
Citation: Wang, B.; Cheng, W.; Bao, Y.;

Wang, S.; Petropoulos, G.P.; Fan, S.;

Mao, J.; Jin, Z.; Yang, Z. Effects of

Assimilating Ground-Based

Microwave Radiometer and FY-3D

MWTS-2/MWHS-2 Data in

Precipitation Forecasting. Remote Sens.

2024, 16, 2682. https://doi.org/

10.3390/rs16142682

Academic Editor: Gyuwon Lee

Received: 16 May 2024

Revised: 25 June 2024

Accepted: 16 July 2024

Published: 22 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Effects of Assimilating Ground-Based Microwave Radiometer
and FY-3D MWTS-2/MWHS-2 Data in Precipitation Forecasting
Bingli Wang 1,2 , Wei Cheng 3 , Yansong Bao 1,2,*, Shudong Wang 4, George P. Petropoulos 5 , Shuiyong Fan 6,
Jiajia Mao 7, Ziqi Jin 8 and Zihui Yang 9

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, China
Meteorological Administration Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of
Information Science & Technology, Nanjing 210044, China; 20211205019@nuist.edu.cn

2 School of Atmospheric Physics, Nanjing University of Information Science and Technology,
Nanjing 210044, China

3 Beijing Institute of Applied Meteorology, Beijing 100029, China; chengw@mail.iap.ac.cn
4 Public Meteorological Service Center of China Meteorological Administration, Beijing 100081, China;

wsd@mail.iap.ac.cn
5 Department of Geography, Harokopio University of Athens, EI. Venizelou 70, 17671 Athens, Greece;

gpetropoulos@hua.gr
6 Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China; syfan@ium.cn
7 Meteorological Observation Center of China Meteorological Administration, Beijing 100081, China;

maojj@cma.gov.cn
8 Zhejiang Institute of Meteorological Sciences, Hangzhou 310008, China; 20191205003@nuist.edu.cn
9 Nanjing University of Information Science & Technology, Nanjing 210044, China; 20211201143@nuist.edu.cn
* Correspondence: ysbao@nuist.edu.cn

Abstract: This study investigates the impacts of the joint assimilation of ground-based microwave
radiometer (MWR) and FY-3D microwave sounder (MWTS-2/MWHS-2) observations on the anal-
yses and forecasts for precipitation forecast. Based on the weather research and forecasting data
assimilation (WRFDA) system, four experiments are conducted in this study, concerning a heavy
precipitation event in Beijing on 2 July 2021, and 10-day batch experiments were also conducted. The
key study findings include the following: (1) Both ground-based microwave radiometer and MWTS-
2/MWHS-2 data contribute to improvements in the initial fields of the model, leading to appropriate
adjustments in the thermal structure of the model. (2) The forecast fields of the experiments assim-
ilating ground-based microwave radiometer and MWTS-2/MWHS-2 data show temperature and
humidity performances closer to the true fields compared with the control experiment. (3) Separate
assimilation of two types of microwave radiometer data can improve precipitation forecasts, while
joint assimilation provides the most accurate forecasts among all the experiments. In the single-case,
compared with the control experiment, the individual and combined assimilation of MWR and
MWTS-2/MWHS-2 improves the six-hour cumulative precipitation threat score (TS) at the 25 mm
level by 57.1%, 28.9%, and 38.2%, respectively. The combined assimilation also improves the scores at
the 50 mm level by 54.4%, whereas individual assimilations show a decrease in performance. In the
batch experiments, the MWR_FY experiment’s TS of 24 h precipitation forecast improves 28.5% at
10 mm and 330% at 25 mm based on the CTRL.

Keywords: FY-3D MWTS-2/MWHS-2; ground-based microwave radiometer; data assimilation

1. Introduction

The accuracy of numerical weather prediction (NWP) is heavily reliant on the qual-
ity of its initial conditions, prompting a growing focus on data assimilation to enhance
these foundational elements. Satellite data such as infrared radiation data, microwave
detection data, satellite precipitation data, etc., play a crucial role in this context due to
their comprehensive coverage and advantages in observational sources [1–3]. Extensive
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research evidences that satellite observations significantly refine the initial model fields,
thereby elevating forecast precision [4–7]. Currently, satellite data comprise over 90% of
the observational inputs utilized by numerical prediction centers globally, underscoring
the critical contribution to the advancement of NWP [8]. The superior spatial and temporal
resolution of satellite observations, along with their capability to bridge the observational
gaps in complex terrains and maritime domains, solidifies their indispensable status in
improving weather forecasting accuracy [9].

Microwave remote sensing is particularly valuable for its ability to penetrate clouds
and precipitation, providing critical data on weather systems. Microwave detection tech-
nologies enable enhanced observation of cloud regions, which is crucial for analyzing and
forecasting weather systems [10]. Both microwave vertical sounders and imagers are inte-
gral to data assimilation systems, earning them widespread application in meteorological
research and operations [11–14].

