The Ecological Economics of Light Pollution: Impacts on Ecosystem Service Value
Abstract
:1. Introduction
1.1. Human Health Impacts of Light Pollution
1.2. Ecological Impacts of Light Pollution
1.3. Light Pollution as a Negative Impact on an Ecosystem’s Service Value
2. Data and Methods
2.1. Data
2.2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kyba, C.C.M.; Kuester, T.; Sanchez de Miguel, A.; Baugh, K.; Jechow, A.; Hoelker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially Lit Surface of Earth at Night Increasing in Radiance and Extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.C.M.; Altintas, Y.O.; Walker, C.E.; Newhouse, M. Citizen Scientists Report Global Rapid Reductions in the Visibility of Stars from 2011 to 2022. Science 2023, 379, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Hung, L.-W.; Anderson, S.J.; Pipkin, A.; Fristrup, K. Changes in Night Sky Brightness after a Countywide LED Retrofit. J. Environ. Manag. 2021, 292, 112776. [Google Scholar] [CrossRef]
- Abraham, H.; Scantlebury, D.M.; Zubidat, A.E. The Loss of Ecosystem-Services Emerging from Artificial Light at Night. Chronobiol. Int. 2019, 36, 296–298. [Google Scholar] [CrossRef]
- Lyytimaki, J. Nature’s Nocturnal Services: Light Pollution as a Non-Recognised Challenge for Ecosystem Services Research and Management. Ecosyst. Serv. 2013, 3, E44–E48. [Google Scholar] [CrossRef]
- Marangoni, L.F.B.; Davies, T.; Smyth, T.; Rodriguez, A.; Hamann, M.; Duarte, C.; Pendoley, K.; Berge, J.; Maggi, E.; Levy, O. Impacts of Artificial Light at Night in Marine Ecosystems-A Review. Glob. Chang. Biol. 2022, 28, 5346–5367. [Google Scholar] [CrossRef]
- Jägerbrand, A.K.; Spoelstra, K. Effects of Anthropogenic Light on Species and Ecosystems. Science 2023, 380, 1125–1130. [Google Scholar] [CrossRef]
- Rybnikova, N.; Haim, A.; Portnov, B.A. Artificial Light at Night (ALAN) and Breast Cancer Incidence Worldwide: A Revisit of Earlier Findings with Analysis of Current Trends. Chronobiol. Int. 2015, 32, 757–773. [Google Scholar] [CrossRef] [PubMed]
- Nadybal, S.M.; Collins, T.W.; Grineski, S.E. Light Pollution Inequities in the Continental United States: A Distributive Environmental Justice Analysis. Environ. Res. 2020, 189, 109959. [Google Scholar] [CrossRef]
- Ritonja, J.; McIsaac, M.A.; Sanders, E.; Kyba, C.C.M.; Grundy, A.; Cordina-Duverger, E.; Spinelli, J.J.; Aronson, K.J. Outdoor Light at Night at Residences and Breast Cancer Risk in Canada. Eur. J. Epidemiol. 2020, 35, 579–589. [Google Scholar] [CrossRef]
- Ventriglio, A.; Torales, J.; Castaldelli-Maia, J.M.; De Berardis, D.; Bhugra, D. Urbanization and Emerging Mental Health Issues. CNS Spectr. 2021, 26, 43–50. [Google Scholar] [CrossRef]
- Zając, M.; Warchoł, K.; Borowiecka, M.; Brzezińska, A. Association between Artificial Light at Night Exposure and Breast and Prostate Cancer Risk—The Review. J. Educ. Health Sport 2021, 11, 148–160. [Google Scholar] [CrossRef]
- Cao, M.; Xu, T.; Yin, D. Understanding Light Pollution: Recent Advances on Its Health Threats and Regulations. J. Environ. Sci. 2023, 127, 589–602. [Google Scholar] [CrossRef]
- Mason, I.C.; Grimaldi, D.; Reid, K.J.; Warlick, C.D.; Malkani, R.G.; Abbott, S.M.; Zee, P.C. Light Exposure during Sleep Impairs Cardiometabolic Function. Proc. Natl. Acad. Sci. USA 2022, 119, e2113290119. [Google Scholar] [CrossRef]
- Zielinska-Dabkowska, K.; Hanifin, J.; Brainard, G. Reducing Nighttime Light Exposure in the Urban Environment to Benefit Human Health and Society. Science 2023, 380, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Kraus, L. Human and Environmental Effects of Light Emitting Diode (LED) Community Lighting; Report of the council on science and public health csaph Report 2-A-16; American Medical Association: Chicago, IL, USA, 2016. [Google Scholar]
