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Abstract: Change detection aims to identify the difference between dual-temporal images and has
garnered considerable attention over the past decade. Recently, deep learning methods have shown
robust feature extraction capabilities and have achieved improved detection results; however, they
exhibit limitations in preserving clear boundaries for the identified regions, which is attributed
to the inadequate contextual information aggregation capabilities of feature extraction, and fail
to adequately constrain the delineation of boundaries. To address this issue, a novel dual-branch
feature interaction backbone network integrating the CNN and Transformer architectures to extract
pixel-level change information was developed. With our method, contextual feature aggregation can
be achieved by using a cross-layer feature fusion module, and a dual-branch upsampling module
is employed to incorporate both spatial and channel information, enhancing the precision of the
identified change areas. In addition, a boundary constraint is incorporated, leveraging an MLP
module to consolidate fragmented edge information, which increases the boundary constraints
within the change areas and minimizes boundary blurring effectively. Quantitative and qualitative
experiments were conducted on three benchmarks, including LEVIR-CD, WHU Building, and the
xBD natural disaster dataset. The comprehensive results show the superiority of the proposed method
compared with previous approaches.

Keywords: change detection; Transformer; feature fusion; edge constraints; cross-layer

1. Introduction

Remote sensing image change detection aims to identify pixel-level changes between
dual-temporal images, which is a crucial research focus within the fields of pattern recogni-
tion and computer vision [1]. Presently, it has extensive application in diverse domains,
including monitoring natural disasters [2], tracking urban expansion [3], analyzing agricul-
tural changes [4], and studying environmental evolution [5].

Before the ascent of deep learning, traditional change detection methods primarily in-
volved comparing pixels. These methods typically required the design of artificial features
to depict pixel disparities, thus depending on considerable expertise and experience [6].
Moreover, it is difficult to accurately distinguish change from non-change areas when con-
fronted with occlusions or complex scene changes. With the progress of technology, deep
learning has found widespread application in many fields. By constructing multi-layer
neuron structures, these technologies learn some abstract features of images, which dimin-
ishes reliance on expert knowledge and makes them very suitable for the field of remote
sensing imaging [7,8]. While the detection results have been optimized to some extent, the
deep-learning-based method struggles to effectively capture features of the changed area,
indicating that there remains potential for further improvement in the detection results.
The current methods of change detection based on deep learning have become mainstream;
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they can be categorized into three forms based on different tasks: pixel-level, object-level,
and scene-level detection [9].

Pixel-level change detection uses independent pixels as detection units and extracts
change information by analyzing pixel differences with pixel-by-pixel operations, which
is commonly employed in the initial stages of change detection. Typical approaches
include the differential technique, the ratio method, and other direct pixel comparison
methods [10]. But these methods often fail to use image features effectively, which limits
accuracy. In response to these limitations, scholars have proposed statistics-based detection
methods, such as change vector analysis, principal component analysis, and texture-based
analysis, as well as post-classification comparison methods that compare pixels after
classification. However, these methods tend to rely on fixed features, so they are susceptible
to environmental changes in images, such as lighting variations or shadows, resulting
in poor performance in actual scenarios [11]. Subsequently, machine learning methods,
such as artificial neural networks, support vector machine, decision tree, and random
forest, have gained traction in change detection. Compared with traditional methods,
machine learning approaches demonstrate significant improvements in accuracy. After
the widespread adoption of deep learning, many researchers have begun treating pixel-
level change detection as a semantic segmentation problem, applying models from the
segmentation field to change detection tasks [12–15].

Object-level change detection utilizes various feature information from dual-temporal
images and segments objects within images [16]. As a key to object-level change detection,
object generation necessitates ensuring the consistency of object boundaries at different
times. In the early stages, traditional algorithms, such as the Robert operator, the Laplacian
operator, or region segmentation algorithms, were commonly employed for image segmen-
tation [17]. However, these methods fell short in obtaining object boundaries. Currently,
there are three approaches to object generation: single-temporal segmentation boundary,
multi-temporal segmentation, and combined segmentation [18]. A single boundary is ap-
plied across all temporal intervals in the first approach, which avoids the need for complex
cross-temporal object matching and alignment. Although the single-temporal method
entails lower overall computational complexity, the detection results are not sufficiently
accurate. In contrast, the multi-temporal segmentation approach yields finer segmentation
objects by using boundary superimposition, resulting in greater robustness. The combined
segmentation method involves multi-temporal remote sensing image bands, addressing
the limitations of single-temporal approaches and enhancing detection accuracy. However,
this method also introduces the challenge of computational complexity. In sum, object-level
change detection methods focus not only on changes in the pixel value but also on changes
in objects, which contain more semantic information.

Scene-level change detection employs multi-temporal remote sensing images as units
to assess changes across all pixels at the same time [19]. It integrates both local and global
information, effectively reducing the influence of noise. However, scene-level methods
focus on the whole scene, which requires substantial computer memory when processing
large scenes. In 2019, an enhanced U-Net++ network was introduced by Peng et al. [20]. By
combining a fully convolutional neural network and the U-Net structure, the model can
not only adapt to images of any size for end-to-end training but also improve detection
accuracy. Building upon Peng et al.’s work, Lin proposed a new way to cut remote sensing
images into regular image blocks and input them into the network to judge changes,
which represents a new direction for scene-level change detection [21]. Subsequently, by
optimizing the size of image blocks, Li et al. proposed a model with further enhanced
performance and computational efficiency in scene-level change detection [22].

While object-level and scene-level change detection offer higher detection accuracy,
they require predefined object or scene definitions, which requires considerable manpower
and time. On the other hand, pixel-level change detection relies on a simpler data source
and has more flexible application scenarios. Consequently, researchers’ attention is cur-
rently largely directed towards the simpler pixel-level change detection approach, on which
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we also focused in this study. At present, pixel-level change detection models have three
stages: feature extraction, feature fusion, and upsampling. In feature extraction and feature
fusion, the utilization of multi-scale features from dual-temporal images has been demon-
strated to be an effective method for predicting subtle changes and enhancing change
detection accuracy [23]. Therefore, scholars have tried to combine a variety of excellent
feature extraction modules to extract multi-scale feature information and fuse it to improve
accuracy in pixel-level change detection [24–26]. There are two main strategies: One ap-
proach involves the use of Transformer instead of a CNN as the backbone network to extract
better feature information. Although Transformer-based models have a larger receptive
field and can better grasp the change region, the local detail information processing ability
for the edge information of the change region is limited, with the predicted change region
usually presenting blurred edges. The second approach is based on the use of a U-Net
structure to fuse contextual feature information [27–29]. This type of structure can integrate
multi-level contextual information; nevertheless, it is hindered by the unsophisticated
upsampling method, which restricts the model’s learning capabilities. Therefore, at present,
these two strategies cannot fully integrate image information or generate sufficiently accu-
rate change maps. This makes these models prone to false and missed detection and also to
presenting fuzziness in the edge area of the change map.

