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Abstract: The advancement of more precise remote sensing inversion technology for dust aerosols
has long been a hot topic in the field of the atmospheric environment. In 2023, China experienced
18 dust-related weather events, predominantly in spring. These high-intensity and frequent dust
events have attracted considerable attention. However, gridded observation data of dust intensity
levels are not collected in current dust monitoring and forecasting operations. Based on the Himawari
9 geostationary satellite data, this study establishes a new method to identify spring dust events. This
method integrates the brightness temperature difference method and the multiple infrared dust index,
taking into account the response discrepancies of the multiple infrared dust index under various
underlying surfaces. Furthermore, by obtaining dynamic background brightness temperature values
eight times a day, threshold statistics are applied to analyze the correlation between the infrared
difference dust index and ground-observed dust level, so as to establish a satellite-based near-surface
dust intensity level identification algorithm. This algorithm aims to improve dust detection accuracy,
and to provide more effective gridded observation support for dust forecasting and monitoring
operations. The test results indicate that the algorithm can effectively identify the presence or absence
of dust, with a misjudgment rate of less than 3%. With regard to dust intensity, the identification of
blowing sand and floating dust aligns relatively well with ground-based observations, but notable
uncertainties exist in determining a dust intensity of sand-storm level or above. Among these
uncertainties, the differences between ground-based observations and satellite identification caused
by non-grounded dust in the upper air, and the selection of dust identification thresholds, are two
important error sources in the dust identification results of this study.

Keywords: dust intensity level; brightness temperature; multispectral; underlying surface;
Himawari 9

1. Introduction

Dust aerosols are one of the most crucial components of tropospheric aerosols [1],
which can trigger complex forcing and feedback mechanisms within the Earth system [2].
Dust aerosols can affect the radiative energy balance of the atmosphere–Earth system
through direct effects [3–5] and indirect effects by serving as cloud condensation nuclei or
ice nuclei [6,7]. As significant absorptive aerosols, dust aerosols can absorb solar radiation
and release it as thermal radiation, causing non-adiabatic heating of the atmosphere [8].
Additionally, dust deposited on the ground can increase the surface temperature through
the ‘dark snow’ effect’, accelerating snowmelt and glacier retreat [3,9]. Furthermore, dust is
important in the biogeochemical cycle [10,11]. It may provide a wealth of trace elements to
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terrestrial vegetation and marine microorganisms [12], thereby impacting the global carbon
cycle directly and indirectly.

The arid and semi-arid regions in northwestern China are some of the major sources
of dust aerosols in East Asia [13]. However, due to the limited number and uneven
distribution of ground-based observation stations, obtaining comprehensive information
on the sources and transportation of dust aerosols is challenging. Satellite remote sensing,
especially the systematic monitoring of geostationary satellites, has emerged as an ideal
tool for studying the spatial–temporal distribution and transport characteristics of dust
aerosols. The mainstream methods for satellite dust identification can be classified into four
categories: visible light–near-infrared, ultraviolet, thermal infrared, and passive microwave.

Shortwave reflectance observations are widely used in dust radiative forcing and
aerosol retrieval [14–16], but they are highly uncertain over deserts due to the influence
of surface reflection [17]. The microwave polarization brightness temperature difference
index proposed by Huang et al. [4] enables the identification of dust under partial cloud
cover. Yet, existing microwave sensors, mostly carried by polar-orbiting satellites, often
lack the spatial and temporal resolution necessary for monitoring the dynamic evolution
of dust. Thermal infrared observations are mainly influenced by slowly varying factors
such as atmospheric temperature profiles, surface temperature, and surface emissivity,
which is conducive to the quantitative inversion of dust aerosols over high-reflectance
surfaces during nighttime [18,19]. The infrared difference dust index (IDDI) method [20]
and brightness temperature difference (BTD) method [21] are commonly used in the
infrared remote sensing detection of dust aerosols. Among them, the BTD method typically
employs fixed thresholds for dust identification, with the continuously evolution of various
combinations of brightness temperature differences, namely BTD (11–12), BTD (3–11), and
BTD (8–11) [21–23]. These BTD methods have different thresholds, such as less than 0 or
−0.5. For instance, Park et al. [24] and Zhang et al. [25] proposed static meteorological
satellite dust remote sensing monitoring algorithms based on dynamic thresholds by
establishing a clear-sky BTD (11–12) background field.

