
Citation: Ouzounov, D.; Khachikyan,

G. Study the Global Earthquake

Patterns That Follow the St. Patrick’s

Day Geomagnetic Storms of 2013 and

2015. Remote Sens. 2024, 16, 2544.

https://doi.org/10.3390/rs16142544

Academic Editors: Fumio Yamazaki,

Yuriy G. Rapoport, Volodymyr

Grimalsky, Anatoly Kotsarenko and

Gianfranco Cianchini

Received: 7 April 2024

Revised: 1 July 2024

Accepted: 8 July 2024

Published: 11 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Study the Global Earthquake Patterns That Follow the
St. Patrick’s Day Geomagnetic Storms of 2013 and 2015
Dimitar Ouzounov 1,* and Galina Khachikyan 2

1 Institute for Earth, Computing, Human and Observing (Institute for ECHO), Chapman University,
Orange, CA 92866, USA

2 National Scientific Center for Seismological Observations and Research, Almaty 050060, Kazakhstan;
galina.khachikyan@seismology.kz

* Correspondence: ouzounov@chapman.edu

Abstract: A response of global seismic activity to the geomagnetic storms of St. Patrick’s Day
(March 17) in 2013 and 2015 is investigated. These two storms occurred during nearly identical
storm sudden commencement times and similar solar flux levels. We have revealed a rather similar
pattern of the most substantial earthquakes that have occurred since these storms. Two major crust
continental earthquakes, in Iran (M = 7.7), 16 April 2013, and in Nepal (M = 7.8), 25 April 2015, have
occurred with a time delay of ~30 and ~39 days after geomagnetic storm onsets in 2013 and 2015,
respectively. After that, the great and major deep-focused earthquakes occurred beneath the Sea of
Okhotsk (M = 8.3, 24 May 2013, Russia) and the Pacific Ocean (M = 7.8, 30 May 2015, Japan) with
a time delay of ~68 and ~74 days, respectively. Geomagnetic storm onsets occurred at 06:04 UT in
2013 and 04:48 UT in 2015. At this time, the high latitudinal areas of the longitudinal regions, in
which the mentioned earthquakes occurred in the future, were located under the polar cusp, where
the solar wind plasma has direct access to the Earth’s environment. An analysis of the remaining
ten earthquakes with M ≥ 7.5, which occurred around the globe in 2013 and 2015, proved the above
findings that seismic activity may respond to geomagnetic storm onset with a time delay from some
days to some months.
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1. Introduction

A Swiss astronomer and mathematician, Johann Rudolf Wolf, almost 170 years ago
suggested that solar activity could influence the occurrence of earthquakes [1]. After the
discovery of solar wind in 1959 [2], which has been an outstanding achievement in helio-
physics and space physics, it has been recognized that solar wind plays a crucial role in
the processes taking place in the Solar System and that it is the main factor that controls
the terrestrial effects of space weather. For more than 60 years, much work has been done
to reveal a lithosphere response to solar activity. As a result, it is assumed that, during
substantial increases in solar wind activity, the Sun may be considered a significant agent
provoking earthquakes [3]. More than five decades ago, it was revealed [4] that the maxi-
mum earthquake frequency occurs at times of moderately high and fluctuating solar activity.
It was suggested that the coupling mechanisms that could trigger earthquakes could be
abrupt accelerations in the Earth’s angular velocity or surges of telluric currents in the
Earth’s crust [4]. The results in [5] showed that the perturbations in the atmospheric mass,
which could be caused by solar activity, may affect the Earth’s rotation and then influence
earthquakes. Recently, a mathematical model [6] has been developed that considers a
hypothesis of electromagnetic earthquakes triggered by a sharp rise of telluric currents in
the lithosphere, including crust faults, due to the interaction of solar flare X-ray radiation
with the ionosphere–atmosphere–lithosphere system. The model [6] suggested that the
absorption of solar flare radiation in the ionosphere produces additional ionization in it,
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which results in the appearance of the additional electric current and electric field in the
ionosphere, which will ultimately lead to an increase in the telluric current in the Earth’s
crust. The authors of [6] concluded that, after the solar flare of X-class, the telluric current
density in the conductive layer of the lithosphere might reach 10−8–10−6 A/m2, which
is two to three orders more than the average telluric current density of 2·10−10 A/m2 in
the lithosphere. Also, they noticed that, calculated in [6], the parameters of telluric cur-
rents are comparable with the artificial electrical pulses injected into the Earth’s crust in
seismic-prone areas in Pamir and Northern Tien Shan [7] that resulted in the electromag-
netic triggering of weak earthquakes and the spatiotemporal redistribution of the regional
seismicity in these regions.

