite difference approach, as follows:

SSTgradx(xi,yj) = [SST(xi+1,yj) − SST(xi−1,yj)]/∆x (5)

SSTgrady(xi,yj) = [SST(xi,yj+1) − SST(xi,yj−1)]/∆y (6)

The magnitude is then defined as follows:

SSTsailgrad (xi, yj) =

√
SSTgradx(xi, yj)2 + SSTgrady(xi, yj)2 (7)

Step 4 is then defined as the collocation of values from Equation (6) with values from
Equation (4).

The workflow diagram (see Figure 1) below summarizes the above steps in the method-
ology used for the collocation of the satellite-derived SSTs from the four products with the
Saildrone deployment.
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Figure 1. The workflow diagram for the derivation of SST gradients and the collocation of the SST
products with the Saildrone.

The end result consisted of collocated gradients for MWIR, CMC, DOISST, and OSTIA.
Trends of the SST gradient anomaly were derived for the satellite-derived products.

The anomaly of the SST gradients was derived by removing the climatology of the satellite-
derived products. Furthermore, gradient trends were derived by fitting linear least squares
to the time series of the SST gradient anomaly at each satellite pixel. Four locations
were also identified to exemplify regional areas where river discharge and SST gradients
were identified.

3. Results

We examined the temporal behavior of SST gradients over the time period 2003–2022.
SST gradients were derived for the four datasets, MWIR, CMC, DOISST, and OSTIA.
Figure 2 shows the geographic study area that includes parts of the Bering Strait, the Bering
Sea, and the coast of Alaska. The figure also shows the locations of the Yukon River and
the discharge at the Yukon–Kuskokwim (Y-K) Delta.

The mean magnitude of SST gradients was derived for the four different products
between 180◦W and 165◦W and 52◦N and 70◦N (area shown in Figure 3). To keep consistent
version numbers for the products, the mean for MWIR was derived from 2003 to 2022, for
CMC from 2003 to 2016, for DOISST from 2003 to 2019, and for OSTIA from 2007 to 2022.
Large gradients off the western Alaskan coast for all four products are clearly visible, with
values up to 0.05 ◦C/km, which are, nonetheless, significantly lower than the values of
0.3 ◦C/km found off the California coast in [14]. This is most likely because the California
observations occurred during a major upwelling period, which cooled the waters near the
coast. The MWIR shows the largest gradients associated with coastal regions, including
the Y-K delta. A significant difference between the MWIR gradients and those from other
products involves regional maxima that appear to be associated with coastal dynamics. The
DOISST clearly shows the smoothest gradients. These results are consistent with the lower
spatial resolution of the DOISST product. It is clear that major differences exist at latitudes
greater than 65◦N, where differences in sea ice become more pronounced. A common ice
mask is not implemented in all the datasets and, thus, differences between the datasets
could be due to the application of different ice masks. A detailed study of the ice masks is
beyond the scope of this paper but should be the focus of future work in the region.
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Alaska is now ice-free. This is an area that was sampled by the Saildrone deployment. 
Additionally, sea ice along the coastal areas has also disappeared. October 11 shows rela-
tively ice-free areas north of 70°N, although ice appears around 65°N near the coast. The 
results indicate that sea ice is a factor in the region during the Saildrone deployment, es-
pecially along the northern Alaskan coast. It could also be a contributing factor to the large 
differences seen between Saildrone and the four satellite products north of 70°N. Figure 
5d indicates that there is interannual variability in SIC. Note here that most GHRSST da-
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Figure 3. (a–d): Mean SST gradient magnitude for time periods defined for (a) MWIR, (b) CMC,
(c) DOISST, and (d) OSTIA.

Figure 4a shows the magnitude of the SST gradients derived directly from the Saildrone
data. Gradients reach maxima of 0.1 ◦C/km, notably near the Y-K delta and at the northern
latitudes west of Alaska. Figure 4b shows MWIR SST gradients along the Saildrone
deployment track, where the maxima also reach 0.1 ◦C/km, although no large gradients
are evident in the northernmost latitudes at approximately 70◦N. This is also true for the
other products (CMC—Figure 4c, DOISST—Figure 4d, and OSTIA—Figure 4e). Along the
Saildrone track, all the satellite products show similar magnitudes for the SST gradients
except at the northernmost latitudes. Scatter plots with a more detailed explanation may
be found in Appendix A.

