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Abstract: The accurate extraction of agricultural parcels from remote sensing images is crucial for
advanced agricultural management and monitoring systems. Existing methods primarily emphasize
regional accuracy over boundary quality, often resulting in fragmented outputs due to uniform crop
types, diverse agricultural practices, and environmental variations. To address these issues, this
paper proposes DSTBA-Net, an end-to-end encoder–decoder architecture. Initially, we introduce
a Dual-Stream Feature Extraction (DSFE) mechanism within the encoder, which consists of Residual
Blocks and Boundary Feature Guidance (BFG) to separately process image and boundary data. The
extracted features are then fused in the Global Feature Fusion Module (GFFM), utilizing Transformer
technology to further integrate global and detailed information. In the decoder, we employ Feature
Compensation Recovery (FCR) to restore critical information lost during the encoding process.
Additionally, the network is optimized using a boundary-aware weighted loss strategy. DSTBA-Net
aims to achieve high precision in agricultural parcel segmentation and accurate boundary extraction.
To evaluate the model’s effectiveness, we conducted experiments on agricultural parcel extraction
in Denmark (Europe) and Shandong (Asia). Both quantitative and qualitative analyses show that
DSTBA-Net outperforms comparative methods, offering significant advantages in agricultural
parcel extraction.

Keywords: agricultural parcel extraction; dual-stream feature extraction (DSFE); global feature fusion
module (GFFM); feature compensation restoration (FCR); boundary-aware weighted loss

1. Introduction

Agricultural parcels are fundamental units in agricultural practice and applications [1],
serving as the essential material basis for agricultural production and food security [2,3].
The accurate identification and localization of these parcels are critical for crop recognition,
yield estimation, and the strategic allocation of agricultural resources [4,5]. In recent
years, remote sensing imagery has become the primary tool for extracting agricultural
parcels [6–8]. While actual parcels can be easily distinguished by clear boundaries formed
by physical features such as ditches and roads, the complex spectral, structural, and textural
characteristics of land features in remote sensing images present significant challenges for
accurate parcel extraction [9–11].

Traditional manual methods have enabled the extraction of agricultural parcels [12,13].
These methods can be categorized into three types: edge detection [14–18], region seg-
mentation [19–25], and machine learning [26,27]. However, these methods are often time-
consuming, labor-intensive, and perform poorly in complex scenarios and tasks.
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Deep learning, with its ability to automatically learn features, has revolutionized
remote sensing applications [28–33]. Methods based on Convolutional Neural Networks
(CNNs) [34–39] and Fully Convolutional Networks (FCNs) [40–43] have shown great po-
tential. However, spatial diversity results in agricultural parcels having complex shapes
and sizes, and remote sensing imagery is often affected by complex backgrounds such as
grasslands and bare land. Consequently, existing methods face three main issues: first,
difficulty in preserving the unique morphological characteristics of agricultural parcels;
second, an inability to ensure the high integrity of extraction results; and third, the chal-
lenge of balancing boundary and other detailed morphological features while maintaining
high completeness.

To enhance the morphological accuracy of agricultural parcels, some studies have employed
instance segmentation and multi-task learning methods. For example, Potlapally et al. [44]
utilized Mask R-CNN for instance segmentation, which improved the precision of par-
cel morphology by independently identifying the boundaries of each parcel. However,
these methods exhibit certain limitations when dealing with complex backgrounds and
variations in scale. Multi-task learning methods such as ResUNet-a [45] and SEANet [46]
have improved morphological accuracy by jointly learning features for different tasks.
Nevertheless, these methods often increase the complexity of model training and lack
direct task correlations. Although instance segmentation and multi-task learning have
somewhat enhanced the morphological accuracy of agricultural parcels, issues such as
model complexity, sensitivity to background noise, and reliance on multi-task features
result in incomplete extraction outcomes.

To achieve high integrity in segmentation results, some studies have explored con-
structing networks capable of capturing contextual information using Transformer [47]
technology [48,49]. In building extraction, BuildFormer [50] significantly improved the
accuracy of building detection by utilizing window-based linear tokens, convolution, MLP,
and batch normalization. Chen et al. [51] introduced a dual-channel Transformer framework
that achieves more complete building segmentation by leveraging long-distance dependen-
cies in spatial and channel dimensions. Xiao et al. [52] developed the Swin-Transformer
with a sliding window mechanism, resulting in more complete segmentation outcomes.
Although these methods, primarily based on Transformer networks, have enhanced the
completeness of segmentation results to some extent, they face challenges in complex scenes,
such as lacking boundary morphology and detailed textures.