What is a statistical result from the connection between solar and seismic activity, the
more territories were analyzed, the more contradictory results appeared. Therefore, it was
found in [8–10] that earthquakes occur frequently in the minima of solar activity, while,
in [11–13], it was found that they occur frequently in solar maxima. For example, in [9],
the data on earthquakes at different magnitude scales that occurred around the globe in
20–23 solar cycles (1963–2010) were compared with monthly sunspot numbers for the same
time interval. They have found an out-of-phase relationship between earthquake counts
and sunspot numbers. Also, they showed that the released seismic energy around the
globe was picked up in years of solar minima. The same conclusion was made by [10],
who investigated the relationship between secular variations in solar activity and seismic
energy released on the planet in 1690–2002. However, an analysis of secular variations
in solar activity and seismicity in the Mediterranean region revealed [11] that the highest
seismic activity occurred around secular solar maximum. The authors of [12] studied
worldwide earthquakes from 1600 to 2010 and revealed that earthquake counts mainly
increase in the maxima of the solar cycle, but it depends on the tectonic plate location.
They noted that tectonics is essential because there is heterogeneity in the crust, and the
tectonic stress depends on each region. This idea was supported by [13], who studied
the relationship between solar activity and the big earthquakes (Ms ≥ 8) that occurred
in China and Western Mongolia. They discovered that, in the years of the solar maxima,
only those earthquakes occurred in which epicenters were in and near the tectonic faults
with west–east strikes. However, those big earthquakes, in which epicenters were located
not in such faults, did not occur in the solar maxima. The statistical findings in [13] were
rather in agreement with the predictions of the mathematical model [6], which predicts
that the tectonic fault’s electrical conductivity and geographic orientation play an essential
role in the electromagnetic triggering of earthquakes. The stronger telluric currents will be
generated when the telluric current density vector is directed parallel to the direction of
the tectonic fault. According to a mathematical model [6], at the Northern Hemisphere’s
middle and low latitudes, the telluric currents’ density vectors are oriented predominantly
in the west–east direction, which coincides with the orientation of the faults in or near
which the epicenters of significant earthquakes in China occurred in solar maxima [13].
The triggering of seismic activity by strong solar flares was discussed in more detail in [14],
and the problems related to understanding the physical reasons for the Sun’s influence on
the Earth’s seismicity were discussed in more detail in [15].

The most evident manifestations of solar wind activity on the Earth are geomagnetic
storms. There have been many papers in which a possible response of seismic activity
to geomagnetic storms was investigated, e.g., [16] (and references herein). Therefore, it
was found in [17] that 17 strong earthquakes (M ≥ 6.5) for 1994–2017 occurred within
two days after geomagnetic storms when the values of the geomagnetic Kp-indices were
above seven and that all these events occurred in the Eastern longitudinal Hemisphere
but were absent in the Western one. An analysis of the seismic activity in the Northern
Tien-Shan from 1975 to 1996, which was carried out in [18], has revealed that, there, the
seismic activity increases, on average, 2–6 days after the onset of a magnetic storm, but
this takes place only in those regions, where the rocks have a low electrical resistivity. The
authors of [19] investigated data from 4666 strong earthquakes (Mw ≥ 6) in the Pacific
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Rim region (120◦–160◦E, 70◦–130◦W) during 1932–2016. They concluded that the forces
accompanying the magnetic storm might be responsible for earthquakes triggering with a
time delay of ~12–14 days. In [20], the correlation between geomagnetic storms and strong
(Mw ≥ 7.0) earthquakes that occurred around the globe in 1957–2020 was investigated;
statistically significant evidence was found that the probability of geomagnetic storms
increased around 26–27 days before earthquakes. The authors of [21] analyzed Mw5.5+

shallow earthquakes that occurred around the globe from November 2013 to November
2021 in connection with the magnetic field data measured in this period by the three Swarm
identical satellites constellation. For major earthquakes (Mw7.5+), it was found that the
time delay between geomagnetic storm onset and earthquake occurrence may be up to
several years.

It is assumed, at present, that, during the 11-year solar cycle, two maxima in ge-
omagnetic storm numbers appear—one in the sunspot maximum, when coronal mass
ejection (CME) is mainly responsible for the geomagnetic activity, and another one in the
descending phase of the 11-year solar cycle, when the high-speed solar wind (HSSW) from
the polar coronal holes is mainly responsible for geomagnetic activity [22]. The authors
of [23] studied the day-to-day variations in the number of earthquakes relative to the days
when the Earth was exposed to the CMEs and when the Earth was exposed to the HSSW
in 1973–2000. They revealed that, in the 11-year solar cycle, two maxima in the number
of earthquakes appear—one in the sunspot maximum and another one in the descending
phase of the solar cycle. As for the association of strong (M ≥ 7.0) earthquakes with the
descending phase of solar activity in the 11-year solar cycle, Reference [24] (pp. 18–19,
Figures 10 and 11 and Table 1) systematized the results, showing that this effect was most
pronounced for those earthquakes that occurred at the footprint of geomagnetic lines
L = 2.0–2.2 in the Earth’s crust (Figure 1).
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The region 2 ≤ L ≤ 3 is known as the electron slot. Let us remember that L is the
geocentric distance in the Earth’s radii at which a dipole magnetic field line crosses the
magnetic equatorial plane. As summarized in [25], the slot is a transition region between the
outer and the inner radiation zones, often relatively devoid of energetic electrons. However,
during strong geomagnetic storms, this gap can be filled to a large degree by moderate
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(and even high)-energy electrons. For example, in the intense “Halloween” storm of late
October–early November 2003, the slot region was filled with multi-MeV electrons for
several weeks. Thus, the slot region can present several space weather concerns, including
low- and medium-energy electron enhancements, multi-MeV electrons, and intense solar
energetic particle events [25].