Figure 5a–d show SICs for three dates during the Saildrone deployment. Figure 5d also
shows the time series of the mean SIC for the study area between 2003 and 2022. Figure 5a is
for 1 January 2019, when there was substantial sea ice north of 70◦N. Pixels with significant
sea ice coverage are also seen along the Alaskan Coast. Figure 5b is for 14 May 2019. The
major difference from 1 January is that a significant portion of northern Alaska is now
ice-free. This is an area that was sampled by the Saildrone deployment. Additionally,
sea ice along the coastal areas has also disappeared. October 11 shows relatively ice-free
areas north of 70◦N, although ice appears around 65◦N near the coast. The results indicate
that sea ice is a factor in the region during the Saildrone deployment, especially along
the northern Alaskan coast. It could also be a contributing factor to the large differences
seen between Saildrone and the four satellite products north of 70◦N. Figure 5d indicates
that there is interannual variability in SIC. Note here that most GHRSST datasets refer to
the areal coverage of sea ice as “sea ice fraction”, but here we refer to this as SIC to be
consistent with the sea ice literature. The relationship between SST and SIC gradients will
be examined further in Section 4.
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Figures 6–9 show SST gradient magnitudes from the four satellite-derived products
compared with Saildrone-derived SST gradients. Figure 6 directly compares with the
MWIR product. Overall, there is good agreement until approximately > 68◦N, where
Figure 5 indicates a large SIC at this time. The large gradients seen between 67◦N and 68◦N
are resolved in both the Saildrone and MWIR SSTs. Figure 7 shows similar results for the
CMC product, although CMC appears to also pick up the large maxima at approximately
67◦N. The Saildrone SST gradient reaches 0.8 ◦C/km, which is considerably larger than
gradients associated with mesoscale and sub-mesoscale fronts due to current instabilities
and upwellings [15]. This is more evidence that these fronts are more likely associated
with SST changes near ice edges. Figure 8 shows that DOISST reproduces the magnitude
of the SST gradients until about 67◦N, which is once again consistent with MWIR and
CMC, although it fails to resolve the large gradients seen in the Saildrone SST at latitudes
> 67◦N. Figure 9 shows that OSTIA follows the general trend of the other products, but
it best captures the magnitude of the maxima seen in the SST gradient at approximately
67◦N. On the other hand, between 61–65◦N, the OSTIA product overall underestimates
the magnitude of the SST gradients (as do the other SST products). These latitudes are
associated with river runoff, including the Y-K delta.
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Table 1 compares the four different satellite products and Saildrone, using mean
instead of median values in order to preserve the influence of extreme values that might
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arise from rapid events such as sea ice melt or river discharge (see Figure 10). The signal-
to-noise ratio was defined as the standard deviation (STD) of the Saildrone-derived SST
divided by the root mean square difference (RMSD) of the Saildrone SST—satellite-derived
SST. The CMC and OSTIA had the highest correlation, driven primarily by the ability
to resolve gradients at >67◦N. DOISST had the lowest correlation, likely owing to an
inability to resolve gradients at the northernmost latitude due to a low-resolution ice
mask. Figure 4a clearly shows large SST gradients associated with the Saildrone, which are
significantly reduced in the MWIR, CMC, DOISST, and OSTIA products. OSTIA had the
highest signal-to-noise ratio, while DOISST had the lowest. This reflects the smoothness
and resolution of the products, with the resolution of DOISST gridded at 0.25◦ and OSTIA
at a resolution of 0.05◦. OSTIA also had the smallest bias at −0.01 ◦C/km. Although MWIR
had a lower correlation (0.31) and signal-to-noise ratio than DOISST and CMC, this was
driven primarily by not resolving the gradient at 68–69◦N. This is clearly shown in Figure 3
where MWIR shows much larger SST gradients than the other products. It is important to
note that the products apply different ice masks which of course in this region will impact
the evaluation of the SST gradients. For information purposes, Table 2 lists the source of
the ice mask used in the particular product. The EUMETSAT product was used for both
the MWIR and OSTIA products.

Table 1. Statistics based on a comparison of MWIR, CMC, DOISST, and OSTIA with Saildrone.