To ensure high integrity while preserving certain morphological characteristics, some
researchers have begun exploring hybrid models. For instance, Wang et al. [53] integrated
Transformer technology into the traditional CNN framework and developed the CCTNet
model for barley segmentation in remote sensing images. Xia et al. [54] proposed a Dual-
Stream Feature Extraction network that integrates CNN and Transformer technologies to
fuse boundary and semantic information, achieving superior results on multiple building
datasets. WiCoNet [55] combines CNN and Transformer to fuse global and local infor-
mation, achieving strong performance on the BLU, GID, and Potsdam remote sensing
datasets. STranFuse [56] combines the Swin Transformer with convolutional networks
and uses an adaptive fusion module to manage feature representations across different
semantic scales, achieving significant performance improvements on the Vaihingen dataset.
Wang et al. [57] proposed a dual-stream hybrid structure based on SAM to achieve the
fusion of local and global information. However, these combinations of Transformer and
CNN typically involve a simple integration of global and local information without spe-
cific feature analysis, making it challenging to balance morphological characteristics and
segmentation completeness.

Based on the limitations of existing methods in agricultural parcel extraction, this
study proposes DSTBA-Net, a segmentation network designed for agricultural parcel ex-
traction. DSTBA-Net processes image and boundary data through Dual-Stream Feature
Extraction (DSFE) and effectively fuses these data using a Transformer-dominated Global
Feature Fusion Module (GFFM), enhancing boundary morphology and the integrity of
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extraction results. The decoder employs Feature Compensation Recovery (FCR) to reduce
information loss. We propose a boundary-aware weighted loss algorithm to optimize
boundary segmentation results. Experimental results demonstrate that DSTBA-Net per-
forms exceptionally well on Danish and Shandong agricultural parcel datasets, exhibiting
good generalization ability and robustness.

The main contributions of this study are as follows:

(1) DSTBA-Net, a novel segmentation network framework designed to accurately extract
agricultural parcels from remote sensing images, is proposed.

(2) Dual-Stream Feature Extraction (DSFE) is designed to perform multi-level feature
extraction on image and boundary data, guiding the model to focus on image edges,
thereby preserving the unique morphological characteristics of parcels.

(3) A Transformer-dominated Global Feature Fusion Module (GFFM) is designed to
effectively capture long-distance dependencies and merge them with detailed features,
enhancing the completeness of feature extraction.

(4) A boundary-aware weighted loss algorithm is designed to balance the weights of
image interiors and edges, effectively improving feature discrimination.

2. Methodology

This study proposes a semantic segmentation network, termed DSTBA-Net, for ex-
tracting agricultural parcels from remote sensing images. The network adopts an encoder–
decoder architecture, where the encoder consists of a Dual-Stream Feature Extraction
(DSFE) mechanism designed for both image and boundary data, and a Global Feature
Fusion Module (GFFM). The decoder achieves accurate upsampling through Feature Com-
pensation Restoration (FCR). Unlike conventional CNN-based algorithms, this study em-
ploys a Transformer network to construct the GFFM, facilitating the effective integration
of global and detailed information. This approach not only addresses the limitations of
using convolutional neural networks alone in handling remote dependencies but also
resolves the deficiency of Transformer networks in capturing low-level detail information.
The segmentation framework proposed in this study is illustrated in Figure 1.

Figure 1. Schematic of the proposed segmentation framework.
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Additionally, to address challenges arising from boundary imprecision and absence,
we propose a boundary-aware weighted loss algorithm. This algorithm incorporates
an effective Dice loss function that emphasizes boundary regions. By integrating this
function with a weighted binary cross-entropy loss, the network achieves a refined
segmentation performance.

2.1. Framework Introduction

The segmentation network framework utilized in this study adopts an end-to-end
encoder–decoder architecture. Within this framework, the network processes both image
and boundary data simultaneously through a Dual-Stream Feature Extraction (DSFE) mech-
anism. Image data are processed using an embedded Residual Block to extract complex
image features. In contrast, boundary data are captured through an external Boundary
Feature Guidance (BFG) mechanism, which flexibly delineates boundary-specific features.
Notably, boundary data are obtained using morphological dilation techniques from genuine
block labels. Subsequently, in the final segment of the encoder, a meticulously designed
Global Feature Fusion Module (GFFM) is employed to construct long-range dependency
relationships, facilitating the effective fusion of detailed and global features. To mitigate
information loss during the upsampling process, the Feature Compensation Restoration
(FCR) technique is applied to accomplish hierarchical upsampling tasks. Furthermore,
the model output is refined by utilizing a meticulously crafted boundary-aware weighted
loss algorithm, thereby enhancing boundary optimization efforts. The detailed network
design is depicted in Figure 2.

Figure 2. Detailed process of the proposed network. xl(l ∈ [1, 2, 3, 4]) represents the feature map
obtained by the encoder. yl(l ∈ [1, 2, 3]) represents the feature map obtained by the decoder.