FY-3D, China’s second-generation polar orbit meteorological satellite, features the
upgraded microwave temperature sounder (MWTS-2) and microwave humidity sounder
(MWHS-2), improving upon its predecessors MWTS/MWHS with channel configurations
and observational accuracy akin to the AMSU-A of Europe and America [15]. Regarding
the Fengyun-3 satellite series, scholars have conducted extensive research on its microwave
vertical detector. In analyzing the detection data from the FY-3A satellite, researchers have
observed that, although the deviation in its microwave hygrometer readings is somewhat
larger, the overall data quality is on par with that of international instruments, especially in
terms of the global average [16–19]. In the follow-up assimilation experiments involving
the FY-3 series satellites, the substantial enhancements in numerical predictions facilitated
by microwave data have been progressively unveiled. Chen et al. [20] integrated the mi-
crowave hygrometer data from FY-3A/3B (MWHS) into the assimilation system of the
European Centre for Medium-Range Weather Forecasts (ECMWF). Their findings demon-
strated that these data not only enhanced the model’s analysis field but also had a forecast
impact on par with that of similar long-term used foreign instruments. Subsequently,
ECMWF formally integrated observations from the FY-3B microwave hygrometer over
oceanic regions into its operational forecasting model in 2014. In 2015, Lawrence [21] and
Lu et al. [22] initiated evaluations of the FY-3C microwave hygrometer (MWHS-2) data
quality, conducting tests within both the Met Office and the ECMWF assimilation systems.
Their findings indicated that the quality of the 183 GHz channel data was comparable to
that of ATMS and MHS instruments. Importantly, the inclusion of these channel data had a
positive impact on humidity predictions in short-term forecasts, with MWHS-2 achieving a
significant 6% reduction in 24 h forecast errors in the Met Office’s global model. In another
study, Xu et al. [5] examined the assimilation effects of the FY-3B microwave hygrometer
(MWHS) during a binary typhoon event (Chan-hom and Linfa), observing corrections in
both the location and magnitude of predicted precipitation over 24 h. The study employed
two assimilation strategies—three-dimensional variation and mixed variation—which
were later adopted by Sun et al. [23] in their assessment of MWHS-2 data assimilation
on Typhoon Ampil. Their results demonstrated that MWHS-2 data enhanced not only
precipitation accumulation predictions but also its evolutionary characteristics. Other
studies, such as those by Song et al. [24], Xu et al. [25], and Chen et al. [26], assimilated
FY-3D MWHS-2 data to forecast typhoon events, and the results showed that the data had
a positive impact on typhoon track prediction. Current research underscores the critical
role of assimilating FY-3D microwave detector data in enhancing initial model fields and
forecast accuracy, which has significant potential for elevating the technical capability of
NWP, particularly for short- to medium-term forecasts.

Ground-based microwave radiometers, similar to satellite microwave sensors, pas-
sively capture atmospheric temperature and humidity information through microwave
radiation. These radiometers offer continuous all-weather observations with high spa-
tiotemporal resolution without the need for manual operation. This advantage effectively
overcomes the limitations of spatial and temporal resolution in sounding data and com-
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pensates for the shortcomings of satellite data in detecting the planetary boundary layer.
Numerous international studies have explored their application in numerical weather
prediction. Vandenberghe and Ware [27] performed both three-dimensional and four-
dimensional variational assimilation experiments using ground-based microwave radiome-
ter data for winter fog events, demonstrating the potential of data assimilation to predict
fog formation. Similarly, Otkin et al. [28] and Hartung et al. [29], using observing sys-
tem simulation experiments (OSSEs) for a winter storm scenario, found that assimilating
data at the ground remote sensing stations, including microwave radiometers, positively
influenced temperature and humidity analyses. Caumont et al. [30] integrated tempera-
ture and humidity data from microwave radiometer stations into a convective-scale NWP,
demonstrating beneficial results from MWR data assimilation. Martinet et al. [31,32] in-
corporated MWR observation data into the AROME (application of research to operations
at mesoscale) model using a one-dimensional variational (1D-VAR) retrieval technique.
This approach notably improved the model’s forecast accuracy within a 3 km range and
effectively captured near-surface temperatures. Furthermore, the Swiss Federal Office of
Meteorology and Climatology (MeteoSwiss) and the Deutscher Wetterdienst (DWD) collab-
orated to utilize MWR data for refining the initial conditions of the atmospheric boundary
layer (ABL). They employed RTTOV-gb (radiative transfer for TIROS operational vertical
sounder, ground-based) for the direct assimilation of MWR emissivity. In MeteoSwiss,
observations from two MWR stations indicated a positive impact on temperature accu-
racy. DWD conducted assimilation tests with different schemes, including single-channel
and multi-channel selections, which further confirmed MWR’s positive influence on ABL
temperature and humidity forecasts [33].

Current research indicates that both ground-based microwave radiometers and FY-3D
satellite observations from MWTS-2/MWHS-2 data have significant potential for advancing
numerical prediction technologies. However, the data assimilation research on the mi-
crowave data of the FY-3D satellite is not yet sufficient, especially the assimilation of all-sky
data combining temperature and humidity sensors [23–26]. Similarly, although some schol-
ars have conducted some forecasting studies on ground-based microwave radiometers,
the application of ground-based microwave radiometers in data assimilation is still in its
early stages compared with the assimilation of satellite microwave data, and the research is
focused mainly on regions outside of China, with very few studies specifically targeting the
Chinese region [27–36]. Based on the above, this paper analyzes and forecasts a short-term
heavy precipitation event in Beijing using ground-based microwave radiometers and FY-3D
MWTS-2/MWHS-2 data. By conducting comparative experiments, the study explores the
impact of these two types of data on precipitation in the Beijing region.

In purview of the above, the present study aims at exploring the independent and
combined impacts of these two microwave data sources on regional NWP assimilation and
forecasting to improve precipitation forecast accuracy in the Beijing area. Additionally, it
provides valuable references for the application of these two types of data in numerical
weather forecast models. This study is structured as follows: An introduction to the ground-
based microwave radiometer and FY-3D MWTS-2/MWHS-2 is presented in Section 2, along
with the preprocessing specific to these datasets. In Section 3, the experiments’ design
and an introduction to individual precipitation cases are introduced. Section 4 showcases
and discusses the results of numerical experiments, whereas Section 5 provides the study
conclusions and some final remarks.