Dataset Correlation Bias ◦C/km RMSD ◦C/km STD Satellite ◦C/km STD Saildrone ◦C/km Signal to Noise

MWIR 0.31 −0.04 0.16 0.10 0.19 1.17

CMC 0.81 −0.04 0.11 0.08 0.19 1.72

DOISST −0.11 −0.06 0.17 0.04 0.19 1.11

OSTIA 0.79 −0.01 0.11 0.17 0.19 1.76
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Table 2. Satellite products and data sources for sea ice fraction.

Product Source

MWIR sea ice fraction (sea ice concentration) source = “EUMETSAT OSI-SAF”

CMC sea ice fraction source = “DMSP-F15 DMSP-F17 DMSP-F18 Metop-1 Metop-2 Metop-3 G COM-W1”

DOISST sea ice fraction source = “MMAB_50KM-NCEP-ICE”

OSTIA sea ice fraction source = “EUMETSAT OSI-SAF”

Figure 11a–c show multi-year linear trends of SST gradient anomalies for MWIR,
CMC, DOISST, and OSTIA for the periods of time of coverage of the data. SST gradient
anomalies are defined in Section 2.2. Strong trends near coastal areas are evident in all
datasets. A negative trend is observed at approximately 60◦N. Maximum trend values reach
~0.36 ◦C/km/year. Generally, OSTIA shows trends of the greatest magnitude, possibly
owing to a higher signal-to-noise ratio. Figure 10 clearly shows a significant seasonal cycle
in river discharge. Thus, changes in these river discharge cycles would definitely impact
possible trends in SST gradients. A detailed analysis of these issues is beyond the scope of
this paper but should be the focus of future work.
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(b) CMC, (c) DOISST, and (d) OSTIA. Labels A–D indicated locations were time series were extracted
for comparisons between the data sets.
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To examine possible connections between SST gradient anomaly trends and the Pa-
cific Decadal Oscillation (PDO; [16] and https://www.ncei.noaa.gov/access/monitoring/
pdo/), we examined three time periods using MWIR, because it extends back to 2003.
The time periods chosen were 2003–2007 (negative PDO), 2008–2014 (positive PDO), and
2015–2022 (negative PDO). Large positive trends are evident in the first time period in
the Bering Strait and near the Alaskan Coast. During the second time period, negative
trends appear near the coast, while positive trends still appear in areas associated with
coastal regions. A major difference is the appearance of negative SST gradients just north
of 55◦N. In the third time period, negative trends in gradients appear along the Alaskan
Coast. Strong negative trends in SST gradient anomalies also appear between 55◦N and
60◦N. Overall, the three time periods show significant differences with trends going from
positive to negative along the Alaskan Coast. Overall, the changes in the trends indicate
that changes in the region are most likely occurring in steps and not necessarily in a linear
fashion. These will be examined further in the next section with respect to relationships
to SIC.

Four different locations in the study area (A, B, C, and D) in Figures 12 and 13 were
chosen as areas of special interest, e.g., location A near the winter ice edge, locations B and
C near the summer ice edge, and location D near the Y-K delta. Figures 13–16 show that,
overall, DOISST has the lowest SST gradient magnitudes, while MWIR and OSTIA have the
largest, with values greater than 0.3 ◦C/km. No clear long-term trends at the four locations
are apparent. Some of the largest magnitudes are seen in location C, which is located off
the North Siberian Coast. A peak occurred in the OSTIA gradients in 2004 that reached
almost 0.6 ◦C/km. At position A, MWIR and OSTIA appear to show significant peaks past
2015. This will be examined further in the next section.
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The primary goal of these results was to focus on the different magnitudes of the SST
gradients for each product. The reduced magnitudes of the DOISST product are most likely
due to the inherent smoothness and lower resolution of the product. The DOISST product
only uses AVHRR data. The lack of microwave data will lead to gaps due to the cloud
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cover, which is interpolated across space and time. OSTIA and MWIR contain infrared
and microwave data, while OSTIA additionally uses SST from geostationary platforms.
The application of different ice masks (see Table 2) could also impact the derivation of SST
gradients. A detailed analysis is beyond the scope of this paper but should be considered
for future work. We note that these plots indicate SST gradient changes that do not occur
linearly but in steps. The SST gradients at location A appear to have increased in variability
past 2015. The possible association with changes in the southern ice edge will be examined
further in the next section.