In this regard, the result in Figure 1 gives us a hint that the mediator in the occurrence
of shown earthquakes could be geomagnetic lines populated by charged particles and,
therefore, highly conductive. Such an assumption is supported by the mathematical model
in [6], in which the conductivity of the medium plays a vital role in the electromagnetic
generation of earthquakes. Also, it is supported by the results of [26], where the seismic
activity was analyzed after four geomagnetic storms accompanied by the precipitation of
relativistic electrons from the outer radiation belt into the lower magnetosphere, where
they formed additional radiation belts (storage rings) around particular geomagnetic lines.
It was revealed, for example, that, after a giant “Halloween” storm (Dst = −383 nT), which
was followed by filling a slot region with relativistic electrons for about 50 days [27] (their
Figure 1), a strong M = 7.8 earthquake occurred at the Aleutian Islands on 17 November
2003, near a footprint L~2.1 with a time delay ~19 days. These results suggest that some
earthquakes may be looked at as addressed (targeted), since they may occur near the
footprint of particular (addressed) geomagnetic lines that were filled by charged particles
and became conductive.

In the magnetosphere, there are two places where the solar wind-charged particles
can fill the geomagnetic lines; these are the areas of the northern and southern polar cusps.
In Figure 2, the Earth’s magnetosphere with two polar cusps is schematically presented.
The boundary that separates the solar wind area, known as a magnetosheath, from the
magnetosphere is called the magnetopause (outer boundary of the Earth’s magnetic field).
Solar wind energy enters from the magnetosheath to the magnetosphere due to a process
of magnetic reconnection [28]. When magnetic reconnection occurs at the magnetopause,
the solar wind particles from the magnetosheath move continuously along the opened
geomagnetic lines into the cusp and magnetotail [29]. The cusps (yellow dots in Figure 2),
first observed by [30,31], are the magnetosphere regions filled with the denser plasma.
The cusp is a funnel-shaped region in which, from a magnetic field point of view, the
compressed high-latitude dayside geomagnetic field lines and the elongated nightside
geomagnetic field lines converge toward the geomagnetic poles [32]. It was noted in [33]
that the cusp is a versatile and very compact area for study, because all geomagnetic lines
reaching the magnetopause converge into the cusp region. Consequently, all processes
on the magnetopause, including magnetic reconnection, leave their signatures in the
precipitating charged particle profile.

The Cluster mission, composed of four identical spacecraft flying around the Earth [34],
has one of the primary science objectives—to investigate the penetration through the polar
cusps of the shocked solar wind. The Cluster data revealed [35] that the polar cusps are
very dynamic regions. Their locations are ruled by the orientation of the interplanetary
magnetic field, the dynamic pressure of the solar wind at the magnetopause, and the length
of the reconnection line (X-line) at the magnetopause.

Figure 3, reprinted from [35], shows that, most of the time, the cusp is located at
invariant magnetic latitudes 75◦–80◦ and in a longitudinal region of 10 h–14 h magnetic local
time (MLT). However, sometimes, its longitudinal extension may be more comprehensive,
depending, for example, on the reconnection X-line length [36]. Also, it was noticed in [32]
that the Cluster satellites, which data are presented in Figure 3, due to the geometry of
their orbits, do not allow to determine the entire longitudinal extent of the cusp correctly,
and to do so, the spacecrafts should have been placed in more or less parallel orbits, so that
they fly at the same latitude, though at different longitudes or local times, which could be
realized in subsequent magnetosphere missions. As shown in [37], using data from the
satellite Polar, the polar cusp may be between 08 h and 16 h MLT.
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After extreme solar events penetrated the polar cusp, solar wind plasma became
denser. Therefore, the geomagnetic field lines under the cusps became more conductive
during these times. Suppose a high conductivity along geomagnetic lines helps generate
earthquakes in their footprints in the crust. In that case, one may suggest that seismic
activity could be increased in those longitudinal regions in which their high latitudinal
areas were located under the polar cusp when the shocked solar wind arrived and the
geomagnetic storms started. In the present paper, we are checking up on this suggestion.

According to [38], adequate solar wind magnetosphere coupling time should con-
stantly change with time and season due to Earth’s rotation and its motion along the
orbit (Russell–McPherron mechanism). Therefore, to obtain a more reliable result, it was
advisable to analyze the response of seismic activity to geomagnetic storms with reasonably
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similar characteristics. For this purpose, we chose two geomagnetic storms that occurred on
the same day, 17 March 2013 and 2015 (St. Patrick’s Day geomagnetic storms). These mag-
netic storm onset times were also relatively identical: 06:04 UTC for the storm on 17 March
2013 and 04:48 UTC on 17 March 2015. This means that, at the time of the shocked solar
wind’s arrival at the magnetopause, under the cusp were located the high-latitudinal areas,
which were almost the same longitudinal region (there was no difference in tectonics).

These two geomagnetic storms have been analyzed in many papers [39–42] (and
references herein) and discussed at many conference sessions. In a unique collection of
Journal Geophysical Research (June 2017, Issue 6), there are more than 30 papers by researchers
worldwide investigating the storm–time geospace behavior during the St. Patrick’s Day
geomagnetic storms of 2013 and 2015. Since these events, especially the storm of 2015, were
the strongest in the 24th solar cycle, they are considered a good event for checking the
current theories and concepts [39].