2. Datasets and Preprocessing
2.1. Ground-Based Microwave Radiometer and Preprocessing

The ground-based microwave radiometer data used in this study are from the megacity
comprehensive observation experiment. Observation stations located in the Beijing area
from July to August 2021 were selected. There are six stations in total, namely Haidian
(Station ID 54399), Yanqing (Station ID 54406), Huairou (Station ID 54419), Pinggu (Station
ID 54424), Nanjiao (Station ID 54511), and Xiayunling (Station ID 54597), as shown in
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Figure 1. Each ground-based microwave radiometer has 14 receiving channels, including
seven temperature channels (52.26 to 58.00 GHz) and seven humidity channels (22.24 to
31.40 GHz). These radiometers can observe the atmosphere from the surface up to an
altitude of 10 km, with a temporal resolution of 2 min. The generated data products include
LV1 class brightness temperature and LV2 class retrieval products, offering profiles of
temperature and relative humidity. The profiles have 83 height levels, with resolutions of
25 m from 0 to 0.5 km, 50 m from 0.5 to 2 km, and 250 m from 2 to 10 km altitudes.
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Figure 1. Distribution of ground microwave radiometer stations, located in Beijing, China: Haidian
(Station ID 54399), Yanqing (Station ID 54406), Huairou (Station ID 54419), Pinggu (Station ID 54424),
Nanjiao (Station ID 54511), and Xiayunling (Station ID 54597).

Ground-based microwave radiometers have the potential to supplement or even
replace data traditionally obtained by sounding balloons, due to advancements in re-
mote sensing technology that have brought their measurement accuracy closer to that
of radiosonde data. Studies have shown a statistically significant correlation between
ground-based radiometer measurements of temperature, water vapor density, and relative
humidity with radiosonde observations [37–39]. In this study, data from a radiosonde
station in the Beijing area (Station ID 54511) and retrieval products from a collocated
ground-based microwave radiometer were analyzed over a month, as shown in Table 1.
The findings indicated significant correlations, with temperature and specific humidity
correlation coefficients exceeding 0.9 and relative humidity around 0.75, while maintaining
the mean bias within 1. These results underscore the critical role of ground-based mi-
crowave radiometers in atmospheric detection and their promising application prospects.
Although ground-based microwave radiometers have not been widely used, their potential
and contribution to improving weather forecasting accuracy deserve further exploration
and evaluation through more extensive experimental research.

Before entering the assimilation system, quality control (QC) and bias correction (BC)
of temperature and humidity profiles of ground-based microwave radiometer retrieval
products were performed. To ensure unbiased entry of these profiles into the assimilation
system, ERA5 (reanalysis data from the ECMWF) [40] three-hour forecast data served as the
reference during the preprocessing. Firstly, calculate the standard deviation (σ) of all the
data deviations. Remove data points with deviations exceeding three times the standard
deviation. Subsequently, employ a univariate linear model to perform bias correction on
the data. Taking the temperature profile as an example, Figure 2 shows the probability
distribution function of the bias of temperature data at six stations before and after QC
and BC. As can be seen from the red shading and the red curve, the mean bias of the
temperature is larger before QC and BC. After preprocessing, the mean bias of each station



Remote Sens. 2024, 16, 2682 5 of 22

decreased and tended to zero, and the probability distribution functions approached a
Gaussian distribution.

Table 1. Overall temperature and relative humidity evaluation results from ground-based microwave
radiometer and radiosonde at Station 54511. RMSE—root mean square error.

Element Evaluation Index Index Value

Bias/K −0.4053
Temperature RMSE/K 1.968

Correlation coefficient 0.994
Bias/% 0.642

Relative humidity RMSE/% 11.23
Correlation coefficient 0.7515

Bias/(g/kg) −0.01768
Specific humidity RMSE/(g/kg) 1.413

Correlation coefficient 0.9717
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temperature data before and after preprocessing for stations (a) 54511, (b) 54597, (c) 54419, (d) 54424,
(e) 54511, and (f) 54597. The red “u” and “o” represent the error mean and error standard deviation
of all samples before QC and BC. The blue “u” and “o” represent the error mean and error standard
deviation of all samples after QC and BC.

2.2. FY-3D MWTS-2/MWHS-2 and Preprocessing
2.2.1. FY-3D MWTS-2/MWHS-2

The FY-3D satellite is the fourth second-generation polar-orbiting satellite launched
by China. Its orbit is about 830 km above the Earth, and it can detect the same area of the
Earth twice a day. MWTS-2 has a total of 13 detection channels at 50 to 60 GHz and is
capable of receiving ground information and vertical temperature distribution from the
surface to the atmosphere at an altitude of 3 hPa. The instrument has an orbital width of
2250 km and produces 14 observational data files per day, generating a total of 14 passes
daily. Each file has 1212 scan lines, with each scan line having 90 ground observation pixels.
The instrument has a nadir resolution of 33 km.
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MWHS-2 has 15 detection channels, of which several channels with a center frequency
of 118 GHz are oxygen absorption channels, which are mainly used to detect the vertical dis-
tribution of atmospheric temperature. Several channels with a center frequency of 183 GHz
are mainly used to detect the vertical distribution of atmospheric humidity. Channels 1 and
10 are window channels used to detect ground information. The instrument has an orbital
width of 2260 km and produces 14 observational data files per day. Each file has 2378 scan
lines, with each scan line having 98 ground observation pixels. The nadir resolution of
channels 1 to 9 is 32 km, while the nadir resolution of channels 10 to 15 is 16 km.