4. Discussion
4.1. SST Gradients and Trends

Comparisons of the magnitude of the SST gradient anomalies from Saildrone 1036
with four GHRSST SST products (MWIR, CMC, DOISST, and OSTIA) indicate that, overall,
the satellite-derived products do a good job at reproducing SST gradients off the Alaskan
Coast. However, differences do exist at latitudes > 67◦N. This is most likely due to the
products applying different ice masks. OSTIA had the overall largest variability along the
Saildrone track of 0.17 ◦C/km, with much of this driven by a large gradient at a latitude
of 67◦N (Figure 9). MWIR had a comparable, but smaller variability of 0.10 ◦C/km along
the Saildrone track. These results are consistent with the two products that have the
highest spatial resolution, i.e., 5 km for OSTIA, and 9 km for MWIR. The lowest-resolution
(i.e., 0.25 degree) OISST product had the lowest variability of 0.04 ◦C/km. However, no
satellite products were able to reproduce the observed 0.19 ◦C/km maximum gradients of
the Saildrone SST. These differences were also reflected in the signal-to-noise ratios where
OSTIA had the largest signal-to-noise ratio of 1.76 and DOISST had the lowest signal-to-
noise ratio of 1.11. This confirms that although the OSTIA dataset is gridded at a higher
resolution (5 km) than the DOISST (25 km), it does not add significant noise to the SST
derivation derived from SST gradients. An obvious conclusion is that higher-resolution SST
products reproduce true SST gradient variability better than lower-resolution SST products.
However, other factors may also influence these intercomparisons, e.g., ice masks, input
datasets, etc.

In both the MWIR and CMC products, a negative trend appears in the magnitude of
the SST gradients between 55◦N to 60◦N (Figures 11 and 12). The negative trend in the
SST gradients could indicate that differences in temperatures between the North Pacific
and the Arctic are decreasing. One possibility could be related to changes in the Aleutian
Low. Cheng et al. [17] observed a weakening trend in the Spring Aleutian Low in the
Northwest North American region. This would bring cooler temperatures to the region
and would be consistent with the weakening of the gradient between waters of the Bering
Strait, the Bering Sea, and the North American Coast. The primary reason for the cooling
in the Northwest North American region is the reduced warmer water being brought into
the high latitudes due to a weakening of the Kuroshio Extension and the North Pacific
anticyclonic circulation.

Another trend observed in the higher-resolution products is the increase in gradients
near the Y-K Delta (Figure 11). Increasing gradients could be consistent with trends toward
increasing river discharge since river discharge temperature is often different from the
ambient ocean water near its mouth [16]. Serreze et al. [18] determined that 38 percent of
the freshwater input into the Arctic is due to river discharge, so understanding the impact
of Arctic river discharge on SST gradients should be a focus of future work. Finally, another
force for changing SST gradients could be changing SIC gradients, which will be explored
in the next section.

4.2. Relationship between SST and SIC Gradients

A major question that comes out of this study involves how SST and SIC gradients
are related. This is also especially important in understanding how the applied ice masks
impact SST gradients. Castro et al. [5] applied simulations to determine maximum SST
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values at the sea ice edge. In comparisons with Saildrone, they also found statistically
significant correlations from several SST datasets. The goal of their work was to improve
the relationship between SST and SIC, applying a filter that improved SST at ice edges.

In this work, yearly averages of SST and SIC gradients were derived for 4 years,
i.e., 2004, 2014, 2015, and 2021 for our study area (Figures 17 and 18). The years are rep-
resentative of changes in the PDO with 2004 being neutral, 2014 and 2015 being positive,
and 2021 being negative (https://www.ncei.noaa.gov/access/monitoring/pdo/). Table 3
shows statistics for the SIC and SST gradients for the four years. Overall, statistically
significant correlations exist between the gradients with maxima mean gradients occur-
ring in 2021. The strong correlations indicate a relationship exists between the SST and
SIC gradients.
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Figure 18. (a–d): The mean SIC gradient for the years (a) 2004, (b) 2014, (c) 2015, and (d) 2021.

