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Abstract: The distribution of forest-dominant tree species is crucial for ecosystem assessment. Remote
sensing monitoring requires annual ground sample data, but consistent field surveys are challenging.
This study addresses this by combining sample migration learning and machine learning for multi-
year tree species classification in the Three Gorges Reservoir area in China. Using the continuous
change detection and classification (CCDC) algorithm, sample data from 2023 were successfully
migrated to 2018–2022, achieving high migration accuracy (R2 = 0.8303, RMSE = 4.64). Based
on migrated samples, random forest (RF), support vector machine (SVM), and extreme gradient
boosting (XGB) algorithms classified forest tree species with overall accuracies above 70% and Kappa
coefficients above 0.6. XGB. They outperformed other algorithms, with classification accuracy of over
80% and Kappa above 0.75 in almost all years. The final map indicates stable distribution from 2018
to 2023, with eucalyptus covering over 40% of the forest area, followed by horsetail pine, fir, cypress,
and wetland pine.

Keywords: forest ecosystem; forest dominant tree species; machine learning; migration learning;
change detection

1. Introduction

Information on the spatial distribution of forest dominant species is an important basis
for sustainable management of forest resources, carbon stock monitoring, and species diver-
sity assessment [1–4], and multi-year information on forest tree species is considered to be
important in formulating forestry management strategies and promoting the development
of forest economic benefits [5]. Traditional periodic forest inventory tasks generally use
manual recording means in estimating the distribution of forest species, which often suffers
from the following problems: high labor costs, poor accessibility, and long task aggregation
cycles [6,7]. This also leads to the inability of traditional means to provide continuous
multi-year tree species distribution information in the context of large spatial scales [8].

Remote sensing data have received widespread attention in forest monitoring tasks
due to their large observation range and fast data update, and are considered to be an im-
portant data source for mapping forest stand attributes (tree species distribution, etc.) [9,10].
However, detailed stand tree species information is usually utilized with very high res-
olution (VHR) data such as WorldView-2 [11,12]. Limited by the cost of access, most
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VHR-based studies tend to be confined to small areas, such as Waster et al. [11], who
used WorldView-2 data for tree species classification work within a study area of 60 km2.
Tree species classification studies for large geographical scales with complex topographic
conditions and locational factors rarely use VHR data [9,13]. Instead, existing large-scale
remote sensing data products usually focus only on broad parameter information of forests,
such as forest cover, forest type (plantation/natural forest, coniferous/broadleaf forest),
and forest carbon potential [14–16].

The Landsat series of moderate-resolution satellites are widely used for large-area
forest monitoring missions due to their free and open-source characteristics [17]. How-
ever, its temporal resolution of 16 days and spatial resolution of 30 m have exposed some
problems: (1) lower temporal resolution results in a limited number of cloud-free and seam-
less Landsat remote sensing imagery acquisitions, which does not allow for the complete
capture of phenological information [18]. (2) Due to the fact that spectral separability and
stand structure are highly correlated, differences in stand structure between tree species
have been shown to serve as potential features for tree species classification tasks, thus
helping to improve the classification accuracy of tree species [19]. However, the spatial
resolution of 30 m performs poorly in identifying structural differences in forest stands,
resulting in lower accuracy of tree species classification [20]. Fortunately, the Sentinel-2
satellites launched in 2015 and 2017 brought significant advances in spatial and temporal
resolution from medium-resolution satellites. The 5-day revisit period means that more
observations are achieved in the same time span, allowing for the complete capture of
rapidly changing phenological information [21]. Grabska et al. [22] found in their task of
mapping tree species in mountainous areas that images acquired at the beginning and end
of the climatic period (spring and autumn) can distinguish well among different forest
tree species. The 10 m spatial resolution of Sentinel-2 data can capture more detailed
information of tree species, and the correlation between texture features calculated based
on the 10 m resolution and stand structure information is stronger than that calculated
based on Landsat data, which can help to distinguish between tree species [23].