In the encoder, as depicted in Figure 3, we have designed a Dual-Stream Feature
Extraction (DSFE) mechanism specifically for processing image and boundary data using
separate Residual Blocks and Boundary Feature Guidance (BFG).
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Figure 3. Dual-stream feature extraction.

Specifically, RGB image data with dimensions H and W undergo sequential op-
erations including 7 × 7 convolution, group normalization, ReLU activation, and 3 × 3
max-pooling. Subsequently, an enhanced deep residual network [58] consisting of three
blocks, each detailed in Figure 4b, is employed. After being processed by the Residual
Blocks, the image feature maps are reduced to 1/16 of the original size in both height
and width, with a channel count of 1024, effectively extracting and enhancing high-level
image feature representations.

Figure 4. Specific structure of the Convolution Block and Residual Block.

Simultaneously, grayscale boundary data with dimensions H and W undergo a series
of operations via BFG, including 3 × 3 convolution, three consecutive 3 × 3 convolutions
followed by 2 × 2 max-pooling, a 3 × 3 convolution layer, average pooling, and ReLU
activation. The resulting boundary feature maps are also reduced to 1/16 of the original
size, with a channel count of 1024. The multiple convolution stages and pooling operations
of BFG effectively refine the feature representation of grayscale boundary data, highlighting
significant structural elements and spatial relationships within the boundaries. These
refinements contribute to achieving precise segmentation and analysis.

Ultimately, through convolution operations, the model captures high-dimensional
feature maps that encompass both image texture and boundary information. These feature
maps serve as the foundational input for subsequent operations in the Global Feature Fusion
Module and decoding section. DSFE integrates the processing requirements of both image
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and boundary data. By applying Residual Blocks and Boundary Feature Guidance (BFG),
the model effectively integrates image and boundary features, significantly enhancing its
ability to understand complex scenes and improve segmentation accuracy.

2.2. Global Feature Fusion Module (GFFM)

We propose a Global Feature Fusion Module (GFFM), led by a Transformer, to integrate
global contextual information from feature maps containing abundant detailed information;
the specific design is shown in Figure 5. Initially, the module captures two classes of
features from the image and the boundary through a stacking operation, followed by
a series of auxiliary operations to reshape the high-dimensional feature maps into one-
dimensional vectors

{
Xi

p ∈ RP2×c|i = 1, · · · N|
}

, where each patch has a size of P × P and

N = HW
P2 denotes the sequence length. Subsequently, trainable linear projections map the

vectorized patches to a D-dimensional embedding space. Specific positional embeddings
are incorporated to retain positional information. Mathematically, this is represented as
Z0 = [X1

PE; X2
PE; · · · ; XN

P E] + EPOS, where E ∈ R(P2C)×D and EPOS ∈ RN×D.

Figure 5. The specific structure diagram of the Global Feature Fusion Module (GFFM).

Then, for the reshaped sequence, this module employs a Transformer to establish long-
range dependencies, aiming to generate feature maps containing global contextual informa-
tion. Specifically, the Transformer consists of L layers of multi-head self-attention and multi-
layer perceptron. The output of the Lth layer is expressed as Z

′
L = MSA(LN(ZL−1)) + ZL−1

and ZL = MLP(LN(Z
′
L)) + Z

′
L. Here, Z

′
L denotes the layer normalization operator, and ZL

represents the encoded image representation. The one-dimensional vector input to the Trans-
former block undergoes this operation 12 times. Finally, the model reshapes the features

ZL ∈ R
H×W

P2 ×D into H
P × H

P × D through a series of operations.

2.3. Feature Compensation Reconstruction (FCR)

The purpose of image restoration is to transform feature maps from the feature space to
the image space through convolutional layers. During the process of image recovery, relying
solely on convolutional operations may lead to the loss of important information. To miti-
gate information loss in the feature maps after multiple convolutional layers, we adopt the
Feature Compensation Restoration (FCR) design. In the decoder, we introduce three skip
connections, utilizing multi-level features from dual feature extraction to compensate for
boundary features. Specifically, we use a padding strategy to select boundary features at
the pixel level and add appropriate padding values around the boundary pixels to achieve
information restoration. Finally, in the feature restoration module, we concatenate these
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compensated features along the channels to the global contextual features. Consequently,
the fused image is recovered through the Feature Compensation Restoration module.

2.4. Boundary-Aware Weighted Loss

For the final classification task of mask prediction, we combine the binary cross-
entropy (BCE) loss model with the Dice loss model based on boundary area design to
handle class imbalance and instability. For i samples, yi and ỹi denote the true ground
labeling probability and the predicted probability of sample i. The definition of BCE Loss
(LBCE) is as follows:

LBCE = − 1
N

N

∑
i=1

(yi × log(ỹi) + (1 − yi)× log(1 − ỹi)) (1)

Inspired by the Dice loss function and recognizing the high demand for boundary
segmentation in agricultural parcel extraction tasks, we have devised a Dice loss function
based on the boundary area, termed Boundary Dice Loss (LBYDice). The Dice loss function
quantifies the similarity between predicted and ground truth regions by evaluating the ratio
of their intersection to their union, thereby assessing segmentation accuracy. This approach
guides the model to better comprehend the characteristics of boundary areas in agricultural
parcels, enhancing the precision of edge segmentation. As depicted in Figure 6a, the light
purple area denotes the predicted region Pi for class i, while the deep blue area represents
the true region Gi. To avoid situations where both the numerator and denominator are 0,
we introduce a constant ∈.