Additionally, various dust indexes were suggested for dust identification. The nor-
malized difference dust index (NDDI) based on MODIS reflectance bands 3 and 7 was
suggested by Qu et al. [14], and values larger than 0.28 indicate dust. The threshold value
is subject to considerable uncertainty, and the dust thresholds for 2009 and 2010 have been
adjusted accordingly to a range of −0.05 to 0.3 and higher than −0.05, respectively [22].
The Middle East dust index (MEDI) was used to highlight the difference between dust and
desert surfaces, and values larger than 0.6 indicate dust [26]. The thermal infrared (TIR)
dust index, which uses the brightness temperature of MODIS bands 20, 30, 31, and 32, was
presented by Hao and Qu [27], and values higher than 0.28 indicate a dust region. In recent
years, efforts have been focused on the comprehensive remote sensing identification of dust
based on multi-channel spectra. For instance, Luo et al. [28] conducted global dust moni-
toring by employing multiple channels of the FY-3 satellite (near-infrared, mid-infrared,
and thermal infrared split windows). Combining the 0.54 µm and 0.86 µm band ratios with
BTD (11–12), Roskovensky and Liou [29] constructed the D-parameter method, which can
effectively distinguish between dust particles and cirrus clouds.

Despite various advantages and disadvantages in previous studies on dust-related
products, a notable gap persists in research related to the inversion and identification of
ground dust intensity. Based on the differences in spectral and radiative characteristics
between dust and other typical ground objects, this study introduces a novel method for
spring dust identification, based on the Himawari-9 (H9) satellite data. This new method
combines the BTD with the normalized multiple infrared dust index (MIDI) developed by
Liu et al. [30]. Furthermore, by establishing dynamic background brightness temperature
fields with eight observations per day, threshold statistics are applied to explore the correla-
tion between the IDDI and ground-observed dust levels, thereby creating a satellite-based
algorithm for identifying near-surface dust intensity levels. This endeavor aims to provide
data support for the refinement and quantification of dust monitoring and forecasting.
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2. Materials and Methods
2.1. Data

The H9 satellite is equipped with the Advanced Himawari Imager (AHI), a state-of-
the-art optical sensor that provides multi-spectral imagery. The AHI sensor monitors the
emitted radiation and backscatter of the Earth’s atmospheric system through 16 bands from
0.4 to 14 µm (visible, near-infrared, and thermal infrared), with a spatial resolution of 0.5 to
2 km [31,32]. The AHI performs full-disk scanning every 10 min, enabling the real-time
tracking of dust events [33].

The land surface data used in this study were derived from the Meteorological Infor-
mation Comprehensive Analysis and Processing System, an advanced human–computer
interactive system for meteorological information processing and weather forecasting,
developed by the China Meteorological Administration (CMA). Among the various land
surface types, three of them are most relevant to dust: aeolian land, gobi, and desert. The
distribution of these three land surface types in northern China is shown in Figure 1a. In
the following context, gobi and desert are considered the primary land surface types for
dust generation.
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Figure 1. (a) The underlying surface type; (b) the frequency of dust events and the average PM10
concentration at 30 stations from March to May 2023.

The near-surface dust observation data used in this study are from the surface obser-
vation stations of CMA from March to May 2023. The dust events have five categories:
floating dust (FD), blowing sand (BS), sand storm (SS), severe sand storm (SSS), and ex-
tremely severe sand storm (ESSS). According to the “National Standard of the People’s
Republic of China—Classification of sand and dust weather” [34], the visibility criteria for
FD, BS, SS, SSS, and ESSS are <10 km, 1–10 km, <1 km, <500 m, and <50 m, respectively. In
addition, FD also requires a wind force of less than or equal to 3.

The selected 30 monitoring stations are all located in northern China (as shown
in Figure 1b), with 3 in Xinjiang, 10 in Inner Mongolia, 7 in Gansu, 2 in Hebei, and
1 each in Ningxia, Qinghai, Heilongjiang, Shaanxi, Shanxi, Beijing, Tianjin, and Shandong.
The temporal resolution is 1 h, and the total number of samples is 56,159. The hourly
PM10 and PM2.5 mass concentration observation data are obtained from the national
control stations provided by the China National Environmental Monitoring Station website
(http://www.cnemc.cn, accessed on 1 October 2023). As seen in Figure 1b, the stations

http://www.cnemc.cn
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with the highest frequency of dust (over 500 times) are Hetian and Yutian, located in
the Taklamakan Desert in southern Xinjiang, with average PM10 concentration exceeding
300 µg·m−3. At the selected stations in central and western Inner Mongolia, Gansu, Ningxia,
Shaanxi, the Beijing–Tianjin–Hebei region, and Heilongjiang, the dust weather frequencies
range from 41 to 137 times. Among them, the average PM10 mass concentration in Zhangye
and Wuwei in Gansu exceeds 200 µg·m−3, while the average PM10 concentration in other
regions ranges between 100 and 200 µg·m−3. In the eastern–central part of Inner Mongolia,
Manzhouli, Suolun, and Xining in Qinghai, there are relatively low dust frequencies (less
than 32 times), and their corresponding average PM10 concentrations are generally below
100 µg·m−3.