- Cho, Y.; Ryu, S.-H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. Effects of Artificial Light at Night on Human Health: A Literature Review of Observational and Experimental Studies Applied to Exposure Assessment. Chronobiol. Int. 2015, 32, 1294–1310. [Google Scholar] [CrossRef]
- Svechkina, A.; Portnov, B.A.; Trop, T. The Impact of Artificial Light at Night on Human and Ecosystem Health: A Systematic Literature Review. Landsc. Ecol. 2020, 35, 1725–1742. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, C.; Wang, K.; Kwan, M.-P.; Tse, L.A. Linking Artificial Light at Night with Human Health via a Multi-Component Framework: A Systematic Evidence Map. Environments 2023, 10, 39. [Google Scholar] [CrossRef]
- Wang, T.; Kaida, N.; Kaida, K. Effects of Outdoor Artificial Light at Night on Human Health and Behavior: A Literature Review. Environ. Pollut. 2023, 323, 121321. [Google Scholar] [CrossRef]
- Bozejko, M.; Tarski, I.; Malodobra-Mazur, M. Outdoor Artificial Light at Night and Human Health: A Review of Epidemiological Studies. Environ. Res. 2023, 218, 115049. [Google Scholar] [CrossRef]
- Sanders, D.; Gaston, K.J. How Ecological Communities Respond to Artificial Light at Night. J. Exp. Zool. PART-Ecol. Integr. Physiol. 2018, 329, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Meravi, N.; Prajapati, S.K. Effect Street Light Pollution on the Photosynthetic Efficiency of Different Plants. Biol. Rhythm Res. 2020, 51, 67–75. [Google Scholar] [CrossRef]
- Czaja, M.; Kołton, A. How Light Pollution Can Affect Spring Development of Urban Trees and Shrubs. Urban For. Urban Green. 2022, 77, 127753. [Google Scholar] [CrossRef]
- Solano-Lamphar, H.A.; Kocifaj, M. Numerical Research on the Effects the Skyglow Could Have in Phytochromes and RQE Photoreceptors of Plants. J. Environ. Manag. 2018, 209, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Green, K.; Caley, P.; Baker, M.; Dreyer, D.; Wallace, J.; Warrant, E. Australian Bogong Moths Agrotis Infusa (Lepidoptera: Noctuidae), 1951-2020: Decline and Crash. Austral. Entomol. 2021, 60, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Li, X.; Du, X.; Huang, J.; Su, W.; Hu, T.; Wen, Y.; Yin, P.; Han, Y.; Xue, F. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sens. 2021, 13, 1849. [Google Scholar] [CrossRef]
- Bennie, J.; Duffy, J.P.; Davies, T.W.; Correa-Cano, M.E.; Gaston, K.J. Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems. Remote Sens. 2015, 7, 2715–2730. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The Ecological Economics of Land Degradation: Impacts on Ecosystem Service Values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Sterckx, S.; Benhadj, I.; Duhoux, G.; Livens, S.; Dierckx, W.; Goor, E.; Adriaensen, S.; Heyns, W.; Van Hoof, K.; Strackx, G.; et al. The PROBA-V Mission: Image Processing and Calibration. Int. J. Remote Sens. 2014, 35, 2565–2588. [Google Scholar] [CrossRef]
- Falchi, F.; Furgoni, R.; Gallaway, T.A.; Rybnikova, N.; Portnov, B.A.; Baugh, K.; Pierantonio, C.; Elvidge, C.D. Light Pollution in USA and Europe: The Good, the Bad and the Ugly. J. Environ. Manag. 2019, 248, 109227. [Google Scholar] [CrossRef]
- Longcore, T.; Rich, C. Ecological Light Pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E. A Simplified Model of All-Sky Artificial Sky Glow Derived from VIIRS Day/Night Band Data. J. Quant. Spectrosc. Radiat. Transf. 2018, 214, 133–145. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS Night-Time Lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The New World Atlas of Artificial Night Sky Brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef]
- Schiavina, M.; Freire, S.; Carioli, A.; MacManus, K. GHS-POP R2023A—GHS Population Grid Multitemporal (1975–2030); European Commission, Joint Research Centre (JRC): Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- TWB. World Bank Official Boundaries. 2022. Available online: https://datacatalog.worldbank.org/search/dataset/0038272/World-Bank-Official-Boundaries (accessed on 27 August 2022).