In performing the task of mapping multi-year tree species distribution information,
a challenge arises that cannot be ignored. Usually, the sample data used for the tree
species classification task are mainly derived from (1) National Forest Inventory (NFI)
data and (2) in situ measurements of forest plots [24,25]. The sample data obtained based
on the above methods are often limited by the acquisition cost, which makes it difficult
to update the data in a timely manner. Additionally, the acquisition of multi-year tree
species distribution information faces two problems: (1) is it feasible to use the samples
of a single year to classify the images of other years? (2) How can we accurately map
single-year tree species sample data to multiple years? In other words, how can we achieve
interannual migration of single-year samples? To address the first question, existing studies
have demonstrated the feasibility of supervised classification of images in the current time
phase based on past training samples [26,27]. For example, Zhang et al. [26] used samples
obtained from previous land use data products to classify images in the current time phase
and achieved high classification accuracy. However, a problem was also exposed: the
quality of the sample data may be affected by previous classification errors. Therefore,
it is the second question that we want to answer., In a multi-year wetland land cover
classification task to ensure the quality of the samples during the migration process, Fekri
et al. [27] obtained a stabilized sample by calculating the similarity of the three vegetation
indices for the reference year–target year (with no training samples) and deriving the
optimal thresholds for the unchanged samples, which were used in 2018, 2019, and 2021
target years. The proposed migrated sample approach yielded more than 95% accuracy.
However, there was a huge difference in the tree species classification task compared to the
land cover classification task, and the spectral differences among tree species were small
compared to the spectral differences among different land cover types, so the method based
on spectral similarity thresholding may need to be based on a large number of vegetation
indices combined with spectral band features to obtain convincing sample migration
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results. This, in turn, represents the need to cope with large computational volumes
and the processing of high-dimensional and complex data. The online change detection
algorithms (CCDC algorithm, Landtrendr algorithm) cope well with these problems, and
this class of algorithms has been well integrated into the Google Earth Engine (GEE),
which does not require complex data input and achieves accurate identification of forest
disturbance situations by setting a series of disturbance discrimination rules. For example,
Yang et al. [21] achieved an R2 of 0.79 using the CCDC change detection algorithm for
the forest disturbance identification task. The research strongly confirms the potential of
this class of transform detection algorithms in identifying perturbed image elements and
stable image elements. Additionally, it is not yet known whether the CCDC algorithm can
perform the task of migrating stable forest tree samples in time series.

In this study, we used multi-temporal remote sensing data for each year from 2018–2023
as the data source, invariant samples obtained from each year using the CCDC change de-
tection algorithm as the reference data, and the random forest (RF), support vector machine
(SVM), and extreme gradient boosting (XGB) algorithms as the classification algorithms.
The aim is to map the forest-dominant tree species in the Three Gorges Reservoir Area from
2018 to 2023. In general, this study is committed to solving the following problems:

(1) Is it possible to obtain high-precision tree species classification results using samples af-
ter completing inter-annual migration based on the CCDC change detection algorithm?

(2) Which machine learning algorithm performs best in the task of classifying forest-
dominant tree species in the Three Gorges Reservoir area?

2. Study Area and Data
2.1. Study Area

Our study area is located in southwestern China (e.g., Figure 1a) at the intersection of
the Sichuan Basin and the plains of the middle and lower reaches of the Yangtze River. Its
official name is the Three Gorges Reservoir area (TGRA), which mainly includes 20 counties
(districts) that are inundated by the Three Gorges Project of the Yangtze River and have the
task of migrant resettlement. The geographic location is 106◦20′–110◦30′E, 29◦00′–31◦50′N,
from Yiling District in the east to Jiangjin District in the west, with an area of more than
60,000 km2 and a population of more than approximately 23 million in the study area.
The climate of the study area is a humid subtropical monsoon climate, with an average
annual precipitation of more than 1000 mm and an average annual temperature of around
17 degrees Celsius. The study area is more than 74% mountainous, 22% hilly, and only
4% plain, with the overall topography ranging from high in the east to low in the west,
with altitudes ranging from 12 to 2994 m above sea level (Figure 1b). The forest cover of
the study area is more than 60% (Figure 1c), and the forests are mainly distributed in the
eastern mountains, the western karst mountains, and the southern low hills, with the main
forest types being evergreen forests. Due to decades of over-exploitation and logging, the
proportion of natural forests in the area is about 4 percent, and most of the natural forests
are secondary forests. According to forestry statistics, information on forest species in the
study area is relatively simple. Five tree species, cypress, horsetail pine, wetland pine, fir,
and eucalyptus, account for more than 90 per cent of the total forest area and total stock in
the study area.
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Figure 1. Overview map of the study area. (a) represents the location of the study area in China;
(b) represents the DEM data of the study area; (c) represents the forest cover in the study area.

2.2. Data
2.2.1. Sentinel-2 Data

In this study, all Sentinel-2 image tiles with less than 20% cloud cover in the study
area from 2018–2023 were collected using the GEE platform. The SR dataset used is the
L2A-level surface reflectance data product that has undergone an atmospheric correction
operation. Additionally, cloud/cloud shading was masked for each image by quality
assessment bands (except for 2018, which used the MSK_CLASSI_SNOW_ICE band, and
the rest of the years, which used the QA60 band). Subsequently, in order to ensure the
consistency of each band in the index calculation, this study used bilinear interpolation
to resample the band with a spatial resolution of 20 m to 10 m. Due to the influence of
conditions such as cloud cover and orbit distribution on the image quality, it becomes
exceptionally difficult to obtain cloud-free and seamless remote sensing data for the whole
study area. To cope with the above situation, this study used the median synthesis method
to generate a cloud-free image for each season. In the end, a total of 24 cloud-free and
seamless high-quality Sentinel-2 images covering the entire study area were obtained.

