
Citation: Puletti, N.; Guasti, M.;

Innocenti, S.; Cesaretti, L.;

Chiavetta, U. A Semi-Automatic

Approach for Tree Crown

Competition Indices Assessment from

UAV LiDAR. Remote Sens. 2024, 16,

2576. https://doi.org/10.3390/

rs16142576

Academic Editor: Henning

Buddenbaum

Received: 7 June 2024

Revised: 8 July 2024

Accepted: 12 July 2024

Published: 13 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Communication

A Semi-Automatic Approach for Tree Crown Competition
Indices Assessment from UAV LiDAR
Nicola Puletti 1,∗ , Matteo Guasti 1 , Simone Innocenti 1 , Lorenzo Cesaretti 1,2 and Ugo Chiavetta 1

1 CREA, Research Centre for Forestry and Wood, Viale Santa Margherita 80, IT-52100 Arezzo, Italy;
matteo.guasti@crea.gov.it (M.G.); simone.innocenti@crea.gov.it (S.I.); lorenzo.cesaretti@crea.gov.it (L.C.);
ugo.chiavetta@crea.gov.it (U.C.)

2 Civil, Constructional and Environmental Engineering, Sapienza University, Piazzale Aldo Moro 5,
IT-00185 Roma, Italy

* Correspondence: nicola.puletti@crea.gov.it

Abstract: Understanding the spatial heterogeneity of forest structure is crucial for comprehending
ecosystem dynamics and promoting sustainable forest management. Unmanned aerial vehicle
(UAV) LiDAR technology provides a promising method to capture detailed three-dimensional (3D)
information about forest canopies, aiding in management and silvicultural practices. This study
investigates the heterogeneity of forest structure in broadleaf forests using UAV LiDAR data, with a
particular focus on tree crown features and their different information content compared to diameters.
We explored a non-conventionally used method that emphasizes crown competition by employing
a nearest neighbor selection technique based on metrics derived from UAV point cloud profiles at
the tree level, rather than traditional DBH (diameter at breast height) spatial arrangement. About
300 vegetation elements within 10 plots collected in a managed Beech forest were used as reference
data. We demonstrate that crown-based approaches, which are feasible with UAV LiDAR data
at a reasonable cost and time, significantly enhances the understanding of forest heterogeneity,
adding new information content for managers. Our findings underscore the utility of UAV LiDAR in
characterizing the complexity and variability of forest structure at high resolution, offering valuable
insights for carbon accounting and sustainable forest management.

Keywords: precision forestry; vertical profile traits; Beech forests; individual tree segmentation; size
differation index

1. Introduction

Light is among the major factors affecting tree growth, and tree crowns play a fun-
damental role in determining the amount of light and the microclimatic conditions expe-
rienced by all living organisms in forest ecosystems [1]. Crown size and shape influence
various aspects of tree life, such as growth, mortality, stability, and reproductive suc-
cess, consequently impacting the overall dynamics of the entire forest [2]. These features
greatly depend on the spatial arrangement resulting from species-specific strategies, like
lateral extension for light capture, maintenance of mechanical stability and hydraulic safety,
and growth speed (i.e., slow versus fast growth) [3,4]. Besides these traits, forest man-
agement plays a central role. Predicting crown competition effects is crucial not only for
ecological studies on natural forests but also for the economy of managed stands. A strong
competition can indeed diminish the yield and vigor of single trees, potentially leading to
their suppression and death.

Plenty of scientific literature grounds its results on simplified and geometric rep-
resentations of crown features, appealing to our natural preference for schematization
in understanding patterns and processes in nature [5]. However, numerous empirical
studies indicate that variability in crown structure, rather than uniformity, is crucial for
a tree’s success in dealing with competition [6]. Even in stands with a uniform canopy
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height, competition for canopy space and light tends to be asymmetric, contrasting with the
quasi-symmetric behavior often assumed in forest studies. Partial shading from neighbors
results in heterogeneous light distribution in the canopy. This leads to varied growth rates,
with some sections experiencing slow growth and others exhibiting vigorous expansion.
Trees exhibit plastic modifications to their canopy structure as a powerful response to these
heterogeneous light conditions. They grow toward areas with higher light availability and
reduced competition, thereby avoiding neighbors. Due to this morphological plasticity,
tree canopies are rarely positioned directly above the stem base [7].