The lidar data and L-band boundary layer wind profiles from the Jiuquan station in
Gansu Province are provided by the CMA Meteorological Observation Center. The lidar
data have a temporal resolution from 30 s to 30 min, a spatial resolution of 7.5 m, and
an emission wavelength of 532 nm. The wind profiler radar can provide observational
data every 6 min, including measurements of horizontal wind speed, wind direction, and
vertical velocity. The space-borne lidar CALIOP on board the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO) satellite provides information on
aerosol types in the separate layers that can be detected with this instrument. In this study,
the aerosol subtypes of CALIOP are used for dust identification verification. In regard
to the H9 satellite aerosol optical depth (AOD) data, this study uses the SBDART (Santa
Barbara DISORT Atmospheric Radiative Transfer) model to simulate thermal infrared atmo-
spheric radiation. This simulation generates a lookup table of thermal infrared brightness
temperature differences corresponding to different AOD values. Subsequently, the dust
AOD is retrieved according to the brightness temperature difference obtained from the
satellite, based on the method of Yan et al. [35].

2.2. Dust Identification Method

The BTD method is proposed based on the differences in the radiative properties of
dust aerosols across different infrared bands. For dust aerosols, a disparity exists in the
emissivity between the 11 µm and 12 µm channels in the infrared split window, typically
resulting in a small or negative difference between them.

BTD = T11µm − T12µm, (1)

where T11µm and T12µm represent the brightness temperatures of the 11 µm channel and
the 12 µm channel, respectively.

Research has shown that certain cirrus clouds can also produce small split-window
brightness temperature difference. The brightness temperatures observed by satellites
are directly influenced by surface temperature, emissivity, and dust properties. However,
relying solely on a fixed BTD threshold for dust identification may introduce errors in dust
detection [36].

Utilizing the characteristics of emissivity difference between ground and air infrared
channels, Liu et al. [30] proposed an algorithm that employs the normalized MIDI to
identify dust. Their statistical results indicate that the MIDI values are remarkably higher
during dusty weather than under clear skies.

MIDI = (T8.6µm + T12.3µm)/(2 × T11.2µm) × 1000, (2)

where T8.6µm, T12.3µm, and T11.2µm represent the brightness temperatures of the 8.6 µm
channel, 12.3 µm channel, and 11.2 µm channel, respectively. To facilitate the distinction
and setting of threshold conditions, the MIDI value is multiplied by 1000.

To align with the dust-related weather phenomenon data from ground stations, the H9
satellite grid points corresponding to 30 ground observation stations and their surrounding
nine grid points (T8.6µm, T11.2µm, and T12.3µm) are extracted for the period from March
to May 2023. Spatial and hourly averages are then calculated for these extracted data.
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Subsequently, a correlation analysis between the BTD and MIDI is performed based on the
dust intensity level at the ground stations (Figure 2a) under different underlying surface
conditions such as non-sand sources, deserts, and gobi (Figure 2b). As depicted in Figure 2a,
dust data accounts for approximately 9% of the total sample data. Among the dust samples,
BS and FD constitute roughly 66% and 31%, respectively, while SS and higher dust intensity
levels only account for approximately 3%. As seen from the correlation between the BTD
and MIDI (Figure 2a), dust samples are mainly located in the lower-right region of the
entire data sample. Thus, relying solely on MIDI threshold conditions, such as setting a
dust threshold above 990 or 995, can result in the misclassification of some non-dust data
(highlighted in the yellow circled area). Conversely, for the BTD, if the threshold is set
to less than 0 according to previous research [20], a significant number of dust samples
will be missed. Moreover, adopting a more lenient threshold would substantially increase
the proportion of misclassifications (highlighted in the red-circled area). Consequently, by
combining the threshold conditions of the BTD and MIDI, misclassifications and missed
detections can be reduced to a certain extent. Further discussions on threshold selection
will be presented in subsequent sections.
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Figure 2. (a) Correlation analysis between brightness temperature difference (BTD) and multiple
infrared dust index (MIDI). The gray circles represent all samples. The colored triangles represent
the statistical distribution of different levels of surface dust events. (b) Correlation distribution for
non-primary sand source, desert, and gobi. The highlighted in the red circled and yellow circled area
is the misclassification of some non-dust data. The yellow dotted line represents different thresholds
for MIDI and BTD.