2.2.2. Quality Control

Since satellite observation data can be affected by factors related to the instruments
and the detection environment, directly integrating these data into assimilation systems
can introduce significant errors [41]. It is necessary to eliminate data of poor quality and
low precision to ensure the quality of the assimilated materials. For the quality control
of MWTS-2/MWHS-2, existing research has already summarized a set of mature quality
control schemes. This paper’s specific approach includes the following items:

(1) Observations with MWTS-2 brightness temperature less than 50 K and greater than
350 K are excluded, and the observations with MWHS-2 brightness temperature less
than 90 K and greater than 340 K are excluded. Values that are too small or too large
are not normal observations.

(2) Eliminate all observation data that contain mixed surface types, including mixed
surface observations of ocean, sea ice, land, and snow.

(3) The zenith angle at the edges of the scan lines of the microwave detector is larger,
resulting in a longer atmospheric radiation path and consequently lower observed
radiance values. Therefore, observations from the five scanning points on both the
left and right sides of each scan line of MWTS-2 are eliminated, as well as observa-
tions from the six scanning points on both the left and right sides of each scan line
of MWHS-2.

(4) Eliminate observations with residuals (observation minus background, O-B) exceed-
ing three times the standard deviation of the residual values.

(5) Eliminate channel observations for viewpoints located in cloudy areas. The method
for cloud detection is based on cloud detection products from the moderate resolution
spectral imager (MERSI) on the same satellite. By matching the field of view angles
of the two types of data, if the average cloud cover within the instantaneous field
of view of the microwave detector is greater than 76% [42], then that viewpoint is
considered a cloudy area.

(6) Considering the impact of surface factors and the limitations of model altitude, the
assimilation experiment selects MWTS-2 channels 4 to 9 and MWHS-2 channels 11
to 13 and channel 15, excluding the window region and upper atmosphere. Channel
14 of MWHS-2 is not selected due to its significant errors [43].

(7) To minimize potential correlations between adjacent radiance observations, the MWTS-
2/MWHS-2 radiance data are thinned on a 45 km grid.

2.2.3. Bias Correction

Due to multiple sources of error, such as instrument sensitivity, sensor response charac-
teristics, calibration, and radiative transfer models, there can be a systematic bias between
satellite-observed brightness temperatures and the background field-simulated brightness
temperatures [44]. After quality control, it is still necessary to correct the systematic bias
between satellite-observed brightness temperatures and the model background fields to
ensure that MWTS-2/MWHS-2 data enter the assimilation system with minimal bias. The
variational bias correction (VarBC) module within the WRFDA assimilation system is used
to correct biases for MWTS-2/MWHS-2. The radiance bias of satellite observations can be
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represented by a linear combination of a set of forecast predictors pi, and the observation

operator after bias correction
∼
H can be expressed as:

∼
H(x, β) = H(x) + β0 + ∑Np

i=1 βi pi (1)

H(x) is the observation operator before correction, β0 is constant the deviation part, βi and
pi are, respectively, the deviation correction factor and the forecasting factor. It is generally
believed that the deviation correction coefficient is independent among channels, and the
deviation correction coefficient can be obtained by off-line statistical calculation using the
variational deviation correction method. This study utilizes observations from MWTS-
2/MWHS-2 spanning from 1 July to 31 July 2021 to statistically derive bias correction
coefficients, which are then applied in the current experiment.

Figure 3 shows the probability distribution function of observation-minus-background
(OMB) and observation-minus-analysis (OMA) for MWTS-2 channel 7 and MWHS-2 chan-
nel 11 before and after bias correction at 1800 UTC on 1 July 2021. The analysis is based
on clear-sky observations post-quality control. There is a significant negative bias for the
two channels before correction. After correction, the mean bias is close to zero, and the
root mean square error (RMSE) is notably reduced. The OMA distribution indicates that
the mean bias between the analysis field and observation is close to zero. These findings
demonstrate that systematic biases in satellite observation data are effectively minimized
following quality control and bias correction, ensuring the reliability of data entering the
assimilation system.
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2.2.4. Retrieval of Satellite Emissivity in the Cloud Region

To comprehensively assess the role of MWTS-2/MWHS-2 data in data assimilation, this
study not only investigates data assimilation under clear-sky conditions but also considers
observations under cloudy conditions. The data under cloudy conditions are initially
processed using the retrieve method, followed by assimilating the retrieval temperature
and humidity profiles. This study employs an artificial neural network (ANN) algorithm for
retrieval, a technique that has been widely applied in remote sensing data retrieval and has
reached a mature stage of application [45,46]. Jin et al. [47] successfully applied the ANN
algorithm for the classification retrieval and assimilation of brightness temperature data in
the cloud regions of MWTS-2/MWHS-2, yielding significant outcomes. This paper adopts
its retrieve method. The advantages of this method include direct use of the observed
brightness temperature for modeling, avoiding the need for bias correction of brightness
temperature in the retrieve process; the forward derivation of the neural network can be
completed offline without relying on any additional input data; and the data error obtained
from the retrieval is not affected by the background field.

In constructing the neural network model for this study, ERA5 reanalysis data with
a spatial resolution of 0.1◦ × 0.1◦ are combined with satellite-observed brightness tem-
perature data to create a training sample database. Utilizing the cloud detection method
described above, cloud samples from May 2021 are identified and categorized by surface
type (marine and land) over China and its adjacent regions. The artificial neural network
is designed with a four-layer architecture, comprising an input layer, two hidden layers,
and an output layer. The model has 30 nodes in the hidden layers for temperature retrieval
and 35 nodes for humidity retrieval. The input layer’s data include brightness temperature
from the microwave detector, satellite zenith angle, and scan position information, with al-
titude and surface reflectivity data also included for land areas. The output layer generates
temperature and humidity profiles, which have 37 height levels. In this neural network
model, the activation function employed between each layer is the hyperbolic tangent
sigmoid transfer function (tansig). The “tansig” function maps the input values into a range
between −1 and 1, and its nonlinear characteristics enable the network to adeptly learn and
simulate the complex relationships between input and output data. The training algorithm
used for the neural network is the conjugate gradient method. This method optimizes
the network weights by adjusting the direction and step length of the gradient descent,
aiming to minimize the error function. It is known for its rapid convergence and stable
performance, making it especially suitable for addressing large-scale network challenges.