Moving from south to north along 170◦W (Figure 19), one sees strong SST gradients at
~52–53◦N at the location of the Aleutian Islands, as also seen in Figure 4. Such gradients
are typical near land–sea boundaries. The next SST gradient maximum is observed at
~57–59◦N, which is the position of the winter maximum (i.e., March mean) ice edge (see
Figure 5). We expect strong SST gradients near the ice edge, where relatively warmer open
water conditions meet the freezing water found under and near the ice pack. Next, there is
a distinct SST gradient peak at 63◦N and a very large SIC peak at the same location. This
is where the winter polynya to the south of St. Lawrence Island forms, which tends to
melt out early in the spring and summer and, thus, warm-up earlier than nearby areas that
remain icy for longer. This results in strong gradients in both SIC and SST. Finally, we see
strong SST gradients at 64–68◦N, which are likely associated with land–sea boundaries at
the Bering Strait. Figure 20 presents the same analysis for a longitude of 175◦W. We see
that Aleutian Island SST gradients are slightly farther south, keeping with the southwest–
northeast orientation of the island chain. In contrast, the ice edge SST maximum is slightly
farther north, keeping with the northwest–southeast orientation of the winter maximum ice
edge in this area. Further north along this longitude, we note the absence of strong peaks
in SST and SIC at 63◦N that were observed at 170◦W. This is likely because 175◦W does
not intersect St. Lawrence Island, and so does not detect the gradients associated with the
Island. Finally, we see strong SST gradients around ~64.5◦N to the south of the Chukotka
Peninsula, then a gap through the Peninsula, and then strong SST gradients at 67.5◦N on
the north coast.
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The interannual variation in the winter maximum (i.e., March monthly mean) ice
edge (i.e., the 15% SIC contour) latitude along a longitude of 170W is shown in Figure 21,
along with 10-year running mean latitude, variance, and slope. The variability is rela-
tively small (i.e., within one standard deviation) until the year 2000, when the ice edge
position moved significantly (i.e., slightly more than one standard deviation) northward
for ~6 years, and after that, a comparable shift southward. After these two periods, the
ice edge moved dramatically northward, achieving maximum displacement in 2018 and
2019, before shifting southward again in recent years. This analysis was also performed for
January and February monthly means, which show qualitatively similar behavior (although
the January ice edge position is generally a degree of latitude farther north than that in
February and March). Figure 21 also shows the latitude along 170◦W of the maximum SST
gradient in March from OSTIA. The correlation between the two time series in Figure 21a
is 0.71, indicating that a winter ice edge is a place of strong SST gradients. However, this
correlation is dominated by the large northward shift in 2018 and 2019 seen in both time
series. In earlier years the latitude of the SST maximum was generally 0–2 degrees north of
the latitude of the ice edge, with little interannual correlation.
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Figure 21. (a–d): (a) The latitude of the mean monthly March ice edge (15% SIC contour) along
longitude 170◦W, using the NSIDC/NOAA Climate Data Record (CDR; Meier et al. [19]) (blue). The
latitude of the maximum SST gradient from OSTIA along longitude 170◦W in March (red) is also
shown. (b) The same as panel a for SIC, but with a 10-year running mean boxcar filter applied (and,
thus, missing a few years at the start and end of the time series). Panel (c) Variance of the ice edge
latitude, with the same running mean filter as in panel (b). Panel (d) same as panel (c), but for the
running mean slope.
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Throughout the entire time series, we see an increase in ice edge latitude variance,
with an especially large jump in recent years. For many years, the position of the winter
maximum ice edge was relatively stable (within +/−1 degree of latitude); this has changed
as the ice pack has thinned and become more mobile. What does this imply for linear
trends in SST gradients that are shown in Figure 11. If the ice edge position along 170◦W
were to shift from its traditional position at ~58◦N to a more northerly position and remain
there, we would expect negative SST gradient trends at the former site, and positive trends
at the new site (or bands of such values all along the ice edge). However, Figure 11 shows
only a band of negative trends at the traditional ice edge position. This can be explained by
the enhanced recent variance in the ice edge position, which does not allow a linear trend
to develop at a new, stable, more northerly position. If such variance is the “new norm” for
the Bering Sea, then we should expect SST gradients associated with the winter ice edge to
widely vary in position from year to year.

Overall, the northerly shift in the southern ice edge has not been a linear process
but has dramatically increased over the last decade. There is also a complex relationship
between SST and SIC gradients: sometimes they are spatially coincident, while in other
years, there is a separation of a few degrees of latitude that might be physically real or could
be the result of how the SST products fill in values under the ice. Castro et al. [5] examined
this relationship in detail. Future work will need to focus on the cause of the northerly shift
in the southern ice edge, with an ultimate goal of modeling and possible prediction.

The northward shift of the southern ice edge can also be related to some critical issues
related to changes in the Arctic.