The surface emissivity varies with land cover type, which is also a crucial factor
affecting the accuracy of dust identification. Mainland China has diverse surface types,
with vast deserts and gobi areas in the northwestern region that emit significant amounts
of dust annually and are the primary sand sources of China. The land cover types are
categorized into deserts, gobi, and non-primary sand sources (other surface types) in this
study. When comparing the correlation between the BTD and MIDI for selected stations, it
is noted that there is no significant difference in the BTD distribution among the three types
of land cover. As for the MIDI, the distribution patterns are generally comparable for desert
and gobi surface types. However, for non-primary sand source areas, the MIDI distribution
tends to cluster in higher-threshold regions, generally exceeding 992. Therefore, it can
be inferred that when using the MIDI for dust identification, different thresholds may be
required for primary and non-primary sand source areas. Specifically, when the underlying
surface is a non-primary sand source, the MIDI criteria for dust identification may need to
be more stringent than those for the primary sand source areas of deserts or gobi.
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The statistics of the MIDI for different dust intensity levels are presented in Figure 3a. It
can be seen that, without considering the underlying surface conditions, the 25th percentile
and 75th percentile of MIDI data for the entire observation period fall below 1000 and
996, respectively, with a mean of 997–998. This value is considerably lower than the MIDI
statistical values for dust weather. When categorizing the underlying surface types into
desert, gobi, and non-primary sand source areas, it is noted that there are fewer statistical
samples over non-primary sand source areas for SSS and ESSS, which are not shown in the
figure. For the same dust intensity level, the MIDI statistical values for non-primary sand
source areas are generally higher than those for desert and gobi. To better utilize the MIDI
for dust weather identification, statistical analyses are conducted for different dust intensity
levels over the same underlying surface. The lowest 25th percentile of the MIDI for desert
or gobi is 996.4 (FD), while for non-primary sand source areas, it is 997.6 (SS). These values
are considered to be the dust identification thresholds for the two types of underlying
surfaces. Subsequently, frequency distribution analysis of the MIDI is performed for the
entire observation period and for dust weather separately. The results show that for the
entire observation period (Figure 3b), the highest frequencies of the MIDI for both desert–
gobi and non-primary sand source areas are mainly within 996–998. Nonetheless, the
frequency distribution of the MIDI under desert-gobi conditions tends to follow a normal
distribution, whereas the frequency distribution pattern of the MIDI for non-primary sand
source areas skews towards values higher than 998. During dust periods (Figure 3c), the
highest frequency of MIDI occurrences in desert–gobi is mainly concentrated in the range
of 998–1000, followed by 1000–1002. However, the high-frequency distribution of the MIDI
in non-primary sand source areas is relatively concentrated, mainly between 998 and 1004,
accounting for approximately 71.2% of MIDI occurrences.
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Figure 3. (a) The statistical distribution of MIDIs for different dust levels on different underlying
surfaces. The frequency distribution of MIDIs under different underlying surface conditions during
(b) the entire study period and (c) dust weather periods. (d) The statistical distribution of BTDs
corresponding to different dust levels. (e,f) are the same as (b,c), but for BTD. In (a,d), the horizontal
dashed lines denote the average statistical values of the corresponding underlying surfaces, the dots
represent the mean values of the corresponding dust levels, the vertical lines represent the 10th
percentile (lower) and 90th percentile (upper), and the horizontal lines from top to bottom represent
the 25th, 50th, and 75th percentiles (same for Figure 5).
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Similarly, the statistics of BTDs for different dust intensity levels are presented in
Figure 3d. The statistical values of BTDs for the entire observation period are clearly higher
than those during dust weather (Figure 3d), with an average value exceeding 1.28. The
lowest 75th percentile of BTDs among BS, FD, SS, SSS, and ESSS (1.25) is adopted as the
BTD identification threshold for dust weather. Additionally, frequency distribution analysis
of the BTDs is conducted for the entire observation period and dust weather separately.
As there is no significant difference in the distribution of BTDs under the two types of
underlying surfaces (as shown in Figure 3e,f), the underlying surface is not distinguished.
During the entire observation period, over 62% of BTD occurrences are mainly located
between 0 and 2, whereas during dust weather, approximately 69% of BTD values are
distributed between −1 and 1.

In summary, when using MIDIs and BTDs for dust identification, the thresholds for
underlying surfaces of gobi and desert require BTD < 1.25 and MIDI > 996.4, while for
other non-primary sand source areas, the thresholds are BTD < 1.25 and MIDI > 997.6.