The so-called “neighborhood approach” is the basis of all studies that investigate small-
scale tree-tree competition between trees of different sizes and/or different species [7,8].
Following this approach, (a) the identification of neighbors having an actual effect on the
focal tree, and (b) a suitable selection of crown traits (for both k-neighbors and j-focal
trees) are crucial steps. With some exceptions (e.g., Winkelmass, also known as uniform
angle index, for which k is 4 [8–10]), spatial indices are very flexible in the number of
neighbor trees.

The identification of neighbors with potential effects on the focal tree is usually based
on the position of the DBH [10,11]. Nevertheless, the real tree-tree competition is at the root
and crown level; the growth in DBH is only a reflection of how much plants accumulate
in terms of water and light. Accurate measurement of tree crown features is therefore
essential to better understand competition [7]. However, traditional methods for their
precise measurement have limitations. Tools such as calipers (for diameters at breast
height (DBH)), tapes (for crown projections) and, recently, a laser/sonar range finder (for
total tree heights) are very time-consuming for 3D accurate measures and are subject to
non-negligible positioning errors.

More recent is the use of terrestrial laser scanners (TLS, [12]). In that case, limitations
arise in mature or even-aged forest stands, where the upper part of the canopy cannot
be seen by the scanner, even in leaf-off conditions. Miniaturized, low-cost LiDAR instru-
ments [13], mounted on UAV-LS and GPS-RTK systems to overcome these constraints. They
enable precise co-registration of point clouds [14] and individual crown segmentation [15],
reshaping the study of forest structure.

In the present study, we focused on evaluating the potential of UAV-LS to describe
crown-crown features in a pure Beech-managed forest in Central Italy. Specific objectives
are (1) present a new semi-automatic and dynamic method for effective tree-neighbor
selection. (2) Obtain detailed crown projected area, and crown volume. (3) Evaluate the
differences between the DBH differentiation index calculated using a fixed or dynamic
number of neighbors and dimensional differentiation index [16] for the crown projected
area, crown volume, and tree volume.

To do this, we used a set of Beech trees manually detected from co-registered TLS and
UAV-LS data and analyzed following an approach recently introduced by ecologists on TLS
data only [17]. TLS data, acquired simultaneously with UAV-LS, were used as a reference for
tree stem positioning and traditional index calculations. We defined competitor—i.e., trees
that are likely to impose competitive pressures on a focal tree - all those surrounding trees
that were part of the upper canopy layer and were in direct contact with the crown of the
focal tree (as for [7]).

2. Materials

This study was conducted in Alpe di Catenaia, Italy (Figure 1). The climate at the
study site is temperate, with warm, dry summers and cold, rainy winters. The mean
annual rainfall was 1224 mm, and the mean annual temperature was 9.5 °C. The monthly
distribution of rainfall shows an autumn maximum in the month of November (165.1 mm)
and a summer minimum in the month of July and a summer minimum in July (48.9 mm).
Rainfall remains relatively high in the months of January to May (about 100 mm per month)
and then decreases rapidly until the summer minimum. The average annual temperature
is 9.2 °C, while the hottest month is July. The coldest month is January, followed by
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December and February. Beech even-aged forests, mainly aged between 70 and 90 years
old, are prevalent in the study area [18]. Data were collected October–December 2023 over
10 circular sampling plots, 15 m radius of pure Beech forests characterized by arenaceous
or marl-clay-sandstone substrata. Sampling plots were placed in the study area following a
spatially balanced approach [19].

Figure 1. Study area, Beech forested area (green), and sampling plot location (yellow points). Esri
Terrain and Regional DTM were used as bases for the figures on the left and on the right, respectively.

TLS-inventory measurements were performed by GeoSLAM ZEB-REVO (GeoSLAM
Ltd., Ruddington, UK) lightweight mobile laser scanner. It features a rotating 2D scanning
device and an inertial measurement unit in the handle. The system acquires 3D information
about the surrounding area through measurements, due to the motion offered by the
scanning head on the motor drive, enabling the application of 3D-simultaneous location
and mapping algorithms [20]. This TLS requires that the starting and ending points of the
scan process coincide, and some overlaps are carried out during the scan path. The center
of the plot was georeferenced using a RTK GPS.