To address the issue of inadequate feature representation and extraction in detection
models and to mitigate edge blurring to provide distinct predictions of the boundary of
change areas, a change detection model incorporating cross-layer feature fusion and edge
constraints is proposed. The primary contributions of our study can be outlined as follows:

1. A fusion network based on a CNN and Transformer was designed as a feature extrac-
tor. In the feature extraction stage, the CNN structure is used to extract local feature
information, and Transformer is used to extract global feature information. Then, the
features are fused by using the spatial feature interaction module and feature fusion
module to promote the correlation between local and global information, optimize
the model objects and missed detection, and help improve accuracy.

2. The addition of a boundary constraint module based on the MLP structure allows
segmented edge information to be integrated into the boundary of the constrained
change area in the feature map. In order to improve the learning ability of the model,
the Bilinear and Pixel Shuffle methods are used to upsample the spatial and channel
dimensions, respectively.

The remainder of this paper is organized as follows: Section 2 presents an overview of
the change detection literature. Section 3 provides the overall details of the model design.
Section 4 introduces the experimental part of our proposed model, and finally, Section 5
summarizes our findings and future work.

2. Related Works
2.1. Classical Change Detection Methods

In the early stages of change detection, various methods were established to gen-
erate difference maps by comparing the corresponding pixels in dual-temporal images
and then form the final change map by using threshold segmentation or region-growing
techniques. However, the quality of these change maps was poor, especially in occluded
areas. Thanks to the robust feature representation and nonlinear modeling capabilities
of deep learning, change detection results have significantly improved. Deep-learning-
based change detection directly employs pixel-level classification maps as results with
an end-to-end framework, with convolutional neural networks (CNNs) being the most
prevalent approach.

In CNN-based change detection, the relationship between dual-temporal images is
established with feature mapping functions, which reduces the influence of noise compared
with traditional methods. However, in order to achieve better results, radiation and
geometric corrections need to be applied to early methods, which fall short compared
with end-to-end frameworks. In 2018, an end-to-end 2D CNN change detection model for
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hyperspectral images was developed by Wang et al. [30]; it extracts spectral and spatial
feature information from dual-temporal hyperspectral images and fuses it into a confusion
matrix to better exploit the rich information inherent in hyperspectral images. Nevertheless,
only using the spatial changes in images does not meet the requirements of practical urban
planning and management applications. Therefore, in 2019, Liu et al. proposed a detection
network for identifying spatio-temporal changes in urban slums [31], focusing not only
on spatial changes but also on the dynamics of temporal changes. Although achieving
good detection results, similar supervised methods typically require a large number of
labeled samples for learning. Subsequently, this issue was addressed by Peng et al. with
an unsupervised change detection method that utilizes visual saliency information to
extract significant change regions [32]. This method reduces the influence of irrelevant
information and enhances the representation ability of the change region. Additionally, the
unsupervised detection framework significantly reduces the cost of manual labeling.

Recently, dual-branch networks have been developed in order to enhance the fea-
ture representation ability of deep learning models. In 2021, an asymmetric dual-branch
network was introduced by Yang et al.; it utilizes features from different modules to accu-
rately locate and identify semantic changes [33], which enhances the model’s sensitivity
in obtaining semantic information and improves change detection accuracy. Similarly,
Zheng et al. [34] devised a cross-layer feature fusion module to combine feature maps from
different branches, fully capturing the feature representation of change regions. However,
these methods have notable drawbacks, such as poor feature fusion results and a lack of
global information. The poor results of feature fusion prevent the model from accurately
understanding the spatial relationships between pixels, which makes it difficult to deter-
mine the change regions and distinguish the boundary of the change areas. Consequently,
the resulting map may be susceptible to false detection, missed detection, and blurred edge
delineation of the change regions.

To address these issues, the proposed method incorporates feature interaction and edge
constraints. On one hand, dual-temporal image feature interaction allows for capturing
the context information between image pairs, and on the other hand, it can align the data
distributions between the dual-temporal images, achieving data distribution adaptation.
Further, the inclusion of edge constraints enables the model to better discern boundary
information of the change area and reduce edge blurring.

2.2. Transformer-Based Change Detection Methods

In change detection, accurately identifying changes in dual-temporal images within
a spatial and temporal range is crucial. It is essential to have a larger receptive field for
capturing scene information and directing the model’s attention towards the change regions
with attention mechanisms. The CNN-based model proposed by Qian et al. [35] comprises
stacked convolutional layers, extended convolutions, and attention mechanisms. Although
this approach effectively captures local details, it struggles to connect distant details due
to the limited receptive fields. Change detection methods based on Transformers can
compensate for this shortcoming.

Currently, Transformer is widely employed across various image tasks. Unlike the
fixed-size receptive field of convolutional neural networks, Transformer leverages its
unique self-attention mechanism to gather global information, offering superior feature
mapping and context modeling capabilities. In 2021, the BIT network was proposed [36], in
which Transformer tokens are used to extract semantic information; then, a twin decoder
structure is employed to highlight differences between two high-dimensional semantic
tokens. Additionally, a multi-scale feature fusion module combines features from various
scales and leverages a self-attention mechanism to weigh the fused features, enhancing
sensitivity to the features of different layers. However, single-branch model structures have
a limited perception of change features in dual-temporal images. In 2022, Bandara et al.
proposed ChangeFormer [37], which is a two-branch model with a Transformer model that
independently learns image features and better identifies change areas. Subsequently, the
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VcT model was presented in 2023 [38]; it includes a new remote sensing change detection
framework based on graph neural networks and Transformer. This model detects changes
by dynamically adjusting attention to different regions based on an adaptive feature
attention mechanism.