3. Results
3.1. Methods for Determining the Dust Level

The IDDI is defined as the difference between the background brightness tempera-
ture of the surface and the actual brightness temperature of the target observed by the
satellite [37]. It represents the attenuation of the brightness temperature of the atmosphere–
surface system caused by atmospheric dust aerosols, and is commonly used as a semi-
quantitative indicator of dust intensity. A higher IDDI value suggests a higher concentration
of dust in the air. By constructing a clear-sky background set at 11.2 µm, the calculation of
the IDDI can be achieved, so as to depict the intensity of dust weather. Due to the influence
of surface background brightness temperature and meteorological factors, T11.2µm exhibits
a certain diurnal variation pattern. In this study, the daily data of each pixel are divided by
eight time periods: 01–03 UTC, 04–06 UTC, 07–09 UTC, 10–12 UTC, 13–15 UTC, 16–18 UTC,
19–21 UTC, and 22–24 UTC. The maximum T11.2µm value within the past 10 days during
the corresponding time period is used as the clear-sky background value (TB11.2µm), and
is updated daily. The formula for the IDDI is: IDDI = TB11.2µm − T11.2µm. Figure 4 shows
the background brightness temperature distributions from 07 to 09 UTC during the dust
occurrence days from March to May 2023. As seen from the figure, there is a certain sea-
sonal variation trend in the background brightness temperature values in most areas of
northern China from March to May, with the background brightness temperature gradually
increasing as solar radiation intensifies.
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When monitoring and forecasting dust intensity, we are concerned about the near-
surface dust intensity level. To establish a correlation between the IDDI and dust intensity,
a statistical analysis of the distribution trends and frequencies of the IDDI and surface PM10
observations is conducted separately for non-primary sand source areas and desert–gobi
regions, as depicted in Figure 5a,b. In non-primary sand source areas, the occurrence
probability of PM10 exceeding 600 µg·m−3 is relatively low, so the statistical results only
display the values within 600 µg·m−3. To eliminate the interference of haze on dust weather,
the data from selected stations where the ratio of PM2.5 to PM10 is higher than 55% are
excluded [38]. It can be seen from the figures that under different underlying surface
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conditions, the IDDI exhibits a certain increasing trend as the PM10 concentration increases.
However, when the PM10 mass concentration exceeds 600 µg·m−3 on desert–gobi surfaces,
the increasing trend in the IDDI immediately weakens, indicating a reduced ability of the
IDDI to characterize stronger intensities of dust weather in major sand source areas. With
increasing PM10 mass concentration, the increase rate of IDDIs in non-primary sand source
areas is slightly slower than in desert–gobi areas. Furthermore, a statistical analysis of
the correlation between PM10 and surface dust intensity level (Figure 5c) shows that the
average PM10 concentration for the entire observation period is notably lower than the
average PM10 concentration for dust weather. It should be noted that there is no significant
difference in PM10 concentration between BS and FD (the distinction between BS and FD
is primarily the wind speed), so BS and FD are not distinguished when identifying dust
intensity levels with the IDDI in the subsequent analysis. The average and median PM10
concentrations for SS, SSS, and ESSS gradually increase. The average PM10 concentration
for SDS reaches 915 µg·m−3, and the averages for SDS and ESDS both exceed 1000 µg·m−3.
To further establish a relationship between the IDDI and dust intensity level (Figure 5d),
the 25th percentile of the IDDI is used as the threshold for dust intensity. Grid points that
have been identified as dust but with IDDI values not reaching the level of “FD and BS”
are identified as “critical dust points”. The specific criteria for identifying dust intensity
levels with the IDDI are as follows:

IDDI: <16 critical dust

IDDI: 17–33 FD and BS

IDDI: 34–39 SS

IDDI: 40–52 SSS

IDDI: >52 ESSS
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3.2. Analysis of Satellite Dust Identification Results and Error Sources

In 2023, China experienced 18 dust weather events, with 13 of them occurring from
March to May. Specifically, five dust events reached an intensity of SS or above. Referring to
the dates of background brightness temperature in Figure 4, we select the satellite dust level
identification results at 12:00 UTC (Universal Time Coordinated) on 21 March, 09:00 UTC
on 10 April, 10:00 UTC on 19 April, and 00:00 UTC on 19 May, in 2023. Then, we compare
them with observations from near-surface stations. As depicted in Figure 6, at 12:00 UTC
on 21 March and 09:00 UTC on 10 April, widespread dust weather occurred in southern
Xinjiang, central–southern Gansu, Ningxia, and central–western Inner Mongolia, with SS
and SSS observed in central Inner Mongolia. The satellite identification results align well
with the ground observations in central–western Inner Mongolia, but the satellite-identified
dust range in some areas of western Inner Mongolia and central Gansu are slightly larger
than the ground observations. In the identification results at 00:00 UTC on 19 May, except
for a certain degree of underreporting in northern Ningxia, the satellite identification and
ground observations are largely consistent. At 10:00 UTC on 19 April, heavy cloud cover
in the dust region of central–western Inner Mongolia significantly affects satellite dust
identification. Specifically, the satellite-identified dust regions in southern Gansu and
Ningxia generally match the observations, but in western Gansu, the satellite identification
results indicate BS and SS in some areas where the ground observations do not indicate
any dust weather.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 15 
 