According to the data of the Large Angle and Spectrometric Coronagraph Experiment
(LASCO) on the board of the Solar and Heliospheric Observatory (SOHO), the geomagnetic
storms on 17 March 2013 and 17 March 2015 originated from coronal mass ejections (CMEs)
associated, respectively, with solar flare type C1.6 on 15 March 2013 at 07:12 UT and
solar flare type C9 on 15 March 2015 at 02:36 UT (web page: https://izw1.caltech.edu/
ACE/ASC/DATA/level3/icmetable2.htm, accessed on 1 April 2024). Both CMEs were
followed by the magnetic cloud [40,41]. It was shown in [42] that the St. Patrick’s Day
geomagnetic storms in 2013 and 2015 occurred at rather close solar flux levels (F10.7 = 118,
F10.7 = 126, respectively) and were responsible for somewhat similar peak values of the
auroral electrojet index (AE) equal to 2700 nT and 2200 nT, respectively. According to
the database OMNI, the geomagnetic storm on 17 March 2013 started from a sudden
storm commencement (SSC) at 06:04 UT with a positive SYM/H index = +33 nT, the most
significant negative SYM/H index = −132 nT occurred on 17 March 2013 at 20:28 UT, and
the duration of the main storm phase was equal to ~14 h. The storm on 17 March 2015
started from SSC at 04:48 UT with a positive SYM/H index = 67 nT, the most significant
negative SYM/H index = −234 nT occurred at 22:47 UT on 17 March 2015, and the main
storm phase lasted ~18 h.

Figure 4 presents the 1-min data of the SYM/H index from March 14 to March 26 in
2013 (black) and 2015 (red) from the OMNI database. It is seen that the storm of March 2015
was more substantial in comparison with the storm of 2013, which resulted evidently from
different types of solar flares that generated these storms (C1.6 and C9, respectively). It is
seen in Figure 4 that the shape and the duration of the main storm phase and the recovery
phase were somewhat similar.

Observed similarities in the background conditions during the geomagnetic storms on
the 17 March 2013 and 17 March 2015 occurrences, as well as a similarity in parameters of
both storms (Figure 4), allows one to consider them as appropriate events to test an idea:
“Is there a similar pattern in a response of global seismic activity to similar geomagnetic
storms?” The results are presented below.

https://izw1.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm
https://izw1.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm
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2. Materials and Methods

This study investigates earthquakes using data from the global seismological catalog of
the United States Geological Survey (USGS): https://earthquake.usgs.gov/earthquakes/,
accessed on 1 April 2024. The USGS currently reports earthquake magnitudes using the
moment magnitude scale. Earthquakes with magnitudes 3.0–3.9 are classified as minor,
4.0–4.9—light, 5.0–5.9—moderate, 6.0–6.9—strong, 7.0–7.9—major, and those with magni-
tudes 8.0 or larger—great: https://www.earthquakeauthority.com/blog/2020/earthquake-
measurements-magnitude-vs-intensity, accessed on 1 April 2024. This work deals with
earthquakes beginning from a magnitude of 4.5, representing a modern USGS catalog,
as shown in the Gutenberg–Richter analyses. The solar wind parameters are taken from
NASA’s web page: http://cdaweb.gsfc.nasa.gov, accessed on 1 April 2024 (OMNI database)
and obtained from current and past space missions and projects. Data on geomagnetic
storms included in the OMNI database were taken from the World Data Center for Geo-
magnetism, Kyoto: https://wdc.kugi.kyoto-u.ac.jp/, accessed on 1 April 2024. We use
the 1-h Dst (disturbance storm time) index before 1981 and the 1-min SYM-H index after
1981, since the last one was absent before 1981; the geomagnetic index SYM-H is, in fact, a
high-resolution Dst index [43]. According to [44], geomagnetic storms may be classified as
weak (Dst from −30nT to −50 nT), moderate (Dst from −50nT to −100 nT), strong (Dst
from −100nT to −200 nT), powerful (Dst from −200nT to −350 nT), and extreme (Dst below
−350 nT). Data on sudden storm commencement (SSC) are taken from thFTP link: ftp://
ftp.ngdc.noaa.gov/STP/SOLAR_DATA/sudden_commencements/storm2.SSC, accessed
on 1 April 2024, which the Observatorio del Ebro, Roquetes, Spain, obtained. Considering
the results [16,26], which show that earthquake occurrence may be delayed according to
the magnetic storm onset for some first months, we calculated and compared variations of
the daily amount of the released at the globe seismic energy for three months, 17 March–17
June, in 2013 and 2015. For each earthquake with M ≥ 4.5, a released seismic energy was

https://earthquake.usgs.gov/earthquakes/
https://www.earthquakeauthority.com/blog/2020/earthquake-measurements-magnitude-vs-intensity
https://www.earthquakeauthority.com/blog/2020/earthquake-measurements-magnitude-vs-intensity
http://cdaweb.gsfc.nasa.gov
https://wdc.kugi.kyoto-u.ac.jp/
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/sudden_commencements/storm2.SSC
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/sudden_commencements/storm2.SSC
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estimated using the Gutenberg and Richter relation [45] Es = 10 (11.8 + 1.5M), with the Es
value in Ergs. Then, the sum of Es in each day was estimated. Since the primary input
for seismic energy is the major and great earthquakes, we determined an earthquake that
mainly input to the peaks in the daily released seismic energy around the globe. If we
know the coordinates of an epicenter, we may estimate the magnetic local time (MLT)
in this epicenter at the time of geomagnetic storm onset. To do this, we used the online
program on the website: https://omniweb.gsfc.nasa.gov/vitmo/cgm.html, accessed on
1 April 2024. The magnetic local time MLT is often used, instead of longitude, to organize
data and models concerning the position of the Sun, because the longitude, which rotates
with the Earth, is not a helpful parameter for this [46]. The MLT value is 0 (midnight) in
the anti-Sunward direction, noon in the Sunward direction, and 6 (dawn) and 18 (dusk)
perpendicular to the Sunward/anti-Sunward line. Also, we use in works the coordinates of
geomagnetic poles, the antipodal points where the axis of a best-fitting dipole intersects
the Earth’s surface; the magnetic dipoles are points on the Earth’s surface in the Northern
and Southern Hemispheres where the magnetic inclination of the Earth’s magnetic field
is 90 degrees, and the corrected geomagnetic poles, which are not a physical location but
provide a reference frame that aligns with the Earth’s magnetic field lines, is essential for
modeling the dynamics of near-Earth plasma and electromagnetic field disturbances [46].