Although the Transformer model is strong at learning features and provides ample
global information, which aids in effectively pinpointing change areas, its difficulty in
accessing local details makes it challenging to accurately capture the boundaries of local
changes. Furthermore, it remains a challenge to effectively learn meaningful feature
representations of changes in remote sensing images in practical applications. To enhance
the model’s feature extraction ability, in this study, we established a dual-branch structure
combining a CNN and Transformer. The CNN extracts local feature information, whereas
Transformer can capture global information associations based on self-attention, extracting
more global information. By leveraging this dual-branch structure, both the local and global
information, extracted by the CNN and Transformer, respectively, can be simultaneously
utilized for improving feature representation.

3. Methods

In this section, we provide a detailed description of the proposed model’s specific
structure. To address the issues of insufficient feature fusion and blurred boundaries in
current change detection methods, we propose a model that employs cross-layer feature
fusion and feature exchange. Our approach is based on the concept of feature interaction
and integrates both the local information extracted by a CNN and the global information ex-
tracted by Transformer. The edge information obtained by the Sobel operator constrains the
boundaries of the change area, enhancing detection accuracy and reducing edge blurring.
Specific technical details and the technical roadmap are illustrated in Figure 1.
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Figure 1. The overall structure diagram of the proposed model.

The proposed method encompasses feature extraction, feature fusion, and upsampling
stages, similarly to the fundamental structure of current change detection methods. For the
input dual-temporal images, the Sobel operator is first used to extract the edge information
(Epre and Epost) from the images. Subsequently, the edges are connected with the original
image on the channel as the initial input, represented by Ipre and Ipost, respectively.

After a dual-branch backbone network (CT-backbone), multiple scale feature maps
are extracted, denoted by Fpre,i and Fpost,i, respectively, where i ∈ {1, 2, 3, 4, 5} represents
the size of the feature map relative to the original image. The specific correspondence is
shown in Table 1. In the following, the same labels have the same meaning.
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Table 1. Explanation of correspondence between labels and image sizes.

Original Picture i = 0 i = 1 i = 2

H × W

H × W 1
2 H × 1

2 W 1
4 H × 1

4 W

i = 3 i = 4 i = 5
1
8 H × 1

8 W 1
16 H × 1

16 W 1
32 H × 1

32 W

Then, the extracted multi-scale feature information (Fpre,i and Fpost,i) is transmitted
to the cross-layer feature information extraction module for fusion, aiming to enhance
the representation of multi-scale features and attain an improved feature representation,
denoted by Fi, with i ∈ {1, 2, 3, 4, 5}. Simultaneously, the edge information extracted by
the Sobel operator, Epre and Epost, is integrated through an MLP module to obtain Ei, with
i ∈ {1, 2, 3, 4, 5}, as the edge constraint. Then, Fi and Ei are concatenated on channels and
passed through a convolutional layer to extract the feature map, F′

i, with i ∈ {1, 2, 3, 4, 5},
which contains rich semantic and edge information. To effectively utilize both spatial
and channel information, the proposed model simultaneously employs Bilinear and Pixel
Shuffle methods for upsampling based on F′

i. FB
i and FP

i represent the results of the Bilinear
and Pixel Shuffle methods, respectively, where i ∈ {0, 1, 2, 3, 4}. Subsequently, both of them
are fed to the feature interaction module to fully integrate spatial and channel information.
The outputs are expressed as F̂P

i and F̂B
i , respectively, where i ∈ {0, 1, 2, 3, 4}. Finally, the

outputs of feature fusion at different scales are upsampled to the same size at different
magnifications. The final change map, Fout, is obtained by using a deconvolutional layer.
The detailed process is as follows:

Fout = Deconv(Concat[UP(F̂P
i ), UP(F̂B

i )]) (1)

where Fout represents the model output and UP(·) represents the upsampling method of
bilinear interpolation. The above is the main process of our model. Next, we will discuss
the specific implementation details of each module in detail.

3.1. Dual-Branch Backbone Network Based on CNN and Transformer

To enhance the model’s ability to extract image features, a dual-branch backbone using
both a CNN and Transformer is proposed. The detailed structure is depicted in Figure 2.
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Figure 2. Main structure of backbone network based on CNN and Transformer.
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For the input images Ipre and Ipost, the proposed method uses two convolutional layers
to extract shallow feature information:

Fi,j+1 = ConvBlockk=3
s=2(Fi,j), i ∈ {pre, post}, j ∈ {0, 1} (2)

where ConvBlockk=3
s=2 represents a convolutional module with a kernel of 3 × 3, a stride

of 2, and a padding of 1, and Fi,j represents the feature map extracted in the jth stage of
the pre-change image and the post-change image, where Fpre,0 = Ipre and Fpost,0 = Ipost.
Afterwards, Transformer is used to obtain deeper features.

F′
i,j+1 = TFBlock(Fi,j), i ∈ {pre, post}, j ∈ {2, 3, 4} (3)

where TFBlock consists of a downsampling module and a multi-head attention module in
the Transformer model. The structure is as follows:

TFBlock(·) = MHA(ConvBlockk=3
s=2(·)) (4)

where MHA(·) represents the standard multi-head attention module [39]. Transformer is
used to extract deep feature information; in order to further improve the feature extraction
capabilities, a spatial feature interaction module is added.

Fang et al. [40] pointed out that feature interaction is essential to change detection.
The core of change detection lies in detecting change areas with the same spatial position
but different temporal characteristics. Distinguishing whether an image represents a scene
before or after a change is merely useful for scholars to ensure that the disappearance
and appearance of targets is reasonable. Whether those targets represented appear or
disappear is meaningless to the model, for which change is the key. In other words, feature
interaction does not revise the semantic information of change, making it feasible for
change detection. On one hand, the model can perceive contextual information between
image pairs by exchanging features. On the other hand, the data distributions between
the dual-temporal images become more similar after feature exchange, and automatic
adaptation of dual-temporal data distributions can be achieved. The specific process is
illustrated as follows:

Fpre,j+1, Fpost,j+1 = SpaceInterAct(F′
pre,j, F′

post,j), j ∈ {2, 3, 4} (5)

SpaceInterAct(·) represents spatial information exchange. The specific implementa-
tion is as follows:

xpre/post(n, c, h, w) =

{
xpre/post(n, c, h, w), M(n, c, h, w) = 0
xpost/pre(n, c, h, w), M(n, c, h, w) = 1

(6)

where n, c, and w denote the batch size, channel number, and spatial size, respectively.
M represents an exchange mask composed of 1 and 0, indicating areas for exchange and
non-exchange. In this model, the weight map output from the multi-head attention module
is the criterion for determining whether an exchange should occur. If the weight in the
output map exceeds threshold δ, it is a region to be exchanged, setting M = 1; otherwise,
M = 0.