The spectral bands that were used for the classification task in this study include
B2–B4 (RGB), B5–B7 (red edge), B8 (near-infrared), and B11–B12 (shortwave-infrared).
Based on the above data, NDVI (normalized difference vegetation index), NDWI (nor-
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malized difference water index), SAVI (soil-adjusted vegetation index), NIRV (nearby
vegetation index), and REIP (red-edge inflection point index) were computed for each im-
age in this study which has been proved to be the reliable indices to improve the accuracy
of tree species classification in previous studies. In the subsequent process of calculating the
texture indices, the first principal component of each image was extracted using the prin-
cipal component analysis (PCA) method, and the greyscale covariance matrix of the first
principal component was calculated. The eight texture features, energy, entropy, correlation,
inverse difference moment, inertia, cluster shade, cluster prominence, and correlation, were
finally obtained. Subsequently, we stacked the spectral bands, vegetation indices, and
texture features corresponding to each year to construct a multi-temporal remote sensing
image dataset. The stacked images will be used as a remote sensing data source for tree
species classification. The computation of both vegetation indices and texture features was
conducted using the GEE platform.

2.2.2. Landsat Data

Because the change detection algorithms used in the subsequent interannual migration
of the samples were based on data acquired over the entire Landsat observation cycle,
we collected all available Landsat imagery in the GEE platform for the study area for the
period 1986–2023 (the earliest available Landsat data in the GEE platform is 1986). These
images were obtained from the Thematic Mapper (TM), Enhanced Thematic Mapper Plus
(ETM+), and Operational Land Imager (OLI) sensors. In order to enhance the image quality,
we first implemented a de-cloud/shadow operation for each image using the QA quality
assessment band, followed by a composite operation on a monthly basis for all images. In
addition, to enhance the accuracy of the CCDC algorithm in identifying changing samples,
we also calculated NDVI and NBR, which tend to show higher values in healthy and lush
forests and are more sensitive to forest disturbance and recovery. The resulting long-time
series remote sensing data and spectral indices will both serve as valuable data inputs for
subsequent change detection algorithms. The formula for the spectral index is shown in
Table 1.

Table 1. Calculation formula for the spectral index as a data input to the change detection algorithm.

Spectral Indices Calculation Formula

NDVI (NIR − RED)/(NIR + RED)
NBR (NIR − SWIR)/(NIR + SWIR) 1

1 Due to nomenclature differences in remote sensing imagery collected by different Landsat sensors, SWIR in the
equation represents the wavelength range of 2.08–2.35 microns.

2.2.3. Tree Species Sample Data

The tree species sample data used in this study were obtained by (1) the 2023 National
Forestry Inventory (NFI) data, (2) field measurement data, and (3) UAV hyperspectral
data. For the forestry inventory data in vector data format, the sample patches with the
field value ‘pure forest’ were first selected, and patches with an area of less than 900 m2

were deleted. Forest mask data were obtained after reclassification based on the existing
30 m resolution land cover dataset [28], and sample patches containing non-forest image
elements inside were deleted. In addition, the ‘planted area’ and ‘volume’ fields were
counted, and the top five tree species in terms of planted area and volume were filtered
for classification (this was due to the fact that the top five species had more than 90% of
the overall planted area and volume). The filtered samples were imported into ‘Google
Earth pro’ software for visual interpretation, and sample patches with non-forested areas
were further removed. The final 3367 high-quality sample plots were characterized by
the following features: pure forest stands, no non-forested areas within the plots, and
plots with an area of more than 900 m2. In the field measurements, the target plots were
required to have more than 80% monoculture trees, and all trees within the plots had to
be greater than 2 m in height and more than 5 cm in diameter at breast height (DBH). At
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the same time, the trees in the plots were required to be free of recent felling, pests, and
diseases. Subsequently, the type of tree species was recorded with the assistance of the
local forestry department. The GPS location of the plots was recorded using ‘Ovital Map
10.0.5’ software. The GPS information was converted into vector point data in ArcGIS
pro 3.0 software, and the sample points were set to have the same coordinate information
as the remote sensing image. Additionally, a total of 1324 real samples were obtained.
For forest areas with poor accessibility, this study used a hyperspectral mapping UAV
with a spatial resolution of 0.03 m to complete the measurement task. Each hyperspectral
image had a size of 20 × 20 m, and under the guidance of the staff, images containing
mixed forests were excluded, and the tree species types in the pure stand images were
recorded. Subsequently, after setting a uniform coordinate system for the hyperspectral
images in ArcGIS pro-3.0, vector points were generated at the center of the images, and
the vector points were assigned with tree species information. Finally, 677 sample data
based on hyperspectral images were obtained. Based on the above operations, a total of
5368 high-quality samples were collected in this study, and the tree species types included
cypress, horsetail pine, wetland pine, fir, eucalyptus, camphor, oak, maple, and quebracho.
Among them, cypress, horsetail pine, wetland pine, fir, and eucalyptus were the taxonomic
objects of this study. The number of samples of each tree species is shown in Table 2, and
the distribution of tree species in the study area is shown in Figure 2.