LBYDice =
1
N

N−1

∑
i=0

(1 −
2|Pby

i ∩ Gby
i |+ ∈

|Pby
i |+ |Gby

i |+ ∈
) (2)

Finally, by introducing weight parameters ω1 and ω2, after multiple tests, it is con-
firmed that ω1 = ω2 = 0.5 yields the best results. The final loss algorithm calculation
formula is as follows:

Loss = LBYDcie × ω1 + LBCE × ω2 (3)

Figure 6. Schematic diagram of the Dice loss function based on boundary area. (a) The prediction
results and ground truth of the i-th category. (b) The prediction result of the i-th class and the edge
area of the ground truth; d is the width of the edge area.

3. Experiments
3.1. Dataset

The experimental data utilized in this study are detailed in Figure 7. Figure 7a
presents the Sentinel-2 satellite imagery of the Denmark region, while Figure 7b displays
the GaoFen-2 satellite imagery of the Shandong region in China. The Denmark dataset
encompasses a vast area with densely distributed and variously sized agricultural parcels,
whereas the Shandong dataset covers a smaller area with more regularly shaped agricultural
parcels. The boundaries in both datasets are clearly defined. The ground truth data for
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the Denmark dataset were sourced from the European Union’s Land Parcel Identification
System (LPIS), while the ground truth for the Shandong dataset was manually annotated.
Detailed information about the datasets is provided in Table 1. We divided the datasets
into training, validation, and testing sets as delineated in Figure 7, with corresponding
sample images shown in the insets. To preserve edge information and mitigate overfitting,
the original images were cropped with a 30% overlap. For the Denmark dataset, we
obtained 4872 unaugmented training slices measuring 256 × 256, 1382 testing slices, and
967 validation slices. For the Shandong dataset, we acquired 2049 unaugmented training
slices measuring 256 × 256, 567 testing slices, and 407 validation slices. To enhance the
generalizability of the model, we additionally applied data augmentation techniques to the
training sets of both datasets, including horizontal flipping, vertical flipping, and 90-degree
clockwise rotation.

Table 1. Detailed information about the dataset.

Areas Satellites Dates Resolution (m) Size (pixels) Area (km2)

Denmark Sentinel-2 8 May 2016 10 10,982 × 20,978 20,900

Shandong Gaofen-2 20 December 2021 1 10,661 × 8769 91.70

Figure 7. Overview of the dataset.

3.2. Implementation Details

The DSTBA-Net was constructed within the PyTorch deep learning framework and
trained using an NVIDIA RTX 3090 (24G) GPU. To achieve rapid convergence of the
network, we utilized the Stochastic Gradient Descent (SGD) optimizer with a momentum
of 0.9 and a weight decay of 1 × e−4 to optimize the backpropagation process of DSTBA-
Net. This approach involved training on the Denmark dataset for 100 epochs and on the
Shandong dataset for 70 epochs, ultimately reaching a state of convergence.

3.3. Evaluation Metrics

To quantitatively measure the performance of DSTBA-Net, we employed several
commonly used evaluation metrics in semantic segmentation: Overall Accuracy (OA),
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Recall (R), F1-score (F1), and Intersection over Union (IoU). Specifically, these metrics are
defined by the following formulas:

OA =
TP + TN

TP + TN + FP + FN
(4)

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1 = 2 × P × R
P + R

(7)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively.

OA is the percentage of correctly predicted samples out of the total samples. Generally,
the higher the accuracy, the better the segmentation effect. P is the probability that a sample
predicted as positive is actually positive. R indicates the probability that a positive sample
is predicted as positive. The F1 considers both P and R, aiming to maximize and balance
them simultaneously. IoU determines the extent to which target features are captured,
maximizing the intersection between predicted labels and annotations to ascertain model
accuracy. It is calculated as follows:

IoU =
|Pp ∩ Pt|
|Pp ∪ Pt|

(8)

where Pp represents the set of pixels predicted as agricultural parcels, and Pt represents the
set of pixels of actual parcels. |.| denotes the function to calculate the number of pixels in
a set.

In addition to the above metrics, to verify the effectiveness of this method in boundary
shape learning, two boundary metrics were used for quantitative evaluation: Hausdorff
distance (HD) and structural similarity (SSIM). As a measure of shape similarity, HD is
more sensitive to the boundaries of segmentation. It is defined as follows.