By using feature interaction, the dual-branch backbone network based on the CNN
and Transformer can extract both local and global information while enhancing interaction
among features through spatial information exchange. This leads to a greater similarity in
the data distributions between pre- and post-change images, thereby further highlighting
the change areas.

3.2. Cross-Layer Feature Fusion

In deep learning, features at different levels often correspond to spatial information
at different scales. With cross-layer feature fusion, it is possible to effectively integrate
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features at different scales, providing the model with a richer and more diverse feature
representation, thereby aiding the model to more comprehensively understand the se-
mantic information in the images. After the backbone, the model extracts feature maps
Fpre,i and Fpost,i at various scales (where i ∈ {1, 2, 3, 4, 5}) from the dual-temporal images.
Subsequently, these feature maps are directed to the cross-layer feature fusion module for
comprehensive feature fusion, which is illustrated in Figure 3.
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In Figure 3, feature map Fi,1 is subjected to a convolution operation to extract more
abstract feature representations, expressed as F1. Subsequently, the multiple-scale feature
maps F21, F31, F32 are extracted with two branches. The left branch (indicated by the orange
arrow) involves downsampling the feature map twice, while the right branch (indicated by
the light-blue arrow) involves downsampling the feature map four times. Afterwards, the
obtained F21 and initial input Fi,1 are concatenated along the channels to obtain F2, which
integrates multi-scale features and multi-level contextual information. The same method is
subsequently applied to F3, F4, F5.

The dual-temporal images Fpre,i and Fpost,i undergo comprehensive feature fusion in
the cross-layer feature fusion module, yielding F̂pre,i and F̂post,i, where i ∈ {1, 2, 3, 4, 5}.
Then, F̂pre,i and F̂post,i are concatenated along the channel dimension and passed through a
convolutional module to generate Fi, which integrates multi-scale feature information. The
specific process is outlined as follows:

Fi = ConvBlock(Concat[F̂pre,i, F̂post,i]), i ∈ {1, 2, 3, 4, 5} (7)

In contrast to CLNet, the cross-layer fusion method accomplishes the extraction and
fusion of multi-scale features through the utilization of two asymmetric branches. This ap-
proach ensures that the intermediate feature map captures both higher-level and lower-level
context information, enhancing the model’s feature-capturing capabilities. The improved
extraction and representation aid the model in effectively discerning change areas.

3.3. MLP-Based Edge Information Extraction Module

To enhance accuracy in predicting change area boundaries, an edge information
extraction module based on the MLP structure was incorporated. MLP includes an input
layer, a hidden layer, and an output layer. In the hidden layer, neurons from the preceding
layer are fully connected to neurons in the subsequent layer, forming a comprehensive
fully connected structure [41]. This full connection facilitates the aggregation of features
to a significant extent. In the experiment, the number of hidden layers was set to 2 for
the preliminary aggregation of fragmented edges. Simultaneously, the GELU activation
function was employed to accelerate the convergence of the model.
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Due to the lack of semantic information, the simple edge information (Epre and Epost)
from the dual-temporal images obtained by using the Sobel operator often results frag-
mented and not connected. To solve this, the MLP module is employed to amalgamate
features from fragmented edge information, yielding edge details across multiple scales.
The hidden layers of the MLP map input features through nonlinear activation functions,
allowing complex nonlinear transformations in multidimensional space. This enables the
MLP to capture richer and more complex patterns and information from input features.
Additionally, each neuron in every hidden layer of the MLP is connected to all neurons in
the previous layer, with each connection having a weight parameter. These connectivity
and weight parameters facilitate information propagation and feature aggregation between
different hidden layers, enabling the MLP to effectively extract rich information from input
features and aggregate it into higher-level representations throughout the network. This
strategy enables detailed edge information capture in change areas and mitigates edge
blurring. The process is detailed below:

Ei+1 = MLP(ConvBolckk=3
s=2(Ei)) (8)

where Ei represents the output of the i-th layer of the MLP structure. Finally, five hierar-
chical edge features [E1, E2, E3, E4, E5] are extracted. Subsequently, these features are fused
with features Fi obtained from the cross-layer feature fusion stage and inputted into the
upsampling module for upsampling.

3.4. Upsampling and Prediction Module

After the feature extraction and fusion module, feature maps F′
i are obtained by merg-

ing various levels of edge information and multi-scale feature maps, where i ∈ {1, 2, 3, 4, 5}.
To improve spatial and channel information integration, the Pixel Shuffle and Bilinear
upsampling methods are utilized for the individual upsampling of the feature maps. The
detailed process is outlined as follows:

FP
i = PixelShu f f le(Fi)

FB
i = Bilinear(Fi)

(9)

where FP
i and FB

i denote the outcomes of the upsampling using the Pixel Shuffle and
Bilinear methods, where i ∈ {0, 1, 2, 3, 4}. Then, the channel information interaction
module is applied to exchange channel information on the upsampled results, FP

i and FB
i ,

as illustrated in Figure 4 in detail.
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For instance, for the feature maps FP
i and FB

i of the i-th layer (with size hi × wi × ci),
the initial step involves transforming them into 1 × 1 × ci by using global average pooling.
Subsequently, applying softmax converts them into weights, selecting channels whose
average values exceeds η for channel exchange, resulting in the exchanged feature maps F̂P

i
and F̂B

i . Through channel information exchange, the model can be promoted to capture the
information of each feature more comprehensively. Meanwhile, by improving the diversity
and richness of features, the final features are made more distinguishable. Afterwards,
Bilinear is applied 16, 8, 4, and 2 times to restore them to the original image size. Finally, the
obtained multiple feature maps are concatenated along the channels, and the final output
is obtained by using a deconvolution.