Table 2. Number of samples for each tree species.

Type Name Number

dominant tree species

cypress 1037
horsetail pine 956
wetland pine 862

fir 1042
eucalyptus 1349

minor species camphor, quebracho, maple, oak, etc. 122
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3. Methods

The workflow for conducting the task of mapping dominant tree species in the study
area consisted of the following steps (Figure 3): (1) inter-annual migration of samples,
(2) computation of taxonomic features, and (3) training and accuracy assessment of classifi-
cation models.
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VI: vegetation index; Tex: texture feature; RF: random forest algorithm; SVM: support vector machine
algorithm; XGB: extreme gradient boosting algorithm; OA: overall accuracy; PA: producer accuracy;
UA: user accuracy.

3.1. Sample Migration

Most of the limited inter-annual sample migration studies are based on spectral simi-
larity or measuring the distance of spectral angles to achieve sample migration. However,
these methods are often based on local, high-dimensional, and complex data processing,
and the resulting high computational costs are difficult to accept. Fortunately, the continu-
ous change detection and classification (CCDC) algorithm deployed in the GEE platform
copes well with this problem. Its wide range of time series data can quickly establish
the long time series curve of each pixel in the area and determine whether the pixel is
perturbed or not by judging whether each data point in the time series curve is an outlier or
not [29]. The CCDC algorithm utilizes the long time series NDVI and NBR as the modeling
data, and based on the ordinary least squares (OLS) method, a linear fitting model is built
for each pixel in the study area. Additionally, the difference between the observed and
fitted values is subsequently calculated. When the difference between the two was greater
than three times the root mean square error (RMSE) for six consecutive times within a
sustained observation period, the pixel was recorded as a disturbed image element [30]. At
the same time, breaks appear in the time series curve obtained from the linear fit. However,
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NDVI and NBR may have different sensitivities to forest disturbance situations, which
may cause the algorithms to diverge when determining the time of disturbance occurrence.
To counteract this problem, we analyzed the ‘chiSquareProbability’ band in the change
detection results, which represents the probability of each breakpoint occurrence [30]. In
this study, we compared the probability of occurrence of breakpoints in the NDVI and NBR
time series curves and recorded the occurrence time of breakpoints with a high probability
of occurrence as the time of perturbation. However, the occurrence of a perturbed pixel
within a sample patch does not mean that the sample patch needs to be withdrawn from
the sample migration process. Since we have determined that all sample patches from 2023
are high-quality samples with pure stands and well-defined species types, when migrating
sample data toward years 18–22 (target years), a sample patch can be migrated as long as
the sample patch has not been disturbed prior to the target year. As an example, if a sample
patch is disturbed in 2019, and after a year of restoration (hand transplanting/natural
growth), the disturbed area grows back and no disturbance is detected to have occurred in
2020–2022. At this point, the sample patch is then ready for sample relocation in 2020–2022.
Meanwhile, since the tree type of the 2018–2019 sample is not known, this sample patch
cannot be sample relocated in 18–19. In short, a sample patch that has been disturbed
during 2018–2022 can only be migrated backwards, not forwards.

At this point, an important issue comes to light: when the area is disturbed, it may not
immediately revert to forest. At this time, the area will appear to be ‘idle’ for a period of time,
and it is the time when it actually returns to the forest, which is an important criterion for
determining whether the sample patch can be used for migration. Based on this problem,
this study draws on the decision of Du et al. [31], who eliminated misdetection when
determining the plantation time of plantation forests, identifying the year of restoration
using the following criteria: (1) the increment of the time-series curve in which restoration
occurs after a disturbance must be greater than 0.2; (2) the time-series curve duration must
be more than one year; (3) the year of recovery must be the date corresponding to the first
vertex of the time series curve judged to be in recovery. This decision-making method was
shown to have a precise determination of the recovery of the disturbed area in the study of
Yang et al. [21]. Based on the above method, the following situations may occur during the
interannual migration of sample patches in the study area:

(1) For sample patches in which no disturbance occurrence was detected in the whole
time-series curve (Figure 4a), this category of sample patches can be used as a classifi-
cation sample for any of the years 2018–2023 (the recovery time of this category of
sample patches was recorded as 1986–).