 

3.2. Analysis of Satellite Dust Identification Results and Error Sources 
In 2023, China experienced 18 dust weather events, with 13 of them occurring from 

March to May. Specifically, five dust events reached an intensity of SS or above. Referring 
to the dates of background brightness temperature in Figure 4, we select the satellite dust 
level identification results at 12:00 UTC (Universal Time Coordinated) on 21 March, 09:00 
UTC on 10 April, 10:00 UTC on 19 April, and 00:00 UTC on 19 May, in 2023. Then, we 
compare them with observations from near-surface stations. As depicted in Figure 6, at 
12:00 UTC on 21 March and 09:00 UTC on 10 April, widespread dust weather occurred in 
southern Xinjiang, central–southern Gansu, Ningxia, and central–western Inner Mongo-
lia, with SS and SSS observed in central Inner Mongolia. The satellite identification results 
align well with the ground observations in central–western Inner Mongolia, but the satel-
lite-identified dust range in some areas of western Inner Mongolia and central Gansu are 
slightly larger than the ground observations. In the identification results at 00:00 UTC on 
19 May, except for a certain degree of underreporting in northern Ningxia, the satellite 
identification and ground observations are largely consistent. At 10:00 UTC on 19 April, 
heavy cloud cover in the dust region of central–western Inner Mongolia significantly af-
fects satellite dust identification. Specifically, the satellite-identified dust regions in south-
ern Gansu and Ningxia generally match the observations, but in western Gansu, the sat-
ellite identification results indicate BS and SS in some areas where the ground observa-
tions do not indicate any dust weather. 

 
Figure 6. Comparison of satellite identification results of dust levels with near-surface station ob-
servations at 12:00 UTC on 21 March, 2023, 09:00 UTC on 10 April, 10:00 UTC on 19 April, and 00:00 
UTC on 19 May, 2023. The black-and-white backgrounds of the figures represent the cloud images 
at the corresponding time. The blue dots denote the distribution of ground observation stations. 

The possible reasons for the differences between satellite-identified dust range and 
ground observations may stem from four main factors. First, the areas with sparse 
ground-based monitoring stations may not fully validate the satellite identification re-
sults. Second, the uncertainties in the dust identification results may arise from the inter-
ference of clouds or the changes in the underlying surface brightness temperature caused 
by dust passage and nighttime temperature decreases. Third, since satellite observations 
cover the entire atmospheric layer, differences between ground and satellite dust obser-
vations may occur when the dust does not reach the ground during transmission. Fourth, 
uncertainties may also arise from the threshold selection of MIDI and BTD in satellite 

Figure 6. Comparison of satellite identification results of dust levels with near-surface station obser-
vations at 12:00 UTC on 21 March, 2023, 09:00 UTC on 10 April, 10:00 UTC on 19 April, and 00:00 UTC
on 19 May, 2023. The black-and-white backgrounds of the figures represent the cloud images at the
corresponding time. The blue dots denote the distribution of ground observation stations.

The possible reasons for the differences between satellite-identified dust range and
ground observations may stem from four main factors. First, the areas with sparse ground-
based monitoring stations may not fully validate the satellite identification results. Second,
the uncertainties in the dust identification results may arise from the interference of clouds
or the changes in the underlying surface brightness temperature caused by dust passage
and nighttime temperature decreases. Third, since satellite observations cover the entire
atmospheric layer, differences between ground and satellite dust observations may occur
when the dust does not reach the ground during transmission. Fourth, uncertainties may
also arise from the threshold selection of MIDI and BTD in satellite identification methods,
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as well as the identification results for the values near the thresholds. Next, we will further
analyze the second and fourth factors contributing to these differences.