3.5. Loss Function

For change detection models, MSE loss is widely used, as it can effectively assess the
performance of change detection models on the entire image. The proposed model also
uses it as part of the loss function, which is defined as follows:

Lmse =
1
n

n

∑
i=1

(yi − pi)
2 (10)

As datasets may exhibit an imbalance between the number of positive and negative
samples, we incorporated dice loss into the loss function. Dice loss is known for its
sensitivity to imbalanced data, which serves to mitigate the effects of data imbalance, and
is defined as follows:

Ldice = 1 −
2 × (

n
∑

i=1
yi × pi + smooth)

n
∑

i=1
yi + pi + smooth

(11)

In the above equation, n represents the total number of pixels; yi and pi represent the
real change map and the model prediction map, respectively, and their values range from 0
to 1. To prevent the occurrence of non-change regions in dice loss, a parameter smoothing
factor is considered, where smooth = 1. The final loss is, therefore, defined as follows:

L = Lmse + Ldice (12)

4. Results
4.1. Datasets and Experimental Setup

The experiments were conducted with three public datasets: LEVIR-CD [42], WHU
Building [43], and xBD [44].

The LEVIR-CD dataset collects Google Earth remote sensing images of multiple cities,
including Austin and Lakeway in Texas, USA. It presents a large number of illumination
changes due to seasonal effects, and the building change areas are small and dense, which
makes it more challenging to determine the actual change areas. The WHU Building dataset
was proposed by the Wuhan University team. Compared with the LEVIR-CD dataset, it
has larger buildings, and the change areas are sparser. The xBD dataset was proposed
by MIT and contains remote sensing images before and after 19 natural disasters such as
earthquakes, volcanoes, and floods, and the change areas are mostly irregular, making
detection more difficult.

In our experiments, the original images were cropped into non-overlapping
256 × 256 sections and then randomly allocated to training, validation, and test sets in a
ratio of 7:2:1 for experimentation. Notably, the xBD dataset classifies change areas into four
damage levels: no damage, minor damage, major damage, and destroyed. As our focus lies
solely in change areas, we treated the latter three classes as change during experimentation.
The models were trained from scratch for 30 epochs, using an initial learning rate of 0.001
and a batch size of 16. The learning rate decreased by 10% every 5 iterations after the



Remote Sens. 2024, 16, 2573 11 of 20

initial 15 iterations. The hyperparameters for spatial feature exchange and channel feature
exchange were set to 0.5. To ensure an equitable performance comparison, the loss functions
of all the comparative methods were replaced with the proposed model’s loss function,
neutralizing performance discrepancies due to varied loss functions.

4.2. Comparison Method

DSIFN [45]: A change detection model that uses cross-layer connections for feature fusion.
SNUNet [46]: A change detection model employing multi-layer feature fusion with

dense connections that combines a Siamese network and NestedUNet to extract sophis-
ticated features and incorporates channel attention and deep supervision techniques to
enhance the recognition ability of intermediate features.

BIT [36]: A detection model based on Transformer that uses Transformer to build
an encoder–decoder structure, enhances the feature information of the context through
semantic tokens and feature differences, and obtains the change map.

ChangeFormer [38]: A change detection model that enhances its feature extraction
capabilities by replacing the convolutional neural network with Transformer. Additionally,
it utilizes the MLP structure to enhance feature differences.

SGSLN [47]: A novel strategy involving the swapping of dual codec backbones for
binary change detection. A temporal fusion attention module is employed to effectively
fuse dual-temporal features for enhanced detection.

4.3. Evaluation Metrics

To quantitatively assess the models’ performance, five evaluation metrics were selected
to measure the disparities between the predicted change maps and the actual change maps.
The chosen indicators included precision (P), recall (R), F1 score (F1), overall accuracy
(OA), and average intersection over union (mIoU). Precision (P) is the ratio of correctly
predicted changed pixels to all predicted changed pixels, while recall (R) denotes the ratio
of the overall true changed pixels. F1 score is the harmonic mean of precision and recall.
Overall accuracy (OA) reflects the proportion of correctly predicted pixels to the entire pixel
count. The average intersection over union (mIoU) provides a comprehensive assessment
of detection performance for both change and non-change areas. The calculation equations
for these five indicators are as follows:

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

F1 =
2 × TP × TN

TP + FN
(15)

OA =
TP + TN

TP + TN + FP + FN
(16)

mIoU =
TP

FN + FP + TP
(17)

In the above, TP is the true value, TN is the true negative value, FP is the false positive
value, and FN is the false negative value.

4.4. Results and Discussion

The experimental results show the adaptability of the proposed model across diverse
change scenarios of varying scales. It not only demonstrated impressive performance on
both the WHU Building and xBD datasets, which have larger structures, but also on the
xBD dataset, which has smaller change areas. The results are here discussed in terms of
both quantitative and qualitative aspects.
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Quantitative results: As shown in Tables 2 and 3, the proposed model outperformed
the other five models, achieving optimal scores across the five evaluation indicators. On the
LEVIR and xBD datasets, while the precision (P), recall (R), and F1 scores of the proposed
model show only marginal improvement over the second-best method, the mIoU index
exhibits a notable increase of approximately 1.5 percent compared with other models. This
is attributed to the inclusion of the boundary constraint module, which heightens the
model’s sensitivity to change area edges through boundary constraints. Consequently, the
blurring of the edges and the connection of the areas are reduced, aligning the predicted
change areas more closely with their actual shapes. The change areas in the WHU dataset
are larger, and their edges exhibit more regular shapes, so the proposed model, on the
WHU dataset, outperformed the other methods, which have no explicit edge constraints,
in terms of accuracy and mIoU.

Table 2. Quantitative comparison results of the model on the LEVIR and WHU Building datasets.
The highest index is shown in bold, and the second-highest index is underlined.

Method
LEVIR WHU

P R F1 OA mIoU P R F1 OA mIoU

SNUNet 0.9274 0.9083 0.9170 99.28 0.8479 0.8828 0.8705 0.8694 99.17 0.7946
DSIFN 0.9303 0.9147 0.9218 99.33 0.8564 0.9023 0.9088 0.8989 99.38 0.8378

BIT 0.9234 0.9094 0.9162 99.25 0.8456 0.8862 0.8683 0.8694 99.15 0.7936
ChangeFormer 0.9195 0.9009 0.9095 99.23 0.8354 0.8131 0.8010 0.7899 98.62 0.6872

SGSLN 0.9200 0.9038 0.9116 99.21 0.8379 0.8828 0.8886 0.8757 99.12 0.7982
Ours 0.9377 0.9198 0.9279 99.38 0.8669 0.9231 0.9150 0.9149 99.53 0.8651

Table 3. Quantitative comparison results of the model on the xBD disaster dataset, with the highest
indicator in bold and the second-highest indicator underlined.