- Foster, J.J.; Tocco, C.; Smolka, J.; Khaldy, L.; Baird, E.; Byrne, M.J.; Nilsson, D.-E.; Dacke, M. Light Pollution Forces a Change in Dung Beetle Orientation Behavior. Curr. Biol. 2021, 31, 3935–3942.e3. [Google Scholar] [CrossRef] [PubMed]
- Doren, B.M.V.; Horton, K.G.; Dokter, A.M.; Klinck, H.; Elbin, S.B.; Farnsworth, A. High-Intensity Urban Light Installation Dramatically Alters Nocturnal Bird Migration. Proc. Natl. Acad. Sci. USA 2017, 114, 11175–11180. [Google Scholar] [CrossRef] [PubMed]
- Witherington, B.E.; Martin, R.E.; Trindell, R.N. Understanding, Assessing, and Resolving Light Pollution Problems on Sea Turtle Nesting Beaches; Florida Fish and Wildlife Research Institute Technical Reports FWRI Technical Report TR-2, Version 2. 2014, p. 94. Available online: https://myfwc.com/research/wildlife/sea-turtles/threats/artificial-lighting/ (accessed on 22 October 2023).
- Sordello, R.; Busson, S.; Cornuau, J.H.; Deverchère, P.; Faure, B.; Guetté, A.; Hölker, F.; Kerbiriou, C.; Lengagne, T.; Viol, I.L.; et al. A Plea for a Worldwide Development of Dark Infrastructure for Biodiversity—Practical Examples and Ways to Go Forward. Landsc. Urban Plan. 2022, 219, 104332. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1). 2019. Available online: https://www.ipbes.net/global-assessment (accessed on 22 October 2023).
- Warrant, E.; Frost, B.; Green, K.; Mouritsen, H.; Dreyer, D.; Adden, A.; Brauburger, K.; Heinze, S. The Australian Bogong Moth Agrotis Infusa: A Long-Distance Nocturnal Navigator. Front. Behav. Neurosci. 2016, 10, 77. [Google Scholar] [CrossRef]
- Kamrowski, R.L.; Limpus, C.; Pendoley, K.; Hamann, M. Influence of Industrial Light Pollution on the Sea-Finding Behaviour of Flatback Turtle Hatchlings. Wildl. Res. 2015, 41, 421–434. [Google Scholar] [CrossRef]
- Ściężor, T. The Impact of Clouds on the Brightness of the Night Sky. J. Quant. Spectrosc. Radiat. Transf. 2020, 247, 106962. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Ruhtz, T.; Holker, F. Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems. PLoS ONE 2011, 6, e17307. [Google Scholar] [CrossRef] [PubMed]
- Ditmer, M.A.; Stoner, D.C.; Carter, N.H. Estimating the Loss and Fragmentation of Dark Environments in Mammal Ranges from Light Pollution. Biol. Conserv. 2021, 257, 109135. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Boyes, D.H.; Evans, D.M.; Fox, R.; Parsons, M.S.; Pocock, M.J.O. Street Lighting Has Detrimental Impacts on Local Insect Populations. Sci. Adv. 2021, 7, eabi8322. [Google Scholar] [CrossRef] [PubMed]