(2) For sample patches where the disturbance phenomenon occurred prior to 2018 (Figure 4b),
sample patches in this category can also be used as classification samples for any of the
years 2018–2023 (the recovery time for sample patches in Figure 4b is 1989).

(3) For sample patches where the perturbation phenomenon occurred between 2018–2022
(Figure 4c), sample patches of this class can only be used for sample migration after
the year of perturbation (sample patches represented by Figure 4c can only be used
for the tree classification task in the years of 2021–2023 and the recovery time of the
sample patches is 2021).

All the above processes of calculation and judgement were carried out using the GEE
platform. Eventually, we obtained raster data ranging from 1986–2023, denoting the time
of forest restoration in the study area (the pixel values were uniformly set to 1986–present
for pixels where no disturbance occurrence was detected). Subsequently, in order to verify
the accuracy of the algorithm in determining the occurrence of disturbance and recovery of
forest pixels, we imported the data of 5368 sample patches into the ‘Google Earth’ software
and recorded the actual recovery time of each sample patch by visually judging the actual
growth condition of each sample patch through the roll-up window. Finally, this study
used R2 and RMSE to assess the degree of fit between the actual recovery time and the
predicted recovery time.
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Figure 4. Examples of NDVI time series curves for sample patches under different disturbance
scenarios. (a) represents an example of an undisturbed time-series curve within the entire time-series
curve; (b) represents an example of a time-series curve that was disturbed prior to 2018; (c) represents
an example of a time-series curve that was disturbed during the period of 2018–2023. Fit 1–3 represent
each segment of the ongoing time-series curve. In subfigure (a), fit 1 represents the undisturbed
NDVI time-series curve; in subfigure (b), fit 1 and fit 2 represent the NDVI time-series curves before
and after being disturbed; and in subfigure (c), fits 1–3 represent the NDVI time-series curves before
and after being subjected to multiple disturbances. Examples of NBR time-series curves for sample
patches under different disturbance scenarios are shown in Figure S1 in the Supplementary Material.
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3.2. Training of Classification Models

A complex and high-dimensional data processing problem is brought about by multi-
temporal remote sensing images combined with vegetation index features and texture
features, and machine learning algorithms are good coping tools [32,33]. The most common
machine learning algorithms for forest monitoring tasks are the random forest algorithm
(RF) and support vector machine algorithm (SVM) [9,34]. In recent years, the extreme gra-
dient boosting (XGB) algorithm has gradually received much attention due to its excellent
performance in forest monitoring tasks, obtaining higher classification accuracy than RF
and SVM in crop classification and regional-scale forest species classification tasks [35–37].
So, in this study, RF, SVM, and XGB were used for the tree species classification task. Before
proceeding with the classification model construction, in order to avoid the occurrence of
the same sample being selected as both training and test samples during random sampling,
this study firstly sets the ‘random number’ field for each sample patch, generates a random
floating-point number directly from 0–1 in this field, and selects the samples with the value
of this field greater than 0.3 for training samples and vice versa for test samples. In addition,
in order to ensure the classification performance of the classification model when mapping
tree species, we use 10% of the sample patches as modelling and regulating hyperparameter
samples. After constructing the classification model based on the modeling sample, this
study uses the grid search method for efficient optimal parameter selection. The hyperpa-
rameters of each algorithm are (1) the two most important hyperparameters constraining
the classification performance of the RF algorithm: the number of decision trees (n_tree)
and the maximum depth of each tree (max_depth) and (2) the penalty coefficients (C) and
the kernel functions that are more helpful for constructing a robust and accurate SVM
classification model. (3) The number of gradient trees (nrounds), the learning rate (eta),
and the maximum tree depth (max_depth) are exceptionally important for improving the
classification performance of the XGB algorithm. The optimal hyperparameters for each
classification model are shown in Table 3. In this study, the RF and SVM algorithms are
implemented in GEE and the XGB algorithm is implemented in Python 3.7.0.

Table 3. Optimal hyperparameters corresponding to each classification algorithm.