The ground monitoring in Sunan, Shandan, and Guaizi Lake shows that there were
no dust weather events at 12:00 UTC on 21 March, but the satellite identification results
indicate there was BS. At Wuwei station, the satellite identifies an SS, whereas the ground
observation records BS. Furthermore, we compare the AOD (with a resolution of 1 km)
from the H9 satellite 0.55 µm band. The AOD value we used is the average of nine grid
points surrounding the meteorological stations (Table 1). Based on the dust identification
results, at 12:00 UTC on 21 March, both satellite and ground observations detect dust
at Hailisu, Wuwei, Erenhot, and Sonid Right Banner, with the lowest AOD value being
2.10. For the Guaizi Lake and Sunan stations, where the ground and satellite observations
are not consistent, the AOD values are 1.85 and 1.73, respectively. Numerically, these
AOD values show a certain degree of increase when compared with clear-sky conditions,
but they are lower than those at the stations where dust was observed (Hailisu, Wuwei,
Erenhot, and Sonid Right Banner). At this time, the average MIDI values for the nine grid
points surrounding the Guaizi Lake (a desert–gobi station) and Sunan (a non-major sand
source station) are 997 and 999, respectively, indicating that the MIDI values are close to the
critical thresholds for dust identification. Therefore, it is speculated that there is a higher
probability of misjudgment or missed detection for the points near the critical conditions of
the MIDI and BTD.

Table 1. Comparison of AOD from six stations between 10:00 UTC and 14:00 UTC on 21 March 2023
with ground observations and satellite-based dust identification results at 12:00 UTC.

Date and Time
21 March 2023

Longitude and Latitude/Station Name

102.36, 41.36/
Guaizihu

102.87, 37.20/
Wuwei

99.62, 38.83/
Sunan

111.94, 43.61/
Erlianhot

112.59, 42.76/
Sunit-Right-Banner

106.44, 41.39/
Hailisu

10:00 1.99 2.09 1.99 5.17 3.54 2.79

11:00 1.85 1.97 1.87 4.48 3.92 2.69

12:00 1.80 2.10 1.73 4.69 4.82 2.58

13:00 1.85 / 2.05 3.74 5.29 3.31

14:00 1.77 / / 4.26 5.04 2.99

Ground observation
at 12:00 No dust FD or BS No dust SS SSS FD or BS

Satellite identification
result at 12:00 FD or BS FD or BS FD or BS SS SS FD or BS

At 10:00 UTC on 19 April, satellite identification detects dust, including DS in some
areas of western Gansu, but no dust events are observed at that time. According to the
lidar data from the Jiuquan station (Figure 7a), from 20:00 UTC on April 18 to 04:00 UTC
on 19 April, there was significant local dust weather in Jiuquan, with the dust layer mainly
concentrated in the near-surface layer. The wind profiler radar (Figure 7b) shows a sharp
drop in wind speed below 2000 m around 03:00 UTC, corresponding to the weakening
of near-surface dust. From 05:00 UTC to 12:00 UTC, a distinct high-value band of the
extinction coefficient appeared at a height of 2.4–2.9 km. This phenomenon might explain
the discrepancy between the satellite-identified dust weather at 11:00 UTC and the absence
of ground dust observation. Around 04:30 UTC, the wind direction at a height of around
2500 m changed from southeasterly to southwesterly, accompanied by an increase in wind
speed. The true-color composite image from the H9 satellite (Figure 7c) reveals significant
dust coverage over the western and southwestern regions of Jiuquan. It is speculated
that the high-value band of the extinction coefficient at the height of 2.4–2.9 km at the
Jiuquan station is due to the dust originating from southern Xinjiang, western Gansu, and
northern Qinghai, which is lifted into the air and transported by southwesterly wind to
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the Jiuquan area at an altitude of 2–3 km. During this period, the surface wind in the
Jiuquan region significantly weakened. The weather observations show visibility of over
8 km and no dusty weather on the ground, yet evident dust transmission is observed
overhead. The true-color composite image from the H9 satellite at 10:00 UTC (Figure 7c)
clearly shows significant dust coverage over Jiuquan and its surrounding areas. Based
on our comprehensive analysis, the dust weather identified by the satellite at this time is
caused by high-concentration non-grounded dust in the air, which leads to the discrepancy
between satellite identification and ground dust observations. In addition, the CALIOP
aerosol subtype data also confirm that there is indeed the presence of non-grounded dust
aerosols at a height of 2–5 km in western Gansu Province (blue box in Figure 7d). The
joint application of satellite and radar observations is of significant importance for the
high-precision acquisition of dust information.
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Figure 7. (a) Lidar data from Jiuquan station from 13:00 UTC on April 18, 2023, to 13:00 UTC on
20 April, 2023; (b) wind profiling radar data from Jiuquan station on 19 April. The direction of the
arrows represents the wind direction, while the length of the arrows indicates the wind speed. The
black box represents the wind field near the altitude of 2500m; (c) true-color composite image from
H9 satellite at 12:00 UTC on 19 April and 18:00 UTC on 19 April. The blue circles represent the dust
storm areas; (d) CALIOP aerosol subtype image from 8:06 UTC to 8:19 UTC on 19 April, 2023. The
blue box indicates the area around Jiuquan at an altitude of 2–5 km.