We collected UAV LiDAR (UAV-LS) data simultaneously with TLS measurements on
the field. The UAV-LS LiDAR platform consisted of a DJI Matrice 350 quadcopter integrated
with a Zenmuse L1 LiDAR sensor (DJI Inc., Shenzhen, China), an advanced scanning sensor
designed for aerial surveying applications. It integrates a LiDAR module and an RGB
camera with a non-full-frame configuration and an inertial measurement unit (IMU). It
has a detection range of 450 m under 80% reflectivity conditions, a high point rate of up to
240,000 points per second, and ranging accuracy of 3 cm at a range of 100 m [21,22].
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The flights were performed at approximately 55 m above the digital terrain model
uploaded on UAV-LS, with approximately 13 km h−1 speed. With these settings, the result-
ing point cloud has a mean point density of about 1500 points m−2. Data processing was
carried out in DJI Terra V4.1.0 software (DJI, Shenzhen, Guangdong, China) which allowed
us to bring in the trajectory data of the drone flight, align the flight paths, georeference the
point cloud, and then export it in LAS format.

Both TLS and UAV-LS data were collected during the leaf-off phenological phase.
Every point cloud was clipped by corresponding 15 m radius circles and co-registered
using CloudCompare software version 2.13 (Cloudcompare, Paris, France) following the
procedure described in a previous work [14].

3. Methods

From the co-registered point cloud, we manually segmented a total of 299 trees
(115 of which are focal trees). For each tree, we derived a tree XY-position and diameter at
breast height (DBH, Figure 2), total tree height (TH), total tree volume (Tvol) and 3 crown
features (see Section 3.1, Table 1).

3.1. Crown Features

Crown features were derived only from the UAV-LS component of co-registered point
cloud. As crown features we computed: crown projected area (CrPrj), the XY-position of its
centroid (xyCnt), and crown volume (CrVol). Using the lidR package (Roussel et al. [23]), we
created a set of R algorithms that allowed to parameterize various structural crown attributes
from the xyz-data of each focal tree and its neighbors. To do so, the single tree original point
cloud (Figure 3, on the left) was first voxelized at a resolution of 25 cm (Figure 3), a good
compromise for fast computation with mid-to-high-performance hardware. To avoid the
residual noise in the original point cloud, only voxels with at least 3 points were considered
“vegetation” and used to compute single tree vertical profiles. From its smoothed curve (red
line in Figure 3), we derived the height of the maximum crown projection (Z peak, in meters),
crown base height (Z peak start, in meters), and total tree height (Z peak end, in meters).
Crown volume (CrVol) was computed as the sum of all vegetation voxels between Z peak
start and Z peak end (Figure 3, dark-grey voxels in the center), while crown projected area
(CrPrj) was calculated using a 2D convex hull (Figure 3, bottom-right).

Table 1. Descriptive parameters at plot level: mean and standard deviations (in brachets) for diameter
at breast height (DBH, cm), total tree height (TH, m), tree wood volume (vol, m3) of trees. All the
sampling plots belong to pure Beech forest stands, with same climatic conditions. All UAV LiDAR
and field data were collected during winter 2023 (leaf-off phenological phase).

ads id N ha−1 DBH T H vol

ads_07 679.1 21.6 (13.4) 23.9 (3.8) 0.7 (0.9)
ads_16 226.4 44 (10.9) 23.1 (1.4) 1.7 (1)
ads_26 735.6 25.4 (3.8) 15.4 (1.9) 0.3 (0.1)
ads_29 226.4 38.4 (9.3) 21.5 (1.8) 1.5 (0.8)
ads_31 325.4 42.8 (9.3) 21.8 (1.6) 1 (0.5)
ads_34 127.3 48.9 (21.5) 23.1 (1.3) 1.9 (1.5)
ads_35 212.2 43.3 (9.7) 25.1 (1.4) 1.4 (0.6)
ads_37 679.1 30.2 (4.2) 22.4 (1.7) 0.7 (0.2)
ads_41 382.0 32.1 (8.7) 21.1 (1.7) 1 (0.8)
ads_48 183.9 44.3 (8.5) 27.5 (1) 2.3 (0.8)
ads_49 339.5 33.6 (5.7) 25.3 (1.3) 0.9 (0.3)
Total 411.7 32.5 (12.2) 21.8 (4) 0.9 (0.8)
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Figure 2. On the top: Tree positions for sampling plots considered in this study. Point size is
proportional to DBH. Below: histogram of DBH distribution for trees measured.