Ref. [20] relates Arctic amplification (AA) to sea ice loss. The results in this paper
showing the northward movement of the southern ice edge indicate a possible relationship
to the Arctic amplification (AA). The AA is directly related to increasing greenhouse gases.
Additionally, ref. [20] states that the enhanced greenhouse warming is seen north of 67◦N,
which is consistent with the results found in this work and the northern movement of the
southern ice edge.

Ref. [19] using model simulations showed that oceanic heat transport (OHT) through
the Bering Strait had a more significant impact on Arctic warming than previously thought.
A key result was also that the increased OHT was dependent on the resolution of the
model. This is the motivation for further analysis of the different SST products in the Arctic.
Thus, the results presented here provide a starting point for future applications of SST in
the Arctic.

5. Conclusions

The validation of SST gradients derived from four GHRSST level 4 products indicates
that overall satellite-derived SST gradients can be used to monitor changes in the Arctic,
associated with the coast of Alaska, the Bering Strait, and the Bering Sea. Saildrone de-
ployments provided a unique opportunity for validating SST gradients from four GHRSST
products (MWIR, CMC, DOISST, and OSTIA GHRSST). OSTIA had the highest correlation
and DOISST had the lowest correlation. Trends in the magnitude of the SST gradient
anomalies were derived. Overall, increasing trends in the magnitude of the SST gradients
were seen near the Alaskan Coast. A negative trend in the magnitude of the SST gradient
anomalies was observed in a subarctic region between 55◦N and 50◦N. A negative trend in
the region would indicate that temperatures in the subarctic and the Arctic are becoming
more similar. This was also consistent with results showing a northward shift in the south-
ern ice edge after 2018. Future work will focus on identifying the reason for the trend and
possible relationships to the North Pacific circulation. Additionally, identifying changes in
gradients needs to be examined with respect to changes in glacial melt. This should build
on the work of [5]. This is critical as it impacts the fisheries along the Alaskan Coast. The
positive results indicate that future work should expand the application of SST gradients
over larger spatial scales and longer temporal scales.
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A major conclusion of this work is that between 2010 and 2021, an abrupt northward
shift in the winter ice edge occurred, with a coincident shift in the SST gradient. Future
work needs to examine possible causes for this northward shift and possible impacts.
This could include possible relationships with atmospheric forcing, river discharge, and
ocean currents.
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Appendix A

Figure A1 shows scatter plots of SST gradients from four satellite products versus
gradients measured by Saildrone; see also Table 1 for detailed statistics of this comparison.
OSTIA performs best at reproducing the magnitude of Saildrone gradients, with a slope of
1.01 and a zero bias. DOISST has the smallest slope (0.45), and in particular, has trouble
reproducing the largest SST gradients, likely owing to the smoothness of the product. Large
SST gradients in MWIR and CMC are associated with high latitudes > 68◦N and are most
likely associated with issues of the ice mask. This needs to be the focus of future work. The
overall statistics shown in Table 1 indicate that OSTIA performs best in comparison with
Saildrone and, thus, this dataset was used for our study of the relationship between SST
gradients and the winter ice edge.

http://podaac.jpl.nasa.gov
https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ARCTIC
https://podaac.jpl.nasa.gov/dataset/MW_IR_OI-REMSS-L4-GLOB-v5.0
https://podaac.jpl.nasa.gov/dataset/MW_IR_OI-REMSS-L4-GLOB-v5.0
https://podaac.jpl.nasa.gov/dataset/CMC0.2deg-CMC-L4-GLOB-v2.0
https://podaac.jpl.nasa.gov/dataset/CMC0.2deg-CMC-L4-GLOB-v2.0
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.1
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.1
https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-GLOB-v2.0
https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-GLOB-v2.0
https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ARCTIC?ids=&values=
https://podaac.jpl.nasa.gov/dataset/SAILDRONE_ARCTIC?ids=&values=


Remote Sens. 2024, 16, 2530 25 of 26

Remote Sens. 2024, 16, x FOR PEER REVIEW 25 of 26 
 

 

Large SST gradients in MWIR and CMC are associated with high latitudes > 68°N and are 
most likely associated with issues of the ice mask. This needs to be the focus of future 
work. The overall statistics shown in Table 1 indicate that OSTIA performs best in com-
parison with Saildrone and, thus, this dataset was used for our study of the relationship 
between SST gradients and the winter ice edge. 