HD between two sets, X and Y, is the maximum distance of a point set to the nearest
point in the other set. In image segmentation tasks, it is used to measure the shape similarity
between prediction results and actual labels. Specifically,

dH(X, Y) = max{dXY, dYX} = max{max
x∈X

min
y∈Y

(x, y), max
y∈Y

min
x∈X

(x, y)} (9)

where X and Y are the ground truth and predicted maps, respectively. dH(X, Y) is the
distance between points x and y. To mitigate the impact of outliers, HD is multiplied by
95% to obtain the final metric (95%HD). The smaller the distance, the closer the predicted
shape is to the actual label.

The Structural Similarity Index (SSIM) considers the brightness, contrast, and struc-
ture of images, commonly used to measure the similarity between two images. It is
defined as

S(X, Y) = F(l(X, Y), c(X, Y), s(X, Y)) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(10)

where µ, σ, and σxy represent the mean, variance, and covariance, respectively. C1 and C2
are constants to avoid division by zero, typically set to 6.50 and 58.52. SSIM ranges within
(−1, 1), with a value of 1 indicating identical images.
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4. Results
4.1. Experiment Using the Denmark Sentinel-2 Image

Figure 8 illustrates the experimental results of our proposed method on the Denmark
dataset. It can be observed that our method achieves consistent boundary delineation for
agricultural parcels of varying sizes and shapes. This demonstrates the effectiveness of our
model on medium-resolution remote sensing imagery. In addition, in Figure 9, we visualize
the error of extraction results. Red and blue indicate the number of pixels incorrectly
predicted as farmland and non-farmland, respectively, while black and white represent the
number of pixels correctly predicted as non-farmland and farmland. We compare these
visualizations with two classical semantic segmentation models and three recent agricul-
tural parcels extraction models. Four representative images from the test set are selected for
display, as shown in Figure 9a–d. Comparative experiments are conducted using SEANet,
U2-Net [59], BsiNet [60], U-Net, DeepLabv3+ [61], and DSTBA-Net. Here are brief descrip-
tions of the five comparative models. First, the classical semantic segmentation models
U-Net and Deeplabv3+. U-Net combines skip connections in the decoder part to better cap-
ture multi-scale information and reduce information loss. Deeplabv3+ employs techniques
such as atrous convolution to enlarge the receptive field, enhancing segmentation accuracy
and efficiency. U2-Net, designed for saliency object detection tasks, achieves superior
binary classification performance by combining and merging the outputs of multiple U-Net
networks. Lastly, the advanced multi-task segmentation networks SEANet and BsiNet
integrate mask prediction, edge prediction, and distance map estimation. By extracting
rich edge features at multiple levels, they significantly improve the accuracy of agricultural
parcel extraction. The second column in Figure 9 represents the ground truth, followed by
the depiction of errors in agricultural plot extraction from different models. All models are
trained using the recommended loss functions and formulations from the existing literature,
and all experiments are conducted under the same conditions as DSTBA-Net.

In general, both classic methods, U-Net and Deeplabv3+, exhibit blurred boundaries
and considerable adhesion between agricultural parcels, making it challenging to obtain
distinct and independent delineations of these parcels. Conversely, the latest agricultural
plot extraction models, namely SEANet, U2-Net, and BsiNet, offer clearer and more pro-
nounced boundaries compared to traditional approaches. However, they still suffer from
varying degrees of misclassification and omission within the parcels.

Figure 8. Extracted agricultural parcels by DSTBA-Net on the Denmark (DK) Sentinel-2 image.
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Specifically, in Figure 9, the first two rows depict close-ups of extraction results
in complex backgrounds, while the third row showcases results from relatively dense
and regular areas. The fourth row illustrates results from contiguous regions. Due to
interference from factors such as grassland and bare soil, the other five test models
exhibit more instances of plot omission and misclassification in (a) and (b). In contrast,
our network benefits from a robust feature encoder, resulting in significantly lower
errors compared to other methods. For densely packed parcels in (c), our network
accurately delineates plot contours. Similarly, DSTBA-Net performs best in extracting
contiguous agricultural parcels, yielding optimal plot extraction and boundary delin-
eation in (d). Consequently, our approach achieves comprehensive extraction on the
medium-resolution Denmark dataset.

Figure 9. Examples of agricultural parcels delineated by different methods on the Den-
mark dataset.(a,b) are image slices from areas with complex backgrounds; (c) is an image slice
from a relatively regular area; (d) is an image slice from a contiguous distribution area.Examples of
agricultural parcels delineated by different methods on the Denmark dataset.

To visualize the boundary extraction performance of the models more intuitively,
the extracted agricultural parcel boundaries were refined using morphological methods
in this study. Figure 10 shows the boundary extraction results of several models in a test
area in Denmark. We marked the extraction results of different models for the same detail
with a red dashed line, and the comparison clearly shows that our model achieves more
complete and accurate results.