Figure 3. Workflow of the entire process from original point cloud of sampling plot (top-right) to
manual segmentation of each tree in the plot. On the bottom: the three-dimensional point cloud of a
single tree (left) was voxelized (center). Red-line on the right is the smoothed vertical profile of the
same tree. Convex hull polygon of crown projection at the ‘Z peak’ height for a single tree and for an
entire plot (bottom-right).
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3.2. Differentiation Dimensional Indices

Dimensional differentiation indices can be calculated by applying the following formula:

TX = 1 − 1
n

n

∑
k=1

min(Xi, Xk)

max(Xi, Xk)
(1)

were Xi and Xk are the tree-dimensional variable of interest for focal and surrounding trees,
respectively [16]. For example, if we are interested in evaluating competition in diameter,
following Equation (1), the DBH differentiation index [9] can be calculated as:

T4 = 1 − 1
4

4

∑
k=1

min(DBHi, DBHk)

max(DBHi, DBHk)
(2)

The number of nearest trees is usually a fixed number, frequently 4, i.e., the nearest
trees in terms of DBH XY-position (Keren et al. [24]). Since tree-tree competition for light
starts from the canopy, in this study we proposed a dynamic neighbor selection considering
the crown position (Figure 4). In summary, starting from the crown centroid of the focal
tree, we selected the nearest trees following an angular searching method, in order to detect
the nearest trees from all directions. For details, see Figure 4’s caption. We then compared
results between five different dimensional indices: (a) DBH differentiation index with k = 4
(T4, Equation (2)); (b) DBH differentiation index with variable number of nearest crowns
(Td, Equation (3)); (c) crown projection differentiation index (TCrPrj, Equation (4)); (d) crown
volume differentiation index (TCrVol, Equation (5)); (e) tree volume differentiation index
(Tvol, Equation (6)).

Td = 1 − 1
n

n

∑
k=1

min(DBHi, DBHk)

max(DBHi, DBHk)
(3)

TCrPrj = 1 − 1
n

n

∑
k=1

min(CrPrji, CrPrjk)
max(CrPrji, CrPrjk)

(4)

TCrVol = 1 − 1
n

n

∑
k=1

min(CrVoli, CrVolk)
max(CrVoli, CrVolk)

(5)

Tvol = 1 − 1
n

n

∑
k=1

min(voli, volk)
max(voli, volk)

(6)

Figure 4. Proposed neighbors’ selection for a focal tree (in gray). Starting from crown centroid,
the algorithm sketches 16 half-lines dividing the round angle into 16 equal angles 22.5° each. A neighbor
crown is selected if one of 16 half-lines intersect it (red lines). As final step, only nearest intersected
crowns in the same half-line were selected as neighbor trees (marked with a “X” in the figure).
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3.3. Statistical Analysis

We tested all calculated indices for normality with the Shapiro–Wilk test. Where
indices exhibited non-normal frequency distributions and/or heteroscedasticity, multiple
paired Wilcoxon tests were conducted to determine the index values that differed signifi-
cantly. All statistical tests were conducted at α = 0.05. Data analysis was performed in the
R statistical package, Version 4.2.3 (Team [25]).

4. Results
4.1. Single Tree Manual Segmentation

We first tried with automatic segmentation methods, using already developed methods
and tools (e.g., Treeiso, a function built on CloudCompare software version 2.13 (Cloud-
compare, Paris, France)), but results were not satisfactory: a lot of sparse clusters in the
canopy layer were associated with the wrong tree. Then we opted for a manual method on
Trimble RealWorks (Figure 3). The time required to create the reference dataset depends,
as expected, on the complexity of the forest stand and stand density. Since we measured
trees from even-aged populations with similar top heights and crowns occupying the
same forest layer, the greatest obstacle to segmentation was branches intertwining. In
total, 18 person-days were needed to isolate and measure the Beech trees from which the
115 focal trees and their respective neighbors were selected, with an average of 1.8 days per
sampling plot. The duration of this phase mainly depends on the size of the trees.