Classification Algorithms Hyperparameters Parameter Range Optimal Hyperparameters

RF
n_tree 0–500 220

max_depth 0–50 11

SVM
C 0.1–100 1

Kernel RBF, Linear, Poly, Sigmoid RBF

XGB
nrounds 0–500 150

Eta 0.001–1 0.036
max_depth 0–50 7

3.3. Accuracy Evaluation

In this study, the following metrics were used to evaluate the accuracy of the classifica-
tion model in the classification task: (1) confusion matrix, (2) overall accuracy, (3) Kappa
coefficient, (4) user accuracy, and (5) producer accuracy.

4. Results
4.1. Results of Interannual Migration of the Sample

After analyzing and processing the results obtained by the CCDC change detection
algorithm, we obtained the results of the detection of forest recovery time in the study area
(Figure 5a). We can see that most of the forests in the mountainous areas in the southwest
and northeast, where accessibility is poor and the intensity of development in the area is
weak, have not been disturbed, and the forests as a whole have a long growth time. This
suggests that the sample patches within this region can be used for inter-annual sample
migration from 2018–2023. Conversely, in the central and western regions with higher
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levels of urban development, forest disturbance occurs more severely, and some forests
are disturbed in 2018–2023, which also represents that some samples within this region
can only be migrated for a limited number of years. Through the visual interpretation of
historical images (the specific judgement method is shown in Figure 5b–d), we analyzed the
prediction accuracy of the change detection algorithm in determining the forest recovery
time. The final result showed that the predicted forest restoration time has an accuracy
of 0.8303, with an RMSE of 4.64 (Figure 6a). This favorably confirms the remarkable
performance of the CCDC algorithm in determining forest disturbance and recovery. By
analyzing the image elements corresponding to all sample patches, we obtained the number
of available samples for each year from 2018–2023 (Figure 6b). The number of samples
corresponding to each species in each year is detailed in Tables S1–S5. As can be seen from
the tables, in almost all the years, the samples that could not be subjected to inter-annual
migration were mainly from Eucalyptus and Pinus sylvestris. This is due to the fact that
these two tree species are the main source of supply for forest management segments such
as wood processing and paper making in the study area. Frequent felling rotations resulted
in significant changes in their spectral differences during 2018–2022, which could easily
be determined by the CCDC algorithm as forest disturbances occurring. The number of
samples in each year, on the other hand, remained relatively stable, with small differences
in the number of samples between tree species and a more balanced ratio. The influence of
sample imbalance on the subsequent classification results was eliminated.
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4.2. Comparison of the Accuracy of Classification Algorithms

As can be seen from Figure 7, all classification models had an overall accuracy higher
than 70% in 2018–2023, with Kappa coefficients exceeding 0.6. Classification models based
on the XGB algorithm achieved the highest classification accuracy in 2018–2023, with
classification accuracies exceeding 80% in almost all the years and Kappa coefficients
exceeding 0.75. The RF algorithm also exhibits strong classification performance, with the
accuracy of all classification models exceeding 75% and Kappa coefficients greater than 0.7.
The SVM algorithm, on the other hand, exhibits the poorest classification accuracy, with
the accuracy of each classification model ranging from 71–75% and the Kappa coefficients
ranging from 0.63 to 0.66. In addition, due to the difference between the number of available
samples in each year, the classification accuracy varied from year to year. The year 2023 had
the highest number of available samples and the highest classification accuracy for each
model. It is worth mentioning that the XGB algorithm showed the strongest classification
performance in the year 2023, achieving a classification accuracy of 88.05% with a Kappa
coefficient of 0.8492. Since the XGB algorithm performed much better than the other
algorithms in this study, the subsequent analysis will be centered on the classification
results obtained by the XGB algorithm.

4.3. Dominant Tree Species Map Based on XGB Algorithm

Using each classification model based on the XGB algorithm to predict the forest
species in the study area from 2018 to 2023, we obtained the distribution maps of forest
dominant species in the study area (Figure 8). As we can see in the figure, Eucalyptus
has the widest distribution in the study area, accounting for more than 40% of the total
forest area, with a maximum of 44% in 2018, and generally showing a slight decreasing
trend during the study period. Spatially, eucalypts are mainly distributed in the central
and southwestern parts of the study area. It is followed by horsetail pine, mainly in the
north and north-west. Fir is mainly found in the central region. Finally, cypress and
wetland pine are mainly found in the southern and northeastern parts of the study area.
The distribution of forest-dominant species in the study area was relatively stable from
2018 to 2023, benefitting from the government’s strict forest protection policy.
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Figure 8. Distribution of dominant tree species based on the XGB algorithm 2018–2023. (a–f) represent
the corresponding forest dominance tree maps for 2018–2023, respectively.