Figure 4 shows the cloud distribution after cloud matching at 1800 UTC on 1 July
(Figure 4a) and 0600 UTC on 2 July (Figure 4b) and the cloud cover distribution from the
moderate resolution spectral imager (MERSI) carried by the FY-3D satellite (Figure 4c,d).
The comparison between cloud matching and observational data reveals a strong corre-
spondence in both cloud and clear-sky regions, demonstrating the effectiveness of the cloud
matching method. The proportion of cloud-covered areas is substantial; thus, the effective
utilization of satellite cloud data is of significant importance for the advancement of nu-
merical forecasting. Figure 5 shows the distribution of clear-sky observations from channel
11 of MWHS-2 at 1800 UTC on 1 July (Figure 5a,b) and 0600 UTC on 2 July (Figure 5c,d)
and temperature retrieval data at the 500 hPa altitude. In the Beijing region, predominantly
clear-sky observations are observed at 1800 on 1 July, with partial cloud retrieval data
observed at 0600 on 2 July.
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3. Experiment Description and Model Configurations
3.1. Brief Description of Precipitation Case

In July 2021, the national average precipitation in China was 3.2% above the norm for
the same period in previous years [48], with several regions experiencing more than 200 mm.
In particular, the Beijing area encountered a significant precipitation event in early July, as
shown in this case study. The precipitation mainly occurred from 1800 UTC on 2 July to 0000
UTC on 3 July (Figure 6), with the peak rainfall in the first three hours (Figure 6b) exceeding
50 mm, reaching storm level. The primary precipitation center was located in central Beijing
and the confluence areas of Beijing, Tianjin, and Hebei, with the rain band extending from
northeast to southwest across central Beijing. Subsequently, the precipitation center shifted
eastward until the rainfall subsided. Characterized by high intensity and concentrated
duration, this event represented a typical heavy precipitation occurrence.
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3.2. Model Configurations

This study uses the weather research and forecasting (WRF) model and the WRF data
assimilation (WRFDA) system, developed by the National Center for Atmospheric Research
(NCAR), and uses the RTTOV12.2 fast radiative transfer model serving as the observation
operator to assimilate satellite radiance data. There are three assimilation schemes in
the WRFDA assimilation system: three-dimensional variational (3D-Var) assimilation,
four-dimensional variational (4D-Var) assimilation, and hybrid assimilation techniques.
Specifically, this study selects the 3D-Var scheme, which uses the conjugate gradient method
to minimize the cost function to obtain the optimal solution of the atmospheric state.

The research area center of the experiment was (40.16◦N, 114.36◦E), which mainly
covered North China (Figure 7). The number of zonal and meridional grids in the test
area were 424 and 550, respectively, with a horizontal resolution of 3 km. The model’s
vertical layers were set to 59, with a topmost pressure at 10 hPa. Physical parameterizations
included the WSM6 microphysics scheme [49], RRTM long-wave radiation scheme [50],
Goddard short-wave radiation scheme [51], Noah land surface [52], Monin–Obukhov near-
surface scheme [53], Kain–Fritsch cumulus cloud scheme [54], and the Yonsei University
boundary layer scheme [49]. The National Centers for Environmental Prediction (NCEP)
global forecast system (GFS) analysis and forecasts were used to provide the background
and boundary conditions. To address “spin up”, the initial condition was derived from a
12 h integration of GFS data from 0600 UTC on 1 July. Assimilation and prediction were
performed three separate times, with the assimilation data first added at 1800 UTC on
1 July and then the last assimilation at 0600 UTC on 2 July (Figure 8). The time window for
assimilation was set to 2 h and the thinning distance of MWTS-2/MWHS-2 radiance data
was 45 km.

This study set four experiments. The first experiment assimilated only conventional ob-
servational data, which included ground station data from global communication systems,
radiosondes, aircraft, and ship observations, and this setup was referred to as CTRL. In
the second set of experiments, the temperature and humidity profiles of the ground-based
microwave radiometer were added based on conventional observation data, and were
recorded as MWR. The third set of tests was based on the CTRL, and the MWTS-2/MWHS-2
data were added at the moment of 1800 UTC and 0600 UTC of the FY-3D satellites passing
through the experiment area, respectively, and were recorded as FY. The fourth experiment
combined the MWR and FY experiments, joined the conventional observation, ground-
based microwave radiometer, and MWTS-2/MWHS-2 data into the assimilation system,
and were recorded as MWR_FY. When assimilating conventional observations, the CV3
scheme was employed as the background error covariance, while, for assimilating other
datasets, the CV7 scheme was used [55].
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3.3. Batch Experiments

In addition to the single-case experiment using cyclic assimilation, the study used
batch experiments to verify the effect of microwave data on assimilation forecasts. The
batch experiment used the single assimilation plus forecast method, and 10-day batch
experiments were conducted, specifically from 1 to 10 July 2021. That is, the observations
were added at 06 UTC and 18 UTC of each day for assimilation and then forecast 24 h.
The physical parameterizations of the model and the comparison test group remained
consistent with the single-case experiment.