In terms of dust intensity levels, the satellite-identified BS and FD at 12:00 UTC on
21 March are in good agreement with the ground observations. However, in the areas
where the observation shows an SSS, the satellite identification results only show an SS.
At 09:00 UTC on 10 April and 00:00 UTC on 19 May, the satellite identification results
still underestimate the intensity of SSs or SSSs in central Inner Mongolia to some extent.
According to the limited ground observations at 10:00 UTC on 19 April, the satellite
identification of SSs or SSSs in southeastern Xinjiang overestimate the intensity when
compared with ground observations. Hence, uncertainties still remain in the satellite-based
identification of surface dust intensity levels. The main error sources in using the IDDI
to determine dust intensity are as follows. Firstly, the satellite identifies dust as a full-
layer phenomenon, and the samples of non-grounded dust or dust transmission at high
altitudes may introduce errors when correlating IDDI statistical values with near-surface
dust levels. Secondly, when a pixel is misclassified as a dust pixel during dust identification,
the numerical parameters of the IDDI can lead to intensity misjudgments. Thirdly, if there
are no clear-sky conditions within the past 10 days for a particular pixel when establishing
the clear-sky baselines, misjudgments in dust intensity level may occur when calculating
the IDDI value. The final source of error lies in the statistical correlation between IDDI
values and ground weather phenomena. The use of a 25th percentile threshold value in this
study has limitations, especially regarding the ability of the IDDI to accurately characterize
SSSs from major dust sources, which requires further exploration. Additionally, due to the
limited data sample size, there are insufficient statistical data for the SS or SSS caused by
dust transmission from non-major dust source areas. This leads to considerable uncertainty
in the identification of SS or higher levels of dust weather originating from non-major dust
sources, which needs further research and analysis with a larger sample size.

In summary, excluding the impact of cloud cover, the satellite-based identification of
dust regions is relatively accurate. However, there are still some uncertainties in determin-
ing the intensity of near-surface dust, especially when distinguishing SS and higher levels
of dust events.

A comprehensive validation compares ground dust level observations with satellite
identification results from 30 stations between March and May 2023. Out of 56,159 station
data points, 1462 are incorrectly identified as dust, resulting in a misclassification rate of
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less than 3%. This result is slightly higher than the misclassification rate (9%) of dust identi-
fication obtained by using the brightness temperature difference combination threshold
method proposed by She et al. [39], and is comparable to the misclassification rate (2.01%) of
the improved dust aerosol identification combining CALIOP and the passive three-channel
infrared imager (CLIM method) by Liu et al. [40]. Ground observations record 3470 dust
occurrences, whereas satellite identification shows 1102 dust events. The majority of un-
detected dust events by the satellite are due to cloud cover. Among the 1102 dust events
correctly identified by the satellite, the discrimination accuracy for the level of “BS and FD”
exceeds 85%, while the accuracy for SS or higher levels is only around 37%.

4. Conclusions

Satellite remote sensing techniques can provide atmospheric pollution monitoring
over wide areas, and can preserve the original characteristics of dust aerosols without
their physical alteration. This capability has broad prospects in atmospheric environmental
monitoring and long-distance dust transmission analysis. After analyzing the samples
from the spring of 2023, it is evident that relying solely on BTD or MIDI algorithms for dust
identification will cause misjudgments or missed detections of non-dust data. However,
combining the threshold conditions of the BTD and MIDI can improve the accuracy of dust
identification to some extent. When using MIDI for dust identification, the criteria are more
stringent for non-major sand source areas than for desert or gobi. This study utilizes AHI
observation data to construct a new method for spring dust identification across different
underlying surface types, which can improve the accuracy of dust identification. The
identification conditions for dust pixels are as follows. Desert–gobi underlying surfaces
must satisfy BTD < 1.25 and MIDI > 996.4, while other non-major sand source underlying
surfaces must satisfy BTD < 1.25 and MIDI > 997.6.

Furthermore, by constructing dynamic background brightness temperature values for
seven times a day and performing threshold statistics on the correlation between the calcu-
lated IDDI and ground-observed dust levels, a satellite-based identification algorithm for
near-surface dust intensity level is established. The test results indicate that the algorithm
can effectively identify the presence or absence of dust. For dust intensity, the identification
effect for BS and FD is relatively consistent with ground-based observations, but there is
still significant uncertainty for SS and higher-level dust events. There are two major error
sources in the algorithm. One is the difference between ground-based observations and
satellite identification caused by non-grounded dust, and the other is the selection of dust
identification thresholds. There are certain limitations in the thresholds for identifying dust
intensity, and factors such as the underlying surface conditions and topographical features
of sand sources may affect the selection of dust level thresholds. These aspects need further
exploration in subsequent studies.
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