3. Results
3.1. A Pattern of Seismic Activity at the Globe after the Magnetic Storms on 17 March 2013
and 2015

Figure 5 shows the histogram of released seismic energy globally per day (Es, in Joules)
from March 17 to June 17 in 2013 and 2015 (black and red columns, respectively). The
considered time intervals are restricted by June, because the next strong geomagnetic storm
occurred in June 2013 (Dst = −137) and June 2015 (Dst= −208).
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In Figure 5, the dashed circles (1 and 2) mark the most significant peaks in the globally
released seismic energy after 17 March 2013, and 17 March 2015. For both years, the first
peak occurred in April and the second in May. Table 1 presents earthquake data, which are
mainly responsible for forming the Es peaks marked as 1 and 2.

Table 1. The data on the earthquakes, which are mainly responsible for the Es peaks, are marked in
Figure 4 as 1 and 2.

Earthquake Date
(y–mon–day, Place) Time UTC Geographic

Latitude
Geographic
Longitude Depth (km) Magnitude

The Delay between Storm
Onset and Earthquake

Occurrence (Days)

The strongest earthquakes responsible for Es peaks in April of 2013 and 2015

2013-04-16
Iran 10:44:20 28.033◦N 61.996◦E 80 7.7 30

2015-04-25
Nepal 06:11:25 28.231◦N 84.731◦E 8.2 7.8 39

The strongest earthquakes responsible for Es peaks in May of 2013 and 2015

2013-05-24
Okhotsk sea 05:44:48 54.892◦N 153.221◦E 598.1 8.3 68

2015-05-30
Japan 11:23:02 27.839◦N 140.493◦E 664.0 7.8 74

For the Es peak in April 2013, the M = 7.7 earthquake was mainly responsible on
16 April 2013. According to [47], it occurred on the Arabian lithosphere plate at a depth of
~80 km in Southeastern Iran. Here, regional tectonics are responsible for the collisions of
the Arabian and Indian lithosphere plates with the Eurasia plate. The Arabian lithosphere
plate is subducted beneath the Eurasia lithosphere plate at the Makran Coast of Pakistan
and Iran [47]. For this event, the delay time between the day of magnetic storm onset
(17 March 2013) and earthquake occurrence (16 April 2013) equaled 30 days.

For the Es peak in April 2015, the M = 7.8 earthquake, which occurred on 25 April 2015
in Nepal, was mainly responsible. According to [47], this earthquake occurred due to thrust
faulting on or near the main thrust interface between the subducting India plate and the
overriding Eurasia plate to the north. For this event, the delay time between the day of
magnetic storm onset (17 March 2015) and the day of earthquake occurrence (25 April 2015)
equaled 39 days.

For the Es peak in May 2013, the deep-focus M = 8.3 earthquake was mainly re-
sponsible, which occurred on 24 May 2013 in Russia at a depth of ~600 km beneath the
Okhotsk Sea. According to [47], the Pacific and North American plates converge at the
location of this earthquake, resulting in the subduction of the Pacific plate beneath Eurasia
at the Kuril-Kamchatka Trench. The delay time between the day of magnetic storm onset
(17 March 2013) and earthquake occurrence (24 May 2013) equaled 68 days.

For the Es peak in May 2015, the deep-focus M = 7.8 earthquake was mainly responsi-
ble, which occurred on 30 May 2015 in Japan at a depth of 664 km beneath the Pacific Ocean.
According to [47], this earthquake was located within the interior of the Pacific plate that
subducts beneath Japan, starting at the Izu Trench, several hundred kilometers to the east
of the event. The delay time between the day of magnetic storm onset (17 March 2015) and
earthquake occurrence (30 May 2015) equaled 74 days.

Thus, the results in Figure 5 support our suggestion that similar geomagnetic storms
could provoke similar patterns in global seismic activity.

To check on another suggestion, that, in the time of geomagnetic storm onset on
17 March of 2013 and 2015, the high-latitudinal areas of the longitudinal regions where
the earthquakes occurred were located under the polar cusp, we calculated the magnetic
local time in each of the four epicenters at the time of geomagnetic storm onset with the
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help of an online program: https://omniweb.gsfc.nasa.gov/vitmo/cgm.html, accessed on
1 April 2024.

The geomagnetic storm on 17 March 2013 started at 06:04 UT. At this time, at a point
with coordinates 28.033◦N, 61.996◦E (M = 7.7 event in Iran on 16 April 2013), the magnetic
local time was equal to MLT = 10.48 h. At a point with coordinates 54.892◦N, 153.221◦E
(M = 8.3 event in Okhotsk Sea on 24 May 2013), the magnetic local time was equal to
MLT = 15.66 h.

This means that the high-latitudinal areas of the longitudes at which a major crust
earthquake in Iran and a deep-focused great earthquake in the Okhotsk Sea occurred, were
located under the polar cusps, which longitudinal extension may be 08 h–16 h MLT [37].