4. Results
4.1. Analysis of Assimilation Data

From Figures 4 and 5, it can be seen that the FY3D satellite data of 1800 UTC on 1 July
in the Beijing area are all clear-sky data. Figure 9 shows the geographical distribution of
MWR observations, retrieval data, and clear-sky observations in the Beijing area at the
850 hPa (Figure 9a) and 500 hPa (Figure 9b) levels at 0600 UTC on 2 July. In the Beijing
region, there are three profiles of radiation retrieval from the cloud region of FY3D, with
clear-sky data primarily distributed to the northeast. Figure 10 displays the retrieval
temperature and humidity profiles alongside MWR profiles from adjacent locations. The
adjacent MWR sites are numbered 54399, 54419, and 54597 respectively. From the profile
plots, it can be observed that there is a significant correlation between the retrieval profiles
and the MWR data, thus validating the effectiveness of cloud area radiation data retrieval.
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Table 2 shows the number of clear-sky scan bins and retrieval data under cloudy
conditions of MWTS-2 and MWHS-2 assimilated at 18 and 06 UTC. The amount of retrieval
data for temperature and humidity is consistent. For clear-sky radiance data, MWTS-2
has more scan bins compared with MWHS-2 because more MWTS-2 channels were used
than MWHS-2 channels. Additionally, the weighting function peak heights for channels 8
and 9 of MWTS-2 are above 90 hPa, making them less affected by the surface and cloud,
thus retaining more data. For this case study, at both 18 and 06 UTC, the amount of clear-
sky data and retrieval data under cloudy conditions is comparable. Notably, at 18 UTC
on 1 July, the number of retrieval data points under cloudy conditions exceeds that of
the clear-sky scan points. This highlights the importance of observations under cloudy
conditions, demonstrating that effectively utilizing such data can increase the utilization
rate of satellite data. It also indicates that, in this case study, both clear-sky and cloudy data
impact the experiment.
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Table 2. Amount of retrieval data and clear-sky radiance.

Cycle Time Amount of Retrieval Data
Amount of Clear-Sky Radiance

Scan Bins of MWTS-2 Scan Bins of MWHS-2

18 UTC 2307 1587 420
06 UTC 2196 1960 551

4.2. Impact on Analysis Increment

MWTS-2/MWHS-2 and ground-based microwave radiometers mainly affect mode
temperature and humidity. To evaluate the influence of different datasets on the analysis
field, we analyze the adjustment effects on the analysis field and their contributions to the
initiation and development of precipitation, focusing on specific humidity increments at the
initial assimilation time. The analysis includes vertical cross-sections of specific humidity
increments (Figure 11) and the 500 and 800 hPa humidity increment fields (Figure 12) for
four assimilation experiments around Beijing at 1800 UTC on 1 July.
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Figure 12. Specific humidity increments after the first data assimilation at 500 hPa and 850 hPa
altitude from (a) CTRL, (b) MWR, (c) FY, and (d) MWR_FY, with the black mark indicating the
location of the ground-based microwave radiometer station.

Both the cross-sectional and pressure plane diagrams indicate that the increments
in the CTRL experiment are very slight, suggesting a minimal influence of conventional
observations at the initial assimilation time on the analysis field. The cross-section of the
MWR experiment reveals both positive and negative increments in the 0–4 km altitude
range above the Beijing region, with the central value of positive increments surpassing
that of negative increments. Similarly, clear positive and negative increment pairs are
discernible in the increment diagrams at 500 and 800 hPa altitudes.

The FY experimental vertical cross-section shows that, above the Beijing area, it
primarily exhibits small negative humidity increments. Surrounding the Beijing area, both
positive and negative increments are simultaneously present, with increment center values
smaller than those of the MWR experiment. The data impacting the Beijing area in the FY
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experiment at 1800 UTC on 1 July mainly consist of satellite clear-sky radiation data. This
suggests that the clear-sky and cloudy data from MWTS-2/MWHS-2 influence the analysis
field, albeit to a lesser extent than the ground-based microwave radiometer data in the
Beijing region. The increment patterns in the MWR_FY experiment resemble those in the
MWR experiment. Although the MWTS-2/MWHS-2 data are more abundant compared
with the ground-based microwave radiometer data, in this rainfall case, the increments
generated by the ground-based microwave radiometer in the Beijing area are larger than
those from MWTS-2/MWHS-2. Therefore, compared with the MWR experiment, the FY
experiment shows less noticeable increments in the Beijing region. However, outside the
Beijing area, the increments from the MWTS-2/MWHS-2 data are more significant.

Analysis of humidity increments reveals that ground-based microwave radiometers
exert a significant influence in the Beijing area. Negative humidity increments to the west
of Beijing might inhibit precipitation occurrence, while positive increments to the east could
potentially promote precipitation. Through joint assimilation, under the influence of both
ground-based microwave radiometers and MWTS-2/MWHS-2 data, adjustments are made
across the entire study area.

4.3. Impact on Forecasts
4.3.1. Temperature Prediction Field

To better evaluate the influence of ground-based microwave radiometer and MWTS-
2/MWHS-2 data on the model forecast, the temperature forecast field of 500 hPa at
0000 UTC on 3 July is selected for analysis. Figure 13b–e display the overlaid forecasts
fields of temperature and wind at 500 hPa altitude for each experiment in Beijing and its
surrounding areas at 0000 UTC on 3 July, while Figure 13a shows the GFS analysis field in
the same situation. The temperature exhibits a decreasing trend from southeast to north-
west, with relatively parallel isotherms. The temperature fields of the four assimilation
experiments and the GFS analysis field show a similar distribution pattern, and the flow
trends of the wind fields are also similar. However, there are slight differences in the distri-
bution of each experiment group. In the CTRL experiment, the distribution of isotherms in
the Beijing area is relatively sparse, with almost the entire Beijing region falling within the
range of 264 K and 265 K isotherms. In contrast, the isotherms in the Beijing area for the
other three experiments are denser, providing corresponding temperature conditions for
precipitation in the Beijing area. Additionally, compared with the CTRL experiment, the
experiments incorporating microwave data exhibit temperature distributions in the Beijing
area that are closer to the GFS analysis field, with the temperature and wind fields in the
MWR_FY experiment being the closest to the GFS.
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4.3.2. Humidity Prediction Field