In the classification results, the classification accuracy of each tree species appeared to
be quite different (e.g., Figure 9), with eucalyptus obtaining the highest PA and UA, which
exceeded 85% in all years (it has the producer accuracy of 88–94% and the user accuracy of
85–94%). On the other hand, wetland pine showed more classification errors, which was
the main source of error limiting the overall accuracy. In 2018–2023, wetland pine had a
producer accuracy of 66–88% and a user accuracy of 69–84%. Its misclassification is mainly
related to cypress and fir. This may be due to the mixed planting of these species in the
study area. The rest of the tree species showed better classification accuracy (the producer
accuracy of 72–88% and the user accuracy of 78–91%). As can be seen from Figure 10,
the samples at the diagonal have an absolute numerical advantage. This represents that
misclassification phenomena occur less frequently in the accuracy validation of our classifi-
cation model. On the whole, our classification model shows excellent performance in the
tree species classification task, and the finally obtained forest dominant species map has
strong scientific significance.
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4.4. Feature Importance Assessment Based on XGB Algorithm

In order to understand the contribution of each classification feature in the classifica-
tion task, the mean decrease in the Gini (MDG) metric is used to assess the importance of
classification features. As can be seen from Figure 11, the importance of each classification
feature exhibits different distributions in both temporal and spectral perspectives. Tempo-
rally, most of the classification features showed persistent importance, such as B8, NDVI,
NDWI, SAVI, and entropy, not just a single time step. Among them, the most notable one is
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NDVI, which showed persistent and strong importance in all the images from 2018–2023.
Spectrally, NDVI has the strongest contribution in the classification, followed by B8, B11,
and B12 in the spectral bands. Among the textural features, entropy is of the highest im-
portance. The above results proved that (1) features tend to show persistent importance in
the classification model during the classification process. This also confirms the advantage
of multi-temporal data over single-temporal data in the classification task (some of the
features that show strong importance can be consistently useful in the classification task).
(2) The excellent performance of vegetation indices in classification deserves to be noticed.
However, low variable importance does not mean unimportant. Low variable importance
can also be the result of a high correlation with highly important characteristics.
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Figure 11. The feature importance of each classified feature in 2018–2023. (a–f) represent the feature
importance of the categorical features in sequence during 2018–2023. A–D in the Y-axis labels
represent the synthetic remote sensing images in each season. Tex1-8 in the X-axis labels represent
the following textural features, respectively: energy, entropy, correlation, inverse difference moment,
inertia, cluster shade, cluster prominence, and correlation.
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5. Discussion

In recent years, the use of remote sensing for forest monitoring tasks has received
increasing attention. However, attention has tended to focus on the classification of forest
types in a single year. Multi-year mapping of forest species is essential for making forest
management decisions. However, it is exceptionally difficult to carry out multi-year
mapping at the species level due to data limitations. In this study, forest disturbance
monitoring was carried out in each image element of the study area through the CCDC
change detection algorithm. The samples in which no disturbance phenomenon occurred
in the patches were migrated to 2018–2022, and based on the migrated samples, the
dominant tree species map of forests in the Three Gorges Reservoir area from 2018–2023
was successfully produced, and a high classification accuracy was achieved. Among them,
the XGB algorithm for the year 2023 showed the strongest classification performance and
achieved 88.05% classification accuracy with a Kappa coefficient of 0.8492.

Accurate identification of invariant samples can be achieved using the CCDC change
detection algorithm. In this study, the CCDC algorithm showed excellent identification
results, where R2 was 0.8303, with an RMSE of 4.64. However, the recovery state of the
forests after disturbance is highly correlated with the actual function of the forests in the
region. Take eucalyptus as an example: as a representative of fast-growing timber forests,
it has a rotational felling period of 3–5 years. This means that eucalypts are cut down
immediately after 3–5 years of growth and then quickly transplanted by hand [5]. On the
other hand, other tree species may exist in a state of idleness for a period of time after being
disturbed. During this period, the land cover type of the area may be bare soil or grassland,
and the period between disturbance and restoration to the forest remains full of uncertainty.
Although we set a series of rules to eliminate the misjudgment of the algorithm, this does
not guarantee the timely implementation of capturing the time of forest restoration and
may cause the algorithm to make errors in judging the time of forest restoration. This issue
deserves attention in subsequent studies.