The geomagnetic storm on 17 March 2015 started at 04:48 UT. At this time, at a
point with coordinates 28.231◦N, 84.731◦E (M = 7.8 event in Nepal on 25 April 2015), the
magnetic local time was equal to MLT = 10.54 h. At a point with coordinates 27.839◦N,
140.493◦E (M = 7.8 event in Japan on 30 May 2015), the magnetic local time was equal to
MLT = 13.82 h. This means again that the high-latitudinal areas of the longitudes at which
the major earthquakes in Nepal and Japan occurred were located under the polar cusps.

Thus, these results suggest that, after a magnetic storm, major and great earthquakes
may occur in those longitudinal regions where high-latitudinal areas are located under the
polar cusp at the time of the magnetic storm onset.

3.2. Cases Study for Ten Other Earthquakes with M ≥ 7.5, Which Occurred around the Globe in
2013 and 2015

To check that the above results are not accidental, we conducted similar analyses for
ten other seismic events with M ≥ 7.5, which occurred around the globe in 2013 and 2015.
For example, on 21 June 2015, a powerful geomagnetic storm (SYM/H = −208 nT) started
(Figure 6). At the main phase of this storm, on 22 June 2015 at 18:37 UTC, a jump-like solid
growth in the solar wind and geomagnetic parameters occurred with a positive value of
SYM/H = +88 nT. It is not difficult to estimate that, at this time (18:37 UTC), the American
longitudinal region was located on the dayside. Compared to the above-considered cases,
one may expect that, some weeks or months later, a strong earthquake may have occurred
in this longitudinal region, and that was the case. On 16 September 2015, the great M = 8.3
earthquake occurred in Chile with coordinates at the epicenter of 31.573◦S, 71.674◦W. At
the time of jump-like solid growth in the solar wind parameters on 22 June 2015 at 18:37 UT,
the magnetic local time in the area of the M = 8.3 Chile earthquake epicenter was equal to
MLT = 14.12 h. Thus, the high latitudinal area of the Chile longitudinal region was located
under the polar cusp. A time delay between the shocked solar wind arrival on June 22,
2015 and the M = 8.3 earthquake in Chile on 16 September 2015 was equal to 86 days.

Another example is on 24 October 2015 at 19:00 UTC, as a jump-like growth in the
solar wind and geomagnetic field parameters occurred when the SYM/H index reached
up to +39 nT (Figure 7). Again, at this time (19:00 UTC), the American longitudinal region
was located on the dayside. One month later, on 24 November 2015, a “doublet” of major
(M = 7.6) deep-focused (h ≥ 600 km) earthquakes occurred in this longitudinal region in
Peru with coordinates at the epicenter of 10.537◦S, 70.944◦W and 10.060◦S, 71.018◦W. At
19:00 UTC, the magnetic local time in the area of the two major earthquakes in Peru was
equal to MLT = 14.5 h. The delay between the shocked solar wind arrival on October 24
and a “doublet” of significant earthquakes on November 24 was equal to ~31 days.

For the remaining five M ≥ 7.5 events in 2013 and 2015, we could also identify the
preceded geomagnetic storms when, at the times of storm onset, the high-latitudinal areas
of the longitudinal regions of the future epicenters were located under the polar cusp
(Table 2).

https://omniweb.gsfc.nasa.gov/vitmo/cgm.html
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and Bz) in the GSM coordinate system, density and temperature of the solar wind flux, pressure of
the solar wind at the magnetopause, and geomagnetic SYM/H index for 24–25 October from the
OMNI database.
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Table 2. Data on geomagnetic storms, strong (M ≥ 7.5) earthquakes following the storms, the time
delay between storm onset and earthquake occurrence, and magnetic local time (MLT) at the areas of
future epicenters in times of geomagnetic storm onset.

#

Data on
Geomagnetic Storm

(Date, Time of Onset (UT);
Maximal Positive and
Negative Values of the

SYM/H Index (nT)

Data on Strong (M ≥ 7.5) Earthquakes
Following the Geomagnetic Storm.

(Region, Date, Coordinates, Depth-h km;
Magnitude)

The Time Delay between
Geomagnetic Storm Onset
and Earthquake Occurrence

(Days)

Magnetic Local Time (MLT)
in the Area of the Future
Epicenter in a Moment of
Geomagnetic Storm Onset

1 2 3 4 5

1. 17 March 2013; 06:04;
SYM/H: +33; −132

Iran, 2013-04-16; 10:44:20;
28.033◦N, 61.996◦E; h = 80; M7.7 30 10.48

Okhotsk Sea, Russia, 2013-05-24; 05:44:48;
54.892◦N, 153.221◦E; h = 598; M8.3 68 15.66

2. 17 March 2015, 04:48;
SYM/H: +67; −234

Nepal, 2015-04-25; 06:11:25;
28.231◦N, 84.731◦E; h = 8.2; M7.8 39 10.54

Japan, 2015-05-30; 11:23:02;
27.839◦N, 140.493◦E; h = 664; M7.8 74 13.82

Papua New Guinea, 2015-03-29; 23:48:31;
4.729◦S, 152.562◦E; h = 41; M7.5 12 15.63

Papua New Guinea, 2015-05-05; 01:44:06;
5.462◦S, 151.875◦E; h = 55; M7.5 49 15.57

3. 22 June 2015, 18:37;
SYM/H: + 88; −208

Chile, 2015-09-16; 22:54:32;
31.573◦S, 71.674◦W; h = 22.4; M8.3 86 14.12

24 October 2015, 19:00;
SYM/H: + 39

(no geomagnetic storm)