 
Figure A1. SST gradient scatter plots for (a) MWIR versus Saildrone; (b) CMC versus Saildrone; (c) 
OSTIA versus Saildrone; (d) DOISST versus Saildrone. 

References 
1. Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Re-

mote Sens. Environ. 2017, 200, 154–169. https://doi.org/10.1016/j.rse.2017.07.029. 
2. Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; 

Maturi, E.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. 
https://doi.org/10.1016/j.rse.2019.111366. 

3. Hall, S.B.; Subrahmanyam, B.; Steele, M. The Role of the Russian Shelf in Seasonal and Interannual Variability of Arctic Sea 
Surface Salinity and Freshwater Content. J. Geophys. Res. -Ocean. 2023, 128, e2022JC019247. 
https://doi.org/10.1029/2022JC019247e2022JC019247. 

4. Zhang, J.; Weijer, W.; Steele, M.; Cheng, W.; Verma, T.; Veneziani, M. Labrador Sea freshening linked to Beaufort Gyre fresh-
water release. Nat. Commun. 2021, 12, 1229. https://doi.org/10.1038/s41467-021-21470-3. PMID: 33623045; PMCID: PMC7902633. 

5. Castro, S.L.; Wick, G.A.; Eastwood, S.; Steele, M.A.; Tonboe, R.T. Examining the Consistency of Sea Surface Temperature and 
Sea Ice Concentration in Arctic Satellite Products. Remote Sens. 2023, 15, 2908. https://doi.org/10.3390/rs15112908. 

6. Remote Sensing Systems 2017 MWIR Optimum Interpolated SST Data Set Ver. 50; P.O.D.A.A.C.: Pasadena, CA, USA, 2017. 
https://doi.org/10.5067/GHMWI-4FR05. 

7. Brasnett, B. The impact of satellite retrievals in a global sea-surface-temperature analysis. R. Meteorol. Soc. 2008, 134, 636. 
https://doi.org/10.1002/qj.3198. 

8. Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.; Hankins, W. A long-term record of blended satellite and in situ sea-surface tem-
perature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 2016, 8, 165–176. 
https://doi.org/10.5194/essd-8-165-2016. 

9. Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea 
Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. https://doi.org//10.1016/j.rse.2010.10.017. 

10. Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The 
Current Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Con-
centration Analyses. Remote Sens. 2020, 12, 4. https://doi.org//10.3390/rs12040720. 

Figure A1. SST gradient scatter plots for (a) MWIR versus Saildrone; (b) CMC versus Saildrone;
(c) OSTIA versus Saildrone; (d) DOISST versus Saildrone.

References
1. Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote

Sens. Environ. 2017, 200, 154–169. [CrossRef]
2. Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.;

Maturi, E.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366.
[CrossRef]

3. Hall, S.B.; Subrahmanyam, B.; Steele, M. The Role of the Russian Shelf in Seasonal and Interannual Variability of Arctic Sea
Surface Salinity and Freshwater Content. J. Geophys. Res. Oceans 2023, 128, e2022JC019247. [CrossRef]

4. Zhang, J.; Weijer, W.; Steele, M.; Cheng, W.; Verma, T.; Veneziani, M. Labrador Sea freshening linked to Beaufort Gyre freshwater
release. Nat. Commun. 2021, 12, 1229. [CrossRef] [PubMed] [PubMed Central]

5. Castro, S.L.; Wick, G.A.; Eastwood, S.; Steele, M.A.; Tonboe, R.T. Examining the Consistency of Sea Surface Temperature and Sea
Ice Concentration in Arctic Satellite Products. Remote Sens. 2023, 15, 2908. [CrossRef]

6. Remote Sensing Systems 2017 MWIR Optimum Interpolated SST Data Set Ver. 50; P.O.D.A.A.C.: Pasadena, CA, USA, 2017. [CrossRef]
7. Brasnett, B. The impact of satellite retrievals in a global sea-surface-temperature analysis. R. Meteorol. Soc. 2008, 134, 636.