To further investigate the impact of data assimilation on the occurrence and develop-
ment of severe convective storms, this study analyzed the humidity forecast fields crucial
for precipitation. Figure 14 shows vertical cross-sections along 40◦N of three meteorological
elements—relative humidity, temperature, and wind fields—at 0000 UTC on 3 July 2021.
Figure 14a represents the GFS analysis field, while Figure 14b–e show forecast fields from
four assimilation experiments. The GFS analysis field indicates that relative humidity
reaches 85% from the surface to 400 hPa in the region of 116–120◦E, suggesting abundant
moisture conducive to precipitation. Further examination of wind field cross-sections from
assimilation experiment forecasts reveals strong airflow disturbances and uplift from near
the surface to the mid-upper troposphere, facilitating precipitation. By 0000 UTC on 3 July,
the precipitation center shifts to the Beijing–Tianjin–Hebei junction. Therefore, relative
humidity above 115–116◦E is relatively low, with humidity distributions in the FY and
MWR_FY experiments better aligning with observations. Compared with the CTRL experi-
ment, the MWR experiment shows smaller adjustments. The FY and MWR_FY experiments
exhibit larger adjustment magnitudes. From the overall distribution shape of the humidity
cross-section, the MWR_FY experiment best matches the GFS analysis field.
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Figure 14. Vertical cross-sections of relative humidity (shadow), temperature (red lines), and wind
field (vectors) along 40◦N from (a) GFS, (b) CTRL, (c) MWR, (d) FY, and (e) MWR_FY at 0000 UTC on
3 July 2021.

4.3.3. Precipitation Forecast

Figure 15 shows the accumulated precipitation distributions of actual observations and
four experiments over six hours (from 1800 UTC to 2100 UTC on 2 July), the first three hours
(from 1800 UTC to 2100 UTC on 2 July), and the last three hours (from 2100 UTC on 2 July
to 0000 UTC on 3 July). The cumulative precipitation distribution over six hours shows
that the precipitation center of the CTRL experiment is mainly distributed west of Beijing,
with a northwest-to-southeast orientation of the rain belt. The MWR experiment effectively
adjusts the orientation of the rain belt, aligning it with observations over Beijing, although
the precipitation position is slightly westward compared with the actual observations. The
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FY experiment’s precipitation position is close to the actual observations, but there is false
precipitation outside the Beijing area. The MWR_FY experiment overall shows three rain
bands, with their pattern closest to the actual observations, and the center of precipitation
within the Beijing area consistent with the actual observations, just slightly smaller in terms
of precipitation magnitude.
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Figure 15. Distribution of precipitation forecasts for the 6 h (from 1800 UTC on 2 July to 0000 UTC
on 3 July), the first 3 h (from 1800 UTC to 2100 UTC on 2 July), and the last 3 h (from 2100 UTC on
2 July to 0000 UTC on 3 July) from OBS (actual observation), the CTRL, the MWR, the FY, and the
MWR_FY experiments.

Compared with the CTRL experiment, the precipitation distribution over the first
three hours reveals notable improvements in precipitation locations for the other three
experiments. Specifically, the precipitation center of the MWR experiment is slightly
westward within the Beijing area, while the precipitation centers of the FY and MWR_FY
experiments are closest to the actual observations. While the MWR_FY experiment exhibits
a smaller coverage of heavy rainfall and above compared with the actual observations, its
overall precipitation distribution and pattern closely resemble the truth. The accumulated
precipitation of the last three hours shows that, compared with the CTRL and MWR
experiments, the precipitation at the junction of Beijing, Tianjin, and Hebei in the FY and
MWR_FY experiments is closer to the actual observations.

To further explore the impact of data assimilation on precipitation forecast, the threat
score (TS) is calculated for the precipitation forecasts of Beijing and its surrounding areas
from the four experiments. Figure 16 shows the cumulative precipitation’s TS over 6 h
(Figure 16a), the first 3 h (Figure 16b), and the last 3 h (Figure 16c). In the 6 h TS, since
the precipitation areas of all experiments cover the range of the truth, there is not much
difference in TS below the 10 mm level, but differences are evident at the 25 mm and
50 mm levels. At the 25 mm level, compared with the CTRL, the TSs of the other three
experiments show significant improvements, with the highest TS observed in the MWR
experiment, followed by the MWR_FY. At the 50 mm level, the MWR_FY shows the highest
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TS. Assimilating MWR and MWTS-2/MWHS-2 separately results in a slight decrease in TS
at the 50 mm level, but a significant improvement is observed after joint assimilation.
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In the first 3 h scores, the most significant improvements in the MWR experiment are
observed at the 10 mm and 15 mm levels, while, for the FY experiment, the most notable
improvement is seen at the 25 mm level. The joint assimilation experiment (MWR_FY)
shows a lower TS for heavy rainfall levels (>25 mm) in the first 3 h compared with individual
assimilation experiments. However, its improvements in precipitation location and pattern
are significant, with a higher TS observed for precipitation levels of 10 mm and below. For
the last three-hour TS, the MWR_FY’s is highest, followed by the FY experiment. Overall, in
this six-hour short-term heavy rainfall case, compared with the CTRL experiment forecast,
the assimilation of ground-based microwave radiometer data contributes slightly more to
the accuracy of precipitation forecasts in the first three hours, whereas the assimilation of
MWTS-2/MWHS-2 data has a slightly greater contribution in the latter three hours. The
joint assimilation of these datasets further enhances the prediction of the entire rainfall
band, particularly regarding the pattern and location of precipitation.