Peru, 2015-11-24; 22:45:38;
10.537◦S, 70.944◦W; h = 606.2; M7.6 31 14.52

Peru, 2015-11-24; 22:50:54;
10.060◦S, 71.018◦W; h = 620.6; M7.6 31 14.51

4. 31 October 2012; 16:52;
SYM/H: +35; −68

Alaska, 2013-01-05; 08:58:14;
55.228◦N, 134.859◦W; h = 8.7; M7.5 66 7.15

5. 17 January 2013, 03:00;
SYM/H: + 55; −57

Solomon Islands, 2013-02-06; 01:12:25;
10.799◦S, 165.114◦E; h = 24; M8.0 20 14.88

6. 4 August 2013, 06:11;
SYM/H: + 24; −56

Pakistan, 2013-09-24; 11:29:47;
26.951◦N, 65.501◦E; h = 15; M7.7 51 10.79

7. 27 August 2013, 16:00;
SYM/H: +13; −68

Scotia Sea, 2013-11-17; 09:04:55;
60.274◦S, 46.401◦W; h = 10; M7.7 82 12.72

8. 20 September 2015, 06:18;
SYM/H: +3; −84

Afghanistan, 2015-10-26; 09:09:42;
36.524◦N, 70.368◦E; h = 231; M7.5 36 11.21

Therefore, the M = 7.5 earthquake in Alaska on 5 January 2013 was preceded 66 days
by a geomagnetic storm on 31 October 2012, the M = 8.0 earthquake in the Solomon Islands
on 6 February 2013 was preceded 20 days by a geomagnetic storm on 17 January 2013,
the M = 7.7 earthquake in Pakistan on 24 September 2013 was preceded 51 days by a
geomagnetic storm on 4 August 2013, the M = 7.7 earthquake at Scotia Sea on 17 November
2013 was preceded 82 days by a geomagnetic storm on 27 August 2013, and the M = 7.5
earthquake in Afghanistan on 26 October 2015 was preceded 36 days by a geomagnetic
storm on 20 September 2015.

Table 2 shows (column 5) that, as a rule, at the time of geomagnetic storm onset
(time of sharp compression of the magnetosphere by the shocked solar wind), the high-
latitudinal areas of longitudinal regions of the future epicenters were located under the
polar cusp 08 h–16 h MLT. The most significant disagreement occurred regarding the
M = 7.5 earthquake in Alaska on 5 January 2013 when the MLT = 7.15 h. At the same time,
it was reported in [36] that the longitudinal cusp location may be more comprehensive due
to, for example, the much-extended length of the reconnection X-line at the magnetopause.

It is seen in Table 2 that 14 earthquakes with a magnitude M ≥ 7.5 that occurred around
the globe in 2013 and 2015 could have been provoked by only eight geomagnetic storms.
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3.3. Longitudinal Regions of Strong Earthquake Occurrences and Geomagnetic Pole Locations

In Figure 8, we show the aspatial distributions of 14 epicenters of (M ≥ 7.5) earthquakes
(from Table 2) that occurred around the globe in 2013 and 2015 (circles); color symbols with
digits in the Northern and Southern Hemispheres show the locations of the magnetic poles
for the epochs of 1975–2015 for three options: 1—geomagnetic poles, 79.5◦N, 71.4◦W and
79.5◦S, 108.6◦E; 2—magnetic dipoles 80.3◦N, 114.9◦W and 64.9◦S, 138.4◦E; 3—corrected
geomagnetic poles 81.46◦N, 82.33◦W and 74.18◦S, 126.19◦E.
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It can be seen from Figure 8 that the longitudinal regions where M ≥ 7.5 earthquakes
occurred in 2013 and 2015 (America and East Asia) are closely confined to the longitudes
of the locations of the magnetic poles. Earthquake epicenters on the American continent
are centered around the longitudes of the locations of the magnetic poles in the Northern
Hemisphere. In contrast, earthquake epicenters in East Asia are centered around longitudes
of the locations of the magnetic poles in the Southern Hemisphere (color quadrants, circles,
and triangles).

To confirm once more the reality that the longitudinal regions of the occurrence of
strong earthquakes are confined to the longitudes of the magnetic pole locations, we present
in Figure 9 the histogram of the distribution of the number of (M ≥ 7.5) earthquakes that
occurred around the globe in 1973–2017 (212 events) dependent on the longitude. Here,
blue quadrants, red circles, and purple triangles mark the longitudes of the magnetic poles’
locations in the Northern and Southern Hemispheres, respectively, as discussed above. It
can be seen in Figure 9 that, around the globe, the longitudinal regions of the strongest
earthquake occurrences are centered around the longitudes of the magnetic poles’ locations.
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4. Discussion

It is suggested that the Sun may provoke earthquakes during substantial increases
in solar wind activity. Statistical studies show that geomagnetic storms may precede
strong earthquakes and that the time delay between a storm’s onset and an earthquake’s
occurrence may vary from some days to some months. Since the efficiency of penetration of
solar wind energy into near-Earth space changes with season and time (Russell–McPherron
mechanism), it seemed appropriate to compare the response of the Earth’s seismic activity
to somewhat similar geomagnetic storms. For this purpose, we chose the two strongest
geomagnetic storms in the 24th solar cycle, which occurred on the same day on 17 March
2013 (SYM/H index = −132 nT) and 17 March 2015 (SYM/H index = −234 nT). The storms
occurred at relatively close solar flux levels (F10.7 = 118, F10.7 = 126, respectively) and
were responsible for somewhat similar peak values of the auroral electrojet index (AE)
equal to 2700 nT and 2200 nT, respectively. The times of these magnetic storm onsets were
also similar: 06:04 UTC for the storm on 17 March 2013 and 04:48 UTC for the storm on
17 March 2015. The shapes of the main and the recovery phases for these storms were
identical (Figure 4). The variations of daily released seismic energy around the globe from
17 March to 17 June in 2013 and 2015 showed that two peaks in seismic energy took place
for both years—one in April and another in May (Figure 5).