This study successfully mapped the dominant tree species for 2018–2023 using seasonal
synthetic images for each year. However, due to rapid climatic changes, the limited seasonal
synthetic imagery is not sufficient to capture the complete climatic changes, which may
lead to the loss of information on tree species growth and thus result in classification
errors. In subsequent studies, it is necessary to use more intensive remote sensing data
for tree species classification. For example, Hemmerling et al. [38], in a study on the
classification of temperate tree species, indicated that time series data could provide better
climatic information of tree species in classification, thus enhancing the classification effect.
Likewise, Huang et al. [39], in the identification of tree species in plantation forests using
deep learning methods, indicated that the climatic information contained in time-series
data is essential for improving classification accuracy. Similarly, NDVI consistently showed
strong importance in the feature importance evaluation part of our study. This laterally
confirms the possibility of more intensive remote sensing data in improving classification
accuracy. However, the acquisition of time series data can be fraught with difficulties due
to the study area of more than 60,000 km2 in this study. Fortunately, there are some studies
that address this problem by interpolating time-series data or data synthesis. Blickensdörfer
et al. [40] achieved the synthesis of national scale time series data based on a weighted
convolutional filter by performing a national scale classification of tree species considered.
Hermosilla et al. [17] provided us with another idea: seamless annual data covering the
whole of Canada was achieved based on the best available pixel (BAP) method. These
methods provide valuable inspiration and reference for our future research work.

In this study, the XGB algorithm achieved the highest classification accuracy in almost
all years. This is highly similar to the findings in previous related studies. This is because
the gradient-boosting framework of the XGB algorithm in efficiently processing datasets
with high-dimensional feature spaces ensures that each new model attempts to correct the
errors present in the previous model. Its regularization parameter controls the complexity
of the model and prevents overfitting. Thus, it can ensure that the classification results of
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the classification model at unknown image elements are more reliable. However, there are
fewer studies related to it, and its effectiveness deserves further exploration.

Tree species sample data were the basis of this study. The main sources of sample
data for this study are (1) National Forest Inventory (NFI) data and (2) field measurements
based on expert knowledge, respectively. The final classification results demonstrate
high classification accuracy. However, the accuracy of the data is still questionable. The
NFI data may be subject to some uncertainties due to their long aggregation date: the
plot may be subject to forest disturbances, etc., during the period of time after the tree
species information has been recorded and up to the time when the whole forest inventory
task is completed. Furthermore, field measurement data are highly dependent on the
professionalism of the forester. Subjective judgments of tree species classifications may be a
potential contributor to classification errors.

6. Conclusions

In this study, to address the problem of missing annual ground sample data that
may exist in the remote sensing monitoring of forest-dominant tree species, we used the
CCDC algorithm to carry out inter-annual migration of sample data and achieved a high
migration accuracy. On this basis, we comprehensively compared the accuracies of various
machine learning algorithms in the classification of forest-dominant tree species in the
Three Gorges Reservoir area of China and adopted the XGB algorithm, which has the
highest classification accuracy, to carry out the mapping of forest dominant tree species
in the study area from 2018–2023, thus grasping the area change and spatial distribution
of forest dominant tree species in the Three Gorges Reservoir area of China over the past
6 years. The main findings are as follows:

1. The CCDC algorithm shows excellent performance in sample migration. The final
results obtained have high accuracy, with R2 of 0.8303 and RMSE of 4.64. The XGB
algorithm has an absolute advantage.

2. The absolute advantage of the XGB algorithm. The classification model based on the
XGB algorithm shows significant classification advantages every year, with classifica-
tion accuracies above 80% and Kappa coefficients higher than 0.75 in almost all years.
In particular, the XGB algorithm in 2023 shows the strongest classification perfor-
mance, achieving a classification accuracy of 88.05% and a Kappa coefficient of 0.8492.

3. Continued importance of classification features. In this study, it was found that most
of the features showed sustained importance in the feature importance assessment
based on MDG metrics, such as B8, NDVI, NDWI, SAVI, and entropy. Among them,
the most noteworthy one is NDVI, which showed sustained and strong importance
from 2018 to 2023.

Our research proposed a work path that combines sample migration and machine
learning for forest dominant species classification, which is a useful exploration of temporal
domain migration learning.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/rs16142547/s1, Figure S1. Example of forest NBR time series curves
with different disturbance frequencies: (a) represents no disturbance; (b) represents one disturbance;
(c) represents multiple disturbances. fit1-3 represent each continuous time series curve. In subplot a,
fit1 represents the time series fit-ting curve of NBR under undisturbed conditions. In subplot b, fit1
and fit2 represent the time series fitting curves of NBR before and after a disturbance event, with fit1
being before the disturbance and fit2 after. In subplot b, fit1, fit2, and fit3 represent the time series
fitting curves of NBR before and after multiple disturbance events. Table S1. Number of samples of
each tree species in 2018. Table S2. Number of samples of each tree species in 2019. Table S3. Number
of samples of each tree species in 2020. Table S4. Number of samples of each tree species in 2021.
Table S5. Number of samples of each tree species in 2022.

https://www.mdpi.com/article/10.3390/rs16142547/s1
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