4.2. Tree-Neighbors Selection

Using the method described in Section 3 and Figure 4, the average number of competi-
tors is 7.45, with a standard deviation of 1.60, the median is 7. A focal tree is surrounded by
4 competitors (lowest value) in just 3 cases over 115, and by 10 or 11 competitors (highest
values) in 14 cases (Figure 5).

0

10

20

30

4 6 8 10
number of competitors

co
un

t

Figure 5. Frequency distribution of the number of surrounding competitors for the 115 focal trees
analyzed in this study.

4.3. Crown Projected Area and Crown Volume

From the results, CrPrj and CrVol are highly correlated (Pearson correlation coefficient,
r = 0.96). In even-aged forests, the mean crown projection area (CrPrj) at tree level is
inversely proportional to tree density. In this study, the maximum CrPrj (33.9 m2) was
reached in ads_34, where the density is the lower (127.3 trees ha−1, Table 2). On the other
side, ads_37 and ads_26, with respectively 679.1 and 735.6 trees ha−1 (i.e., the highest
densities), have the lowest CrPrj values (8.2 and 7.8 m2, respectively).

Also, mean CrVol at plot level decrease when tree density increases (Table 2). Despite
this general behavior, plots with similar densities (e.g., ads_29 and ads_35) have really
different crown volumes (respectively 79 and 54 m3), unveiling a certain variability also for
those apparently similar forest structure.
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Table 2. Crown features (plot level results): mean and standard deviations (in brachets) for crown
projection area (CrPrj, m2) and crown volume (CrVol, m3) of trees.

ads id N ha−1 CrPrj CrVol

ads_07 679.1 10.3 (13.6) 26.1 (34.2)
ads_16 226.4 27.9 (19.9) 79.4 (55.1)
ads_26 735.6 7.8 (4.2) 17.9 (8.2)
ads_29 226.4 28.8 (15.1) 79.6 (47)
ads_31 325.4 21.9 (13.2) 53.3 (31.3)
ads_34 127.3 33.9 (22) 85.9 (49.6)
ads_35 212.2 25.4 (9.9) 53.9 (29.6)
ads_37 679.1 8.2 (4.2) 22.8 (10.1)
ads_41 382.0 15.3 (13) 39.8 (33.9)
ads_48 183.9 27.9 (11.2) 92.1 (37.7)
ads_49 339.5 15.6 (6.3) 35 (13.6)
Total 411.7 15.6 (13.8) 40.4 (37.5)

4.4. Indices Statistic Analysis

All the indices exhibited non-normal frequency distribution. Table 3 shows the two-
sample Wilcoxon test results (with Bonferroni correction for multiple comparisons).

Table 3. p-values of the two-sample Wilcoxon test (with Bonferroni correction for multiple compar-
isons) for all possible pairs among the considered indices.

Td T4 TCrPrj TCrVol

T4 1
TCrPrj 7.60 × 10−19 2.73 × 10−18

TCrVol 3.89 × 10−18 1.47 × 10−17 0.19
Tvol 1.39 × 10−17 1.43 × 10−17 1.69 × 10−4 0.62

The statistical analysis showed that the index based on DBH, calculated using a
dynamic number of neighbors (Td, mean = 0.21; sd = 0.11), yielded almost the same index
values as when four neighbor DBH were used (T4, mean = 0.20; sd = 0.12), although the
DBH differentiation index based on four neighbors (T4) has slightly lower values than Td
(Figure 6). This result was confirmed by the two-sample Wilcoxon test applied to T4 and Td
distributions (p-value = 1, Table 3).
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Figure 6. Violin plot of index value distribution. From left: DBH differentiation index with k = 4 (T4);
DBH differentiation index with k nearest crowns (Td); crown projection differentiation index (TCrPrj);
crown volume differentiation index (TCrVol); tree volume differentiation index (Tvol).
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Both mean values (0.38) and standard deviation (0.13) for Tvol are similar to—but
slightly lower than—TCrPrj (mean = 0.42; sd = 0.15) and TCrVol (mean = 0.40; sd = 0.16).
Following Wilcoxon test results from Table 3, they significantly differ from T4, and Td
p-value is always lower than 0.001 for all the pairs). Moreover, Tvol and TCrPrj showed a
significant difference in distribution (p-value = 1.69 × 10−4).