[CrossRef]
8. Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.; Hankins, W. A long-term record of blended satellite and in situ sea-surface

temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 2016, 8, 165–176. [CrossRef]
9. Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice

Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [CrossRef]
10. Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The Current

Configuration of the OSTIA System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration
Analyses. Remote Sens. 2020, 12, 720. [CrossRef]

11. Gentemann, C.L.; Minnett, P.; Steele, M.; Castro, S.; Cornillon, P.; Armstrong, E.; Vazquez, J.; Tsontos, V.; Cokelet, E. 2019 Arctic
Saildrone Cruise Report (Version 1); Zenodo: Geneva, Switzerland, 2019. [CrossRef]

12. Gentemann, C.L.; Scott, J.P.; Mazzini, P.L.F.; Pianca, C.; Akella, S.; Minnett, P.J.; Cornillon, P.; Fox-Kemper, B.; Cetinic, I.;
Chin, T.M.; et al. Saildrone: Adaptively sampling the marine environment. Bull. Am. Meteorol. Soc. 2020, 101, 744–762. [CrossRef]

13. Vazquez-Cuervo, J.; Gentemann, C.; Tang, W.; Carroll, D.; Zhang, H.; Menemenlis, D.; Gomez-Valdes, J.; Bouali, M.; Steele, M.
Using Saildrones to Validate Arctic Sea-Surface Salinity from the SMAP Satellite and from Ocean Models. Remote Sens. 2021, 13,
831. [CrossRef]

14. Meier, W.N.; Fetterer, F.; Windnagel, A.K.; Stewart, J.S. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration,
Version 4; National Snow and Ice Data Center: Boulder, CO, USA, 2021.

https://doi.org/10.1016/j.rse.2017.07.029
https://doi.org/10.1016/j.rse.2019.111366
https://doi.org/10.1029/2022JC019247
https://doi.org/10.1038/s41467-021-21470-3
https://www.ncbi.nlm.nih.gov/pubmed/33623045
https://www.ncbi.nlm.nih.gov/pmc/PMC7902633
https://doi.org/10.3390/rs15112908
https://doi.org/10.5067/GHMWI-4FR05
https://doi.org/10.1002/qj.319
https://doi.org/10.5194/essd-8-165-2016
https://doi.org/10.1016/j.rse.2010.10.017
https://doi.org/10.3390/rs12040720
https://doi.org/10.5281/zenodo.5851764
https://doi.org/10.1175/BAMS-D-19-0015.1
https://doi.org/10.3390/rs13050831


Remote Sens. 2024, 16, 2530 26 of 26

15. Vazquez-Cuervo, J.; García-Reyes, M.; Gómez-Valdés, J. Identification of Sea Surface Temperature and Sea Surface Salinity Fronts
along the California Coast: Application Using Saildrone and Satellite Derived Products. Remote Sens. 2023, 15, 484. [CrossRef]

16. Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [CrossRef]
17. Sun, C.; Kucharski, F.; Li, J.; Wang, K.; Kang, I.S.; Lian, T.; Liu, T.; Ding, R.; Xie, F. Spring Aleutian Low Weakening and Surface

Cooling Trend in Northwest North America During Recent Decades. J. Geophys. Res. -Atmos. 2019, 124, 12078–12092. [CrossRef]
18. Serreze, M.C.; Barrett, A.P.; Slater, A.G.; Woodgate, R.A.; Aagaard, R.B.; Lammers, R.B.; Steele, M.; Moritz, R.; Meredith, M.; Lee,

C.M. The large-scale freshwater cycle of the Arctic. J. Geophys. Res. 2002, 6, 111. [CrossRef]
19. Xu, G.; Rencurrel, M.C.; Chang, P.; Liu, X.; Danabasoglu, G.; Yeager, S.G.; Steele, M.; Weijer, W.; Li, Y.; Rosenbloom, N.; et al.

High-resolution modelling identifies the Bering Strait’s role in amplified Arctic warming. Nat. Clim. Change 2024, 14, 615.
[CrossRef]

20. Dai, A.; Luo, D.; Song, M.; Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019, 10, 121.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs15020484
https://doi.org/10.1023/A:1015820616384
https://doi.org/10.1029/2019JD031405
https://doi.org/10.1029/2005JC003424
https://doi.org/10.1038/s41558-024-02008-z
https://doi.org/10.1038/s41467-018-07954-9

	Introduction 
	Material and Methods 
	Data 
	MWIR 
	CMC 
	DOISST 
	OSTIA 
	Saildrone 
	NOAA/NSIDC Climate Data Record 

	Methodology 

	Results 
	Discussion 
	SST Gradients and Trends 
	Relationship between SST and SIC Gradients 

	Conclusions 
	Appendix A
	References