Method
xBD

P R F1 OA mIoU

SNUNet 0.9226 0.9206 0.9216 94.65 0.8547
DSIFN 0.9334 0.9331 0.9332 95.43 0.8618

BIT 0.9005 0.9018 0.9010 93.23 0.8201
ChangeFormer 0.9144 0.9118 0.9130 94.05 0.8400

SGSLN 0.8928 0.8927 0.8926 92.65 0.8062
Ours 0.9336 0.9343 0.9345 95.49 0.8771

Qualitative results: As shown in Figure 5, on the LEVIR dataset, the change areas in
images a and b exhibit denser and more regular boundaries. In image a, the SGSLN model
exhibits suboptimal detection in the region highlighted by the blue box. This is due to the
influence of the house shadow, resulting in fragmented results and an inability to accurately
delineate the change area. Similarly, the SNUNet, DSIFN, BIT, and ChangeFormer methods
are also affected by the shadow in this region, exhibiting varying degrees of overlap
in their detection outcomes and poorly distinguishing change areas. In contrast, the
proposed method demonstrated superior visual performance with minimal connected
areas. Similarly, in image b, the proposed model outperformed the others significantly in
the yellow box. The change area in image c presents an irregular shape, posing greater
detection challenges than the first two images. However, the results illustrate that the
proposed model exceled at capturing the region and preserving the shape of the change
area, exhibiting no instances of missed detection or blurred boundaries. The WHU Building
dataset features larger change areas with a more regular pattern than the LEVIR dataset.
Figure 6 shows the results for the WHU dataset. In images e and f, it is evident that the
proposed model provided more comprehensive predictions of change areas and achieved
greater accuracy at the boundaries.
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The xBD dataset presents denser and smaller change areas characterized by numerous
irregular shapes than the LEVIR dataset. Similar to the above, superior results were
achieved by the proposed model when facing these challenges. As shown in Figure 7,
the region highlighted by the green box in image g reveals that all the models except
ChangeFormer generated false detection results, erroneously identifying the top portion
of land as a change area. Despite ChangeFormer having better performance in discerning
change areas, its edge prediction notably lagged behind that of the proposed method.
Likewise, within the green-marked area in image h, only the proposed method achieved
exceptional detection outcomes for the irregular segments within the change area.
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Overall, whether it was the xBD dataset with small and dense change areas, the LEVIR
dataset with more common change area shapes, or the WHU dataset with larger change
areas, the proposed model achieved superior outcomes. This is largely attributed to the
efficacy of our boundary constraint module. By integrating boundary constraints, the
proposed model achieves two key objectives: On one hand, it effectively discriminates
among various change areas in dense regions and reduces regional overlap. On the other
hand, it ensures that the predicted boundaries closely match their actual values.

To further validate the effectiveness of the model, distinct colors were employed
to represent true positive (TP; white), true negative (TN; black), false positive (FP; red),
and false negative (FN; green) results, as depicted in Figure 8. The proposed model
outperformed the others in various aspects. It effectively avoided false positive (FP)
instances, indicated by the red regions. In images a, d, and h, the proposed model closely
approximated the real values along the edges. Moreover, it significantly reduced the
occurrence of missed detection, evident in the fewer green regions compared with the
results of the other methods. This distinction is particularly noticeable in images a, c, and i.

To evaluate the effectiveness of the edge constraint module, ablation experiments
were conducted on the LEVIR dataset. Table 4 showcases the quantitative findings, and
Figure 9 illustrates the qualitative results. The model with the edge constraint module
demonstrated improvements across different metrics compared with the model without it,
with a notable increase in the mIoU metric. This improvement highlights the role of the
edge constraint module in accurately predicting the change region. Visually, the change
areas closely aligned with the true values at the edges, providing empirical evidence of the
efficacy of the boundary constraint module.
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Furthermore, the influence of employing two upsampling methods during the up-
sampling stage was taken into account. According to the results in Table 4, it is clear that
the combined use of the Pixel Shuffle and Bilinear upsampling methods can significantly
boost detection accuracy. This increase stems from the concurrent integration of channel
and spatial information, thereby improving the model’s capability to precisely capture
change regions.
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Table 4. Edge constraint module ablation experimental results.

Edge Pixel Shuffle Bilinear P R F1 mIoU
√ √

0.9324 0.9149 0.9230 0.8581√ √
0.9366 0.9181 0.9266 0.8644√ √
0.9348 0.9187 0.9260 0.8645√ √ √
0.9377 0.9198 0.9279 0.8669
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5. Discussion

Selecting accurate models and algorithms is crucial for change detection. By applying
precise algorithms or models in change detection, the detection accuracy can be improved,
achieving more desirable results. This aligns with the current development trends in
change detection.

Although previous studies based on CNN networks have demonstrated the powerful
feature extraction capabilities of deep learning methods, there are still issues with the clarity
of boundaries in the identified regions. This shortcoming is mainly due to the inadequate
aggregation of contextual information during feature extraction. The network proposed in
this study achieves contextual feature aggregation through the use of a cross-layer feature
fusion module and significantly enhances the precision of change regions by integrating
spatial and channel information via a dual-branch upsampling module. Additionally, the
introduction of a boundary constraint module, which consolidates fragmented edge infor-
mation through an MLP module, effectively increases boundary constraints within change
regions and reduces boundary blurring. These improvements are not only academically sig-
nificant but also provide more precise and reliable solutions for practical change detection
tasks, especially in natural disaster assessment and urban building change monitoring.

Despite the superiority of our method across multiple datasets, there is still room for
further improvement. Future research can be carried out in the following aspects: First,
more types of datasets and application scenarios can be explored to verify the generality
and adaptability of the method. Second, although Transformers effectively capture global
information, their computational requirements pose challenges for model training. To
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advance and extend the proposed method, future research could explore lightweight change
detection methods aimed at enhancing the practicality and efficiency of existing methods.