The major and great earthquakes mainly responsible for these peaks occurred in
almost the same territories in 2013 and 2015. Namely, on 16 April 2013, the crust M = 7.7
earthquake occurred in Iran with a time delay of 30 days, and on 25 April 2015, the crust
M = 7.8 earthquake occurred in Nepal with a time delay of 39 days. Then, on 24 May
2013, the deep-focus M = 8.3 earthquake occurred beneath the Okhotsk Sea (Russia) with a
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time delay of 68 days, and on 30 May 2015, the deep-focus M = 7.8 earthquake occurred
beneath the Pacific Ocean (Japan) with a time delay of 74 days. It has been known for
more than 30 years that the process of earthquake preparation modifies the state of the
atmosphere and ionosphere, e.g., [48] (and references herein). The time delay between
the appearance of an anomaly in the atmosphere–ionosphere parameters and earthquake
occurrence may differ. For example, the multiparameter satellite data analysis revealed
anomalous atmospheric and ionospheric effects over the earthquake preparation zone of
the Nepal M7.8 earthquake 21 days before 25 April 2015, the main shock [49].

It was found in [26] that strong earthquakes may occur near the footprints of geo-
magnetic lines that were intensely populated with high-energy particles. In the areas of
the polar cusps, where the solar wind plasma has direct access to the Earth’s environ-
ment, the geomagnetic lines can be filled by solar wind plasma, especially in the time of a
shocked solar wind arrival. Since the longitudinal extension of the polar cusp is restricted
by 08 h–16 h MLT [37], one may expect that shocked solar wind will provoke earthquakes
mainly in those longitudinal regions in which high-latitudinal areas are located under the
polar cusp at the time of a shocked solar wind arrival. Table 2 shows that this was right for
all M ≥ 7.5 earthquakes that occurred in 2013 and 2015. It was shown in [16] that this was
also right for all (nine) strong M ≥ 7.0 earthquakes that occurred in 1967–2023 inside and
around the Anatolian plate, including the catastrophic M = 7.8 and M = 7.5 Kahramanmaras
earthquake sequence in Turkey on 6 February 2023.

Since there is a delay between a shocked solar wind arrival and earthquake occurrence
up to some months, this may suggest that solar wind energy does not trigger earthquakes
immediately (when the media is ready for destruction, as it is believed at present). Instead,
as suggested in [16], it may be put into the lithosphere dynamics, such as fluid upwelling,
which are active participants in tectonic earthquakes [50]. The emanation of lithospheric
gases before strong earthquakes has been well documented [48]. Moreover, such emanation
may result in acoustic gravity wave (AGW) excitation [51], penetrating the ionosphere.
Within the framework of such reasoning, first, the solar wind’s energy provokes a rise in
lithospheric gases (fluids), and the emanation of these gases excites AGWs, which spread
into the ionosphere and foreshadow an upcoming earthquake.

It is well known that the strongest earthquakes occur mainly in two longitudinal
regions: on the American and Asian branches of the Pacific Ring of Fire. However, the
literature does not discuss why these two branches of seismicity and, more broadly, why
these two branches of the Pacific Ring of Fire are centered relative to the longitudes of the
Earth’s magnetic poles. Of course, the question can be put the other way around: “How
did it happen that the longitudes of the magnetic poles in the Northern and Southern
Hemispheres are confined to the longitudes of the American and Asian branches of the
Pacific Ring of Fire, which is formed by the subduction of various tectonic plates around
the Pacific Ocean at convergent boundaries?” If this is not an accident, then this fact may
indicate a close connection between the tectonic activity of the Earth and its magnetic field.
Based on our research, we can assume that the influence of disturbed solar wind flows on
lithospheric processes will be most effective when the longitudes of the magnetic poles are
located under the polar cusp.

5. Conclusions

After a rather similar geomagnetic storm on St. Patrick’s Day (March 17) in 2013 and
2015, strong earthquakes (M ≥ 7.5) occurred in rather similar regions of the Earth, with
rather similar delay times between geomagnetic storm onset and earthquake occurrence.
During these magnetic storm onsets, the high-latitude areas of longitudinal regions where
strong earthquakes occurred were located under the polar cusp, where the solar wind
plasma directly accessed the Earth’s environment. The same situation occurred for the
other ten earthquakes with M ≥ 7.5 around the globe in 2013 and 2015. The longitudinal
regions of the considered earthquakes were centered according to the longitudes of the
magnetic pole locations in the Northern and Southern Hemispheres. This suggests that the
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effectiveness of the shocked solar wind influence on lithosphere processes is extreme when
the longitudes of the magnetic poles are located strictly under the polar cusp. An issue on
how the shocked solar wind energy can reach the lithosphere and what it does there for
some months before it is realized in an earthquake should become a key aspect of solving
the problems of solar–terrestrial physics.
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