4.4. Prediction Results of Batch Experiment

To verify the impact of the observations on the forecasts, root mean square error and
bias (rmse/bias) and precipitation threat scores are used to compare and analyze the results
of the batch experiments. As with the single-case experiment, the analyses are carried out
mainly for Beijing and the surrounding region. The rmse and bias of temperature and
relative humidity variations with height for the 12 h and 24 h forecast fields are calculated
using the GFS analyzed field data as the true values and the mean values are calculated for
the results of the 10-day experiments.

Figure 17 shows the profiles of the RMSE and bias of temperature and relative humidity
for the 12 h and 24 h forecast fields, where (a–d) are temperature and (e–h) are relative
humidity. The RMSE values of the 12 h and 24 h forecast fields for temperature and relative
humidity for the MWR, FY, and MWR_FY experiments above the 550 hPa altitude show a
slight improvement compared with the CTRL experiment but exhibit a slightly negative
effect in the lower troposphere. In the bias profiles for temperature above the 750 hPa
altitude, the MWR, FY, and MWR_FY experiments are closer to zero compared with the
CTRL experiment, with the joint assimilation experiment MWR_FY being the closest to
zero. However, there is a negative effect below the 750 hPa altitude. The bias in relative
humidity is relatively large, with more pronounced improvements observed in the 12 h
forecast field compared with the 24 h forecast field.
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Figure 17. RMSE/bias profiles for 12 h and 24 h temperature (a–d) and relative humidity
(e–h) forecast fields.

Overall, the improvement effect of microwave data on temperature and relative
humidity is mainly observed in the upper-middle troposphere, while it even has a negative
effect in the lower-middle troposphere. It may be attributed to the exclusion of some
MWTS-2/MWHS-2 data at near-surface heights in this study. Additionally, detection and
retrieval accuracies are influenced by factors such as surface topography, leading to errors.

Figure 18 shows the TS scores for the 24 h and 12 h by 12 h precipitation forecasts for
the batch experiments. For the 0–12 h precipitation forecasts, the improvement in forecasts
from the experiments incorporating microwave observation is neutral to positive. The effect
is negative for moderate rainfall and below, but slightly positive for 25 mm and 50 mm.
For 12–24 h precipitation forecasts, the other three experiments show slightly significant
improvements compared with the CTRL experiment. Among them, the MWR experiment
has a more significant improvement compared with the FY experiment, while the MW_FY
experiment has a lower TS than the MWR experiment at 10 mm and below level but the
highest ratings at 25 and 50 mm levels. In terms of the 24 h forecast, the microwave data
assimilation experiment has a very small, if not negative, effect on improving light rain
forecasts. However, at 10 mm and above precipitation, the improvement of the assimilated
experiments is significant. In particular, the MWR_FY experiment has the largest TS at
10 mm, 25 mm, and 50 mm.
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The analysis of the precipitation results from the batch experiments shows that the
ground-based microwave radiometer and the FY-3D microwave sounder data have a
positive impact on the forecast of short-term precipitation. The effect may be slightly
different for different precipitation scenarios, but the overall effect on assimilation and
forecast is neutral to positive. It can also be seen that joint assimilation has a further positive
effect compared with individual assimilation.

5. Conclusions

This study employed the regional numerical weather forecast model WRF and the
WRFDA assimilation system to assimilate ground-based microwave radiometer and FY-
3D MWTS-2/MWHS-2 observation. Both separate assimilation and joint assimilation
experiments were conducted to compare and analyze the forecasting performance of a
short-duration heavy rainfall event in the Beijing region. Further 10-day batch experiments
were used to verify the impact of the two microwave observations on temperature, humidity,
and precipitation forecasts. The main conclusions were as follows.

(1) The utilization of retrieval methods for cloud observation increases the utilization rate
of satellite data. Analysis increment indicates that both clear-sky radiance data from
MWTS-2/MWHS-2 and temperature and humidity profiles retrieved from cloudy
regions contribute to the improvement of the analysis field. The conventional observa-
tions’ effects are not significant, the ground-based microwave radiometer data mainly
affect the Beijing region, while the FY-3D data can impact the entire experimental
area. This reflects that the ground-based microwave radiometer and FY3D data can
compensate for the inadequacy of conventional observations.

(2) Compared with the CTRL experiments, the other three sets of experiments show a
slight improvement in forecasting precipitation from the single-case experiment. In
the 6 h accumulated precipitation, the MWR_FY experiment improves the TS by 38.2%
and 54.4% at the 25 mm and 50 mm levels, respectively, compared with the CTRL
experiment. The ground-based microwave radiometer and MWTS-2/MWHS-2 data
exhibit effective adjustment on the thermal structure of the analysis field, which is one
of the reasons to improve the accuracy of precipitation forecasting. For this rainfall
case, the forecasting of the joint assimilation is closest to the actual observations.

(3) From the results of the temperature and humidity forecasts of the batch experiments,
it is clear that the ground-based microwave radiometer and MWTS-2/MWHS-2 have
an improving effect at heights above the upper-middle troposphere, and that the
joint assimilation of the two types of observations has relatively the best improving
effect among the experiments. However, there is a slightly negative effect at some
heights. The analysis of the TS from precipitation forecasts confirms that the addition
of the two types of microwave data improves the accuracy of the forecasts for larger
amounts of precipitation.

In this study, despite assimilating effectively the ground-based microwave radiometer