- Forister, M.L.; Pelton, E.M.; Black, S.H. Declines in Insect Abundance and Diversity: We Know Enough to Act Now. Conserv. Sci. Pract. 2019, 1, e80. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect Decline in the Anthropocene: Death by a Thousand Cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Basset, Y.; Lamarre, G.P.A. Toward a World That Values Insects. Science 2019, 364, 1230–1231. [Google Scholar] [CrossRef]
lcCode | Land Cover | ESV (US2011$/ha-yr) |
---|---|---|
0 | unknown | 0 |
20 | Grassland_Range | 4166 |
30 | Grassland_Range | 4166 |
40 | Cropland | 5567 |
50 | Urban | 6661 |
60 | Deserts | 586 |
70 | Snow_Ice | 0 |
80 | Lakes_Rivers | 12,512 |
90 | Wetlands | 140,174 |
100 | Tundra | 648 |
111 | Boreal | 3137 |
112 | Boreal | 3137 |
113 | Tropical | 5382 |
114 | Boreal | 3137 |
115 | Forest | 3800 |
116 | Forest | 3800 |
121 | Boreal | 3137 |
122 | Tropical | 5382 |
123 | Boreal | 3137 |
124 | Boreal | 3137 |
125 | Forest | 3800 |
126 | Forest | 3800 |
200 | Ocean | 660 |
Landcover | Base ES Value | LP Degraded ES Value | Percent Loss | Total Loss |
---|---|---|---|---|
Boreal | 5,863,684,004,413 | 5,719,030,091,746 | 2.5 | 144,653,912,667 |
Croplands | 8,291,544,685,053 | 7,811,898,946,845 | 5.8 | 479,645,738,208 |
Deserts | 1,188,699,666,850 | 1,169,067,886,272 | 1.7 | 19,631,780,578 |
Forest | 5,938,223,881,000 | 5,728,574,756,708 | 3.5 | 209,649,124,292 |
Grasslands | 16,479,525,483,146 | 16,060,921,565,694 | 2.5 | 418,603,917,452 |
Gresh water | 3,941,525,085,056 | 3,769,933,279,928 | 4.4 | 171,591,805,128 |
Ocean | 22,271,071,887,240 | 21,959,997,070,930 | 1.4 | 311,074,816,310 |
Tropical | 8,161,178,257,440 | 8,075,040,005,861 | 1.1 | 86,138,251,579 |
Tundra | 91,406,595,528 | 79,563,110,775 | 13.0 | 11,843,484,753 |
Urban | 786,305,211,981 | 627,927,970,892 | 20.1 | 158,377,241,089 |
Wetlands | 32,640,848,534,218 | 31,286,886,809,109 | 4.1 | 1,353,961,725,109 |
Total | 105,654,013,291,925 | 102,288,841,494,761 | 3.2 | 3,365,171,797,164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, S.J.; Kubiszewski, I.; Sutton, P.C. The Ecological Economics of Light Pollution: Impacts on Ecosystem Service Value. Remote Sens. 2024, 16, 2591. https://doi.org/10.3390/rs16142591
Anderson SJ, Kubiszewski I, Sutton PC. The Ecological Economics of Light Pollution: Impacts on Ecosystem Service Value. Remote Sensing. 2024; 16(14):2591. https://doi.org/10.3390/rs16142591
Chicago/Turabian StyleAnderson, Sharolyn J., Ida Kubiszewski, and Paul C. Sutton. 2024. "The Ecological Economics of Light Pollution: Impacts on Ecosystem Service Value" Remote Sensing 16, no. 14: 2591. https://doi.org/10.3390/rs16142591
APA StyleAnderson, S. J., Kubiszewski, I., & Sutton, P. C. (2024). The Ecological Economics of Light Pollution: Impacts on Ecosystem Service Value. Remote Sensing, 16(14), 2591. https://doi.org/10.3390/rs16142591