The quantitative evaluation results of this study are presented in Table 2. Five com-
monly used semantic segmentation evaluation metrics and two boundary shape metrics
were selected for calculation. The best results are highlighted in bold, while the second-best
results are underlined.
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Figure 10. Examples of parcel boundaries extracted by different methods in a Denmark testing area.

Table 2 demonstrates the outstanding performance of DSTBA-Net across all evaluation
metrics, with DSTBA-Net achieving a P value of 87.13% and R value of 86.03%. DSTBA-
Net outperforms in OA, P, F1, and IoU, reaching 93.00%, 87.13%, 85.90%, and 78.13%,
respectively. This indicates our method’s ability to balance between P value and R value,
maximizing identification while minimizing misclassifications and omissions of agricul-
tural parcels. Additionally, our proposed method achieves the second lowest 95%HD score
and the highest SSIM score, at 97.73% and 81.26%, respectively. Among the comparative
models, SEANet exhibits the best overall performance, with OA, P, F1, and IoU being
the second-best among all methods. Furthermore, it obtains the lowest 95%HD score,
suggesting significant advantages in boundary shape learning. However, its SSIM score
is lower than ours, indicating room for improvement in overall image similarity. Overall,
our network remains advanced in learning agricultural plot boundaries. Particularly note-
worthy is the substantial misclassification observed in the extraction results of Deeplabv3+,
which biases the overall performance to display a high R value. Thus, a high value in this
metric alone does not necessarily represent the ideal predictive performance of the method.

Table 2. Quantitative evaluation on the denmark dataset.

Method
Common Metrics Boundary Metrics

OA (%) P (%) R (%) F1 (%) IoU (%) 95% HD SSIM (%)

DSTBA-Net 93.00 87.13 86.03 85.90 78.13 97.73 81.26

SEANet 92.20 86.84 85.28 85.50 77.04 93.86 79.34

U2-Net 92.14 83.70 86.19 84.36 76.06 125.56 79.57

BsiNet 91.03 85.00 81.91 82.92 73.77 104.84 76.53

U-Net 86.68 73.87 86.53 79.25 68.87 98.84 71.41

Deeplabv3+ 85.75 73.38 86.94 78.83 68.37 104.35 69.13

Bold indicates the best result for the metric, and underline indicates the second-best result.
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4.2. Experiment Using the Shandong GF-2 Image

To further assess the generalization performance of DSTBA-Net in extracting agricul-
tural parcels across different datasets, experiments were conducted on a self-constructed
Shandong dataset in this study. Figure 11 presents the extraction results of our method on
the Shandong dataset, demonstrating high consistency with ground truth values across
images with both dense and regular layouts. Similarly, error visualizations of the Shandong
dataset test results are shown in Figure 12.

In Figure 12, the first and fourth rows depict close-ups of extracted agricultural parcels
in regular layouts, while the second and third rows display results from dense layouts.
It can be observed from the images that our method achieves the lowest segmentation
errors, corresponding to minimal errors and omissions, particularly in cases with unclear
boundaries. DSTBA-Net outperforms other methods in boundary extraction and effectively
preserves the original shapes of agricultural parcels. This approach achieves comprehensive
extraction on the high-resolution Shandong dataset. Additionally, in a test area of Shandong,
we compared the extracted agricultural plot results from several models, as shown in
Figure 13. Specifically, we employed sliding window and dilation prediction methods to
perform predictions on the entire image, as illustrated in Figure 14.

Figure 11. Extracted agricultural parcels by DSTBA-Net on the Shandong GF-2 image, China (CN).
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Figure 12. Examples of agricultural parcels delineated by different methods on the Shandong GF-
2 image. (a,d) are image slices of agricultural parcels in regular layouts, while (b,c) are image slices of
agricultural parcels in dense layouts.

Table 3 presents the quantitative evaluation results for the Shandong dataset. Specifi-
cally, DSTBA-Net achieves the highest OA, F1, and IoU, at 95.05%, 96.46%, and 93.24%,
respectively. This further validates that our method can ensure the integrity of extraction
results even in the presence of background features such as bare soil and built-OAup areas.
As shown in the second and third rows of Figure 12, irregular parcels are common in
the Shandong dataset, characterized by thin boundaries and challenging spectral infor-
mation differentiation. Consequently, our P value and R value are slightly lower than
other methods, at 96.51% and 96.47%, respectively. On the Shandong dataset, DSTBA-Net
obtains the second lowest 95%HD score and the highest SSIM score, at 54.57% and 84.29%,
respectively. Although DeepLabv3+ achieves the lowest 95%HD score, its notable omission
phenomena result in inferior performance in capturing the shape details of farmland, hence
the lower SSIM. The metrics in Table 3 corroborate the superiority of our proposed method
in shape learning, whereby DSTBA-Net effectively optimizes the boundaries of agricultural
parcels, facilitating fine-grained segmentation at the plot level.