5. Discussion

Incorporating different crown traits in spatial index computation allows to obtain
results with varying levels of informational content, offering diverse perspectives on stand
complexity. Tree structural characteristics cannot be fully captured by diameter mea-
surements alone or by quick canopy surveys from the ground [26]. Specifically, using
parameters such as diameter, tree volume, and the apparent volume of the canopy in the
calculation of diversity indices reveals different levels of heterogeneity. This variance is re-
flected not only in the average values and their variability, but also in the entire distribution
of values. By examining these different characteristics, a more comprehensive understand-
ing of the structural diversity within the forest stand can be derived, highlighting the
multifaceted nature of its complexity.

If compared with airborne laser scanning, the higher scanning density guaranteed
by UAV-LS data allows for more detailed measurement of crown features and spatial
arrangement of trees, even in homogeneous stands like those analyzed in this study.
Employing UAV-LS for tree level analysis not only improves the accuracy of measurements
but also enhances the ability to monitor and study the growth patterns and structural
changes in larger, older trees. An additional advantage offered by both TLS and UAV-LS
point clouds relies on the accurate measure of large trees, which are often more challenging
to measure using analog or traditional methods such as calipers and vertex hypsometers.

In this paper, a general workflow for spatial index computation from UAV-LS point
clouds were developed and presented. With well segmented single trees, the automatic step
for delineating crown projection, and computing crown volume works fast (about 1 s for each
tree) and without computational bottlenecks. However, removing the noise from the point
clouds and manually isolating trees require time, specialized digital skills, and advanced data
processing techniques. Still today, automatic segmentation is a challenging task, especially
in broadleaf forests where branches intertwine extensively. All current automatic methods
require some level of visual or manual verification to ensure accuracy.

Compared with previous studies [7], where 15 trees (Ash, Beech and Hornbeam)
were measured by TLS, UAV-LS technology, which can survey hectares in a few minutes,
allowing us to consistently increase the number of focal trees to 115. Our results are in line
with those from other similar studies [24,27,28]. In particular, in even-aged Beech forests
with a simplified structure, like the ones we analyzed, an adequate number of competitors
seems to be 7 or 8, a considerably higher value if compared with the traditional number
of nearest neighbors (i.e., k = 4). Further, the real potential of the proposed methodology
relies on the high adaptability in identifying the best number of competitors at tree level.

Despite this, the comforting results obtained in this experiment cannot be directly
extended to all the different forest structures characterizing Beech forests, mixed forests,
or other forest types. Future research should aim to apply this methodology to diverse
forest ecosystems to validate its effectiveness across different conditions.

6. Conclusions

Our study demonstrates the significant advantages of UAV-LS technology in forest
monitoring and management. UAV-LS provides detailed and extensive coverage of tree
crown features and spatial arrangements, offering an efficient alternative to traditional
ground-based approaches. This technology saves time and resources while enhancing the
accuracy and detail of forest stand analysis.

Being focused on pure Beech stands, this paper has a limited replicability both in other
forest types and in mixed stands. Nonetheless, Beech forest has a pan-European range of
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distribution, so this approach has a definitively large area of application. Moreover, we
highlighted the value of these studies in understanding pure Beech stand competition dy-
namics and structural complexities. Our findings align with previous research, confirming
that the choice of neighbor tree selection methods does not significantly affect structural
indices. However, incorporating crown traits into heterogeneity indices provides diverse
and significant insights into forest complexity, underscoring the multifaceted nature of
forest structure.

In summary, UAV-LS technology offers substantial benefits for forest management and
silviculture. It enhances the efficiency and effectiveness of management practices, supports
accurate predictions, and modeling, and facilitates better decision-making. This holistic
approach ensures sustainable management of forest resources, taking into account both
ecological dynamics and economic viability.
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