6. Conclusions

Currently, change detection is a central focus in the field of remote sensing. To address
feature fusion deficiency and the challenge of blurred edges in the detected change areas,
a dual-branch change detection model was introduced. In the feature extraction stage, it
combines the local information derived from the CNN with the global information from
Transformer, and the feature information is fully fused through the cross-layer feature
fusion module, solving the issue of the absence of comprehensive global information in
existing feature fusion methodologies. Additionally, a boundary constraint module based
on an MLP was introduced to process the edge information of the change areas, which
mitigates edge blurring. Moreover, spatial and channel information were integrated to
bolster detection accuracy by using two upsampling methods. The experimental findings
across three datasets show the model’s ability to achieve high precision while proficiently
delineating the boundaries of the change areas.

Author Contributions: All the authors made significant contributions to the work. X.W. and Z.G.
designed this research study, analyzed the results, and performed the validation work. R.F. provided
advice for the revision of the paper. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the China Scholarship Council, the Hubei Key
Laboratory of Intelligent Geo-Information Processing (No. KLIGIP-2019B08), the Sub-pixel Mapping
of Hyperspectral Remote Sensing Images Based on Deep Unfolding Networks (2024AFB561), the
Knowledge Innovation Program of Wuhan–Shuguang (202301020102336), and the National Natural
Science Foundation of China under Grant (41925007).

Data Availability Statement: The data presented in this study are available in reference number [42–44].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gao, Y.; Gao, F.; Dong, J.; Li, H. SAR image change detection based on multiscale capsule network. IEEE Geosci. Remote Sens. Lett.

2020, 18, 484–488. [CrossRef]
2. Alizadeh, N.A.; Beirami, B.; Mokhtarzade, M. Damage detection after the earthquake using Sentinel-1 and 2 images and machine

learning algorithms (case study: Sarpol-e Zahab earthquake). In Proceedings of the 2022 12th International Conference on
Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 17–18 November 2022; pp. 343–347.

3. Wu, K.; Ma, Y.; Zhang, L. Sub-pixel land-cover change detection based on pixel unmixing and EM algorithm. In Proceedings of
the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan,
2–5 June 2015; pp. 1–4.

4. Wang, L.; Zuo, B.; Le, Y.; Chen, Y.; Li, J. Penetrating remote sensing: Next-generation remote sensing for transparent earth.
Innovation 2023, 4, 100519. [CrossRef] [PubMed]

5. Zhou, Y. Research on Forest resource change detection based on decision tree algorithm. In Proceedings of the 2022 International
Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, UK, 29–31 July 2022; pp. 363–367.

6. Zhang, W.; Fan, H. Application of isolated forest algorithm in deep learning change detection of high resolution remote sensing
image. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA),
Dalian, China, 24–26 June 2022; pp. 753–756.

7. Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep learning-based change detection in remote sensing images: A review.
Remote Sens. 2022, 14, 871. [CrossRef]

8. Zhang, F.; Liu, K.; Liu, Y.; Wang, C.; Zhuo, W.; Zhang, H.; Wang, L. Multitarget Domain Adaptation Building Instance Extraction
of Remote Sensing Imagery With Domain-Common Approximation Learning. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4702916.
[CrossRef]

9. Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change detection based on artificial intelligence: State-of-the-art and challenges.
Remote Sens. 2020, 12, 1688. [CrossRef]

10. Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on deep learning-based change detection from
high-resolution remote sensing images. Remote Sens. 2022, 14, 1552. [CrossRef]

11. Shen, L.; Lu, Y.; Chen, H.; Wei, H.; Xie, D.; Yue, J.; Chen, R.; Lv, S.; Jiang, B. S2Looking: A satellite side-looking dataset for building
change detection. Remote Sens. 2021, 13, 5094. [CrossRef]

https://doi.org/10.1109/LGRS.2020.2977838
https://doi.org/10.1016/j.xinn.2023.100519
https://www.ncbi.nlm.nih.gov/pubmed/37915360
https://doi.org/10.3390/rs14040871
https://doi.org/10.1109/TGRS.2024.3376719
https://doi.org/10.3390/rs12101688
https://doi.org/10.3390/rs14071552
https://doi.org/10.3390/rs13245094


Remote Sens. 2024, 16, 2573 19 of 20

12. Hao, M.; Zhang, H.; Shi, W. Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images. Remote
Sens. Lett. 2013, 4, 1185–1194. [CrossRef]

13. Lei, T.; Zhang, Y.; Lv, Z.; Li, S.; Liu, S.K.; Nandi, A. Landslide Inventory Mapping from Bitemporal Images Using Deep
Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 982–986. [CrossRef]

14. Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944.

15. Zhang, C.; Wei, S.; Ji, S.; Lu, M. Detecting large-scale urban land cover changes from very high resolution remote sensing images
using cnn-based classification. ISPRS Int. J. Geo-Inf. 2019, 8, 189. [CrossRef]

16. Wu, C.; Zhang, F.; Xia, J.; Xu, Y.; Li, G.; Xie, J.; Du, Z.; Liu, R. Building damage detection using u-net with attention mechanism
from pre- and post-disaster remote sensing datasets. Remote Sens. 2021, 13, 905. [CrossRef]

17. Zhang, Y.; Fu, L.; Li, Y.; Zhang, Y. HDFNet: Hierarchical dynamic fusion network for change detection in optical aerial images.
Remote Sens. 2021, 13, 1440. [CrossRef]

18. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to
object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [CrossRef]

19. Patra, R.K.; Patil, S.N.; Falkowski-Gilski, P.; Łubniewski, Z.; Poongodan, R. Feature weighted attention—Bidirectional long short
term memory model for change detection in remote sensing images. Remote Sens. 2022, 14, 5402. [CrossRef]

20. Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using improved UNet++. Remote
Sens. 2019, 11, 1382. [CrossRef]

21. Lin, Y.; Li, S.; Fang, L.; Chamisi, P. Multispectral change detection with bilinear convolutional neural networks. IEEE Geosci.
Remote Sens. Lett. 2020, 17, 1757–1761. [CrossRef]

22. Li, H.; Gong, M.; Zhang, M.; Wu, Y. Spatially self-paced convolutional networks for change detection in heterogeneous images.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4966–4979. [CrossRef]

23. Wang, G.; Li, B.; Zhang, T.; Zhang, S. A Network combining a transformer and a convolutional neural network for remote sensing
image change detection. Remote Sens. 2022, 14, 2228. [CrossRef]

24. Zhang, B.; Ye, H.; Lu, W.; Huang, W.; Wu, B.; Hao, Z.; Sun, H. A spatiotemporal change detection method for monitoring pine
wilt disease in a complex landscape using high-resolution remote sensing imagery. Remote Sens. 2021, 13, 2083. [CrossRef]

25. Zhu, Y.; Tang, H. Automatic damage detection and diagnosis for hydraulic structures using drones and artificial intelligence
techniques. Remote Sens. 2023, 15, 615. [CrossRef]

26. Zhan, T.; Song, B.; Xu, Y.; Wan, M.; Wang, X.; Yang, G.; Wu, Z. SSCNN-S: A spectral-spatial convolution neural network with
siamese architecture for change detection. Remote Sens. 2021, 13, 895. [CrossRef]

27. Chen, D.; Wang, Y.; Shen, Z.; Liao, J.; Chen, J.; Sun, S. Long time-series mapping and change detection of coastal zone land use
based on google earth engine and multi-source data fusion. Remote Sens. 2022, 14, 1. [CrossRef]

28. Zhang, H.; Wang, M.; Wang, F.; Yang, G.; Zhang, Y.; Jia, J.; Wang, S. A novel squeeze-and-excitation w-net for 2D and 3D building
change detection with multi-source and multi-feature remote sensing data. Remote Sens. 2021, 13, 440. [CrossRef]

29. Mastro, P.; Masiello, G.; Serio, C.; Pepe, A. Change detection techniques with synthetic aperture radar images: Experiments with
random forests and Sentinel-1 observations. Remote Sens. 2022, 14, 3323. [CrossRef]

30. Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A general end-to-end 2-D CNN framework for hyperspectral image change detection.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [CrossRef]

31. Liu, R.; Kuffer, M.; Persello, C. The temporal dynamics of slums employing a CNN-based change detection approach. Remote
Sens. 2019, 11, 2844. [CrossRef]

32. Peng, D.; Guan, H. Unsupervised change detection method based on saliency analysis and convolutional neural network. J. Appl.
Remote Sens. 2019, 13, 024512. [CrossRef]

33. Yang, K.; Xia, G.; Liu, Z.; Du, B.; Yang, W.; Pelillo, M.; Zhang, L. Asymmetric siamese networks for semantic change detection in
aerial images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5609818. [CrossRef]

34. Zheng, Z.; Wan, Y.; Zhang, Y.; Xiang, S.; Peng, D.; Zhang, B. CLNet: Cross-layer convolutional neural network for change
detection in optical remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 247–267. [CrossRef]

35. Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A Deeply supervised attention metric-based network and an open aerial image
dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5604816. [CrossRef]

36. Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60,
5607514. [CrossRef]

37. Bandara, W.G.C.; Patel, V.M. A transformer-based siamese network for change detection IGARSS 2022. In Proceedings of the 2022
IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 207–210.

38. Jiang, B.; Wang, Z.; Wang, X.; Zhang, Z.; Chen, L.; Wang, X.; Luo, B. VcT: Visual change transformer for remote sensing image
change detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 2005214. [CrossRef]

39. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
Neural Inf. Process. Syst. 2017, 30, 6000–6010.

40. Fang, S.; Li, K.; Li, K. Changer: Feature interaction is what you need for change detection. IEEE Trans. Geosci. Remote Sens. 2023,
61, 5610111. [CrossRef]

https://doi.org/10.1080/2150704X.2013.858841
https://doi.org/10.1109/LGRS.2018.2889307
https://doi.org/10.3390/ijgi8040189
https://doi.org/10.3390/rs13050905
https://doi.org/10.3390/rs13081440
https://doi.org/10.1016/j.isprsjprs.2013.03.006
https://doi.org/10.3390/rs14215402
https://doi.org/10.3390/rs11111382
https://doi.org/10.1109/LGRS.2019.2953754
https://doi.org/10.1109/JSTARS.2021.3078437
https://doi.org/10.3390/rs14092228
https://doi.org/10.3390/rs13112083
https://doi.org/10.3390/rs15030615
https://doi.org/10.3390/rs13050895
https://doi.org/10.3390/rs14010001
https://doi.org/10.3390/rs13030440
https://doi.org/10.3390/rs14143323
https://doi.org/10.1109/TGRS.2018.2849692
https://doi.org/10.3390/rs11232844
https://doi.org/10.1117/1.JRS.13.024512
https://doi.org/10.1109/TGRS.2021.3113912
https://doi.org/10.1016/j.isprsjprs.2021.03.005
https://doi.org/10.1109/TGRS.2022.3158741
https://doi.org/10.1109/TGRS.2021.3095166
https://doi.org/10.1109/TGRS.2023.3327139
https://doi.org/10.1109/TGRS.2023.3277496


Remote Sens. 2024, 16, 2573 20 of 20

41. Taud, H.; Mas, J.F. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer International
Publishing: Cham, Switzerland, 2018; pp. 451–455.

42. Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection.
Remote Sens. 2020, 12, 1662. [CrossRef]

43. Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery
data set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [CrossRef]

44. Gupta, R.; Hosfelt, R.; Sajeev, S.; Patel, N.; Goodman, B.; Doshi, J.; Heim, E.; Choset, H.; Gaston, M. Creating xBD: A dataset for
assessing building damage from satellite imagery. In Proceedings of the of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, California, CA, USA, 16–17 June 2019.

45. Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [CrossRef]

46. Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A densely connected siamese network for change detection of VHR images. IEEE
Geosci. Remote Sens. Lett. 2022, 19, 8007805. [CrossRef]

47. Zhao, S.; Zhang, X.; Xiao, P.; He, G. Exchanging dual-encoder–decoder: A new strategy for change detection with semantic
guidance and spatial localization. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4508016. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs12101662
https://doi.org/10.1109/TGRS.2018.2858817
https://doi.org/10.1016/j.isprsjprs.2020.06.003
https://doi.org/10.1109/LGRS.2021.3056416
https://doi.org/10.1109/TGRS.2023.3327780

	Introduction 
	Related Works 
	Classical Change Detection Methods 
	Transformer-Based Change Detection Methods 

	Methods 
	Dual-Branch Backbone Network Based on CNN and Transformer 
	Cross-Layer Feature Fusion 
	MLP-Based Edge Information Extraction Module 
	Upsampling and Prediction Module 
	Loss Function 

	Results 
	Datasets and Experimental Setup 
	Comparison Method 
	Evaluation Metrics 
	Results and Discussion 

	Discussion 
	Conclusions 
	References