Figure 13. Examples of parcel boundaries extracted by different methods in a Shandong testing area.
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Table 3. Quantitative evaluation on the Shandong dataset.

Method
Common Metrics Boundary Metrics

OA (%) P (%) R (%) F1 (%) IoU (%) 95% HD SSIM (%)

DSTBA-Net 95.05 96.51 96.47 96.46 93.24 54.57 84.29

SEANet 93.45 96.57 93.42 94.76 91.82 70.68 80.86

U2-Net 92.34 95.47 91.97 93.59 88.51 56.57 84.15

BsiNet 94.49 95.20 94.74 94.73 91.48 60.92 83.59

U-Net 91.19 89.67 96.73 92.86 87.52 80.00 81.95

Deeplabv3+ 93.37 95.08 95.37 95.11 90.89 49.04 80.78

Bold indicates the best result for the metric, and underline indicates the second-best result.

Figure 14. Prediction results for the entire Shandong dataset image. The white areas represent
agricultural parcels, and the black areas represent non-agricultural parcels.

4.3. Ablation Experiments of DSTBA-Net

In this study, we conducted a whole-frame ablation experiment on the Danish dataset
to validate the effectiveness of the proposed method and evaluate its performance. In ad-
dition, we have selected example images from two datasets to visualize the feature maps
during the coding and decoding processes to further illustrate the usefulness of the pro-
posed module.

The design of ablation experiments for the DSTBA-Net network framework is pre-
sented in Table 4, with detailed experimental results provided in Table 5. The optimal
results are highlighted in bold. Specifically, (a) denotes the baseline, which is the basic
fully convolutional U-Net framework, and (b) represents the addition of the proposed
Residual Block to (a) as an auxiliary encoder, which captures finer-grained features and
enhances feature learning capabilities. Compared to (a), (b) achieves an overall accuracy
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(OA) improvement of 1.08% and an IoU increase of 2.40%, with this scheme obtaining the
best R value. (c) adds Boundary Feature Guidance (BFG) to (b), effectively integrating
boundary data features into the model, allowing the model to explicitly focus on boundary
features and enhancing boundary information capture. Compared to (b), which does not
include boundary features, (c) achieves an OA improvement of 2.40% and an IoU increase
of 2.84%. (d) introduces the Global Feature Fusion Module (GFFM) to (b), leveraging the
powerful encoding capabilities of the Transformer to establish long-distance dependen-
cies between detailed and global features, and fuse feature maps generated from image
data. Results show that adding GFFM increases the OA by 3.84% and the IoU by 3.75%
compared to (b). (e) combines BFG, completing the acquisition of detailed features from
image and boundary data and integrating them with global features, forming the complete
DSTBA-Net. (e) achieved the best results in most metrics. Compared to (c), its OA and IoU
increased by 2.84% and 4.02%, respectively, and compared to (d), its OA and IoU improved
by 1.40% and 3.11%, respectively. These results further demonstrate the effectiveness
of DSTBA-Net.

Table 4. Ablation No explanation needed. experiment setup of DSTBA-Net.

Model Name
Modules

Baseline Residual Block BFG GGFM

(a) ✓
(b) ✓ ✓
(c) ✓ ✓ ✓
(d) ✓ ✓ ✓
(e) ✓ ✓ ✓ ✓

Table 5. Quantitative evaluation of ablation experiments.

Model
Common Metrics Boundary Metrics

OA (%) P (%) R (%) F1 (%) IoU (%) 95% HD SSIM (%)

(a) 86.68 73.87 86.53 79.25 68.87 98.84 71.41
(b) 87.76 75.91 87.23 81.19 71.27 101.54 72.04
(c) 90.16 83.42 83.13 82.47 74.11 99.98 76.32
(d) 91.60 84.51 83.98 83.37 75.02 104.59 77.55
(e) 93.00 87.13 86.03 85.90 78.13 97.73 81.26

Bold indicates the best result for the metric.

5. Discussion
5.1. Module-Wise Feature Map Analysis

To further explore the impact of the proposed modules on feature extraction, we
selected images from both datasets and used maximum activation value visualization to ex-
amine the changes in the feature maps with and without the addition of different modules.

Figure 15 shows the four-layer feature maps of the image slices from the Shandong
dataset in the encoder, obtained by using ordinary convolution and residual convolution
in our basic network, respectively. As can be seen from Figure 15, x̂l is more focused on
the boundaries of the agricultural parcels than xl . Although more low-level information
is extracted as the model continues to encode, richer and more homogeneous semantic
information is obtained using the Residual Block.
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Figure 15. Visualization of feature maps for Residual Block. xl and x̂l , l ∈ [1, 2, 3, 4] represent the
Feature maps from regular convolution and provided Residual Blocks at each layer.

Figure 16 shows a comparison of the feature maps obtained with the basic network
and after adding Boundary Feature Guidance (BFG). We have chosen two image slices
from the Denmark dataset for this presentation. Panels (A), (B), and (C) denote the se-
lected images, the feature maps before adding BFG, and the feature maps after adding
BFG, respectively. As can be seen from Figure 16, (C) acquires richer low-level semantic
information relative to (B). This indicates that BFG encourages the model to pay more
attention to edge information in the image.

Figure 16. Visualization of feature maps for BFG. (A) represents the selected image, (B) represents
the feature maps before the addition of BFG, and (C) represents the feature maps after the addition
of BFG.

Figure 17 shows a comparison of the feature maps obtained in the decoder for the basic
network and the model after adding the Global Feature Fusion Module (GFFM). An image
slice from the Denmark dataset was selected for this presentation. Here, yl represents
the feature map obtained from the basic network, y′l represents the feature map obtained
by adding Feature Compensation Restoration (FCR), and ŷl represents the feature map
obtained by adding GFFM.
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Figure 17. Visualization of feature maps for Residual Block. yl , y′l and ŷl , l ∈ [1, 2, 3, 4], respectively,
denote the feature maps for each layer of the baseline network’s decoding part, after the inclusion of
FCR, and after the inclusion of GFFM.

As can be seen in Figure 17, y′l contains more complete edge semantic information
and a more uniform distribution compared to yl . yl exhibits excessively high intensity in
some regions and lacks balanced information fusion, which is improved in y′l . ŷl , as the
feature map after adding the Global Feature Fusion Module (GFFM), has richer and more
complete semantic and location information compared to yl . After the addition of GFFM,
the model captures more long-range information during the upsampling process, which
also aids in the final segmentation.

5.2. Analysis of Weight Coefficients

To further investigate the impact of weight coefficients in the proposed boundary-
aware weighted loss algorithm, denoted as ω1 and ω2 (ω1 + ω2 = 1), we conducted
additional experiments. The results in Table 6 demonstrate that the model achieves optimal
performance when ω1 = ω2 = 0.5. This suggests that under this coefficient setting,
the model effectively balances boundary loss and other losses, resulting in optimal scores
across all metrics. Particularly noteworthy is the significant improvement in P and R values,
indicating better extraction accuracy and efficiency achieved by our method.

Table 6. Influence of the coefficients in the loss function.

Coefficient (ω1)
Common Metrics Boundary Metrics

OA (%) P (%) R (%) F1 (%) IoU (%) 95% HD SSIM (%)

0.3 91.70 85.55 84.41 84.18 75.91 114.86 78.68
0.4 92.24 86.19 84.84 84.55 76.36 107.37 79.24
0.5 93.00 87.13 86.03 85.90 78.13 97.73 81.26
0.6 92.63 86.15 85.76 85.15 77.13 105.42 80.09
0.7 91.81 85.60 84.11 84.07 75.93 110.40 78.71

Bold indicates the best result for the metric.

5.3. Discussion on Data Variability

This study selected datasets from Denmark and Shandong for experimentation. Due to
differences in resolution, field shapes, and agricultural parcels between the datasets, using
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the same method for parcel extraction may yield different results. For instance, Shandong’s
vegetation may be influenced by distinct climatic and soil characteristics, resulting in
different vegetation features and growth patterns compared to Denmark. Therefore, when
comparing and analyzing the results, it is essential to further consider these differences
in growth stages and environmental factors. Further research is needed to address these
variations comprehensively.

6. Conclusions

This study introduces DSTBA-Net, a method for agricultural parcel extraction that
emphasizes boundary optimization and global information fusion. The network utilizes
a dual-stream architecture to separately extract image and boundary features, which are
then fused to incorporate captured fine-grained details and global contextual information,
effectively addressing deficiencies in morphological feature optimization and segmentation
completeness. We propose a boundary-aware weighted loss algorithm to appropriately
balance the importance of parcel interiors and boundaries. To validate the performance of
our network, experiments were conducted on datasets from Denmark and Shandong, China.
Besides using standard semantic segmentation metrics, boundary evaluation metrics were
also employed to quantitatively demonstrate the advantages of DSTBA-Net in boundary
delineation. Experimental results on both datasets indicate that our proposed network
surpasses state-of-the-art networks in the accuracy of agricultural parcel extraction. This
research also includes ablation studies, which verify that the Dual-Stream Feature Extraction
(DSFE) and the Global Feature Fusion Module (GFFM) significantly enhance network
performance. Our method can effectively extract agricultural parcels from remote sensing
images with different agricultural parcels and at various scales, providing a solution for
addressing challenges in complex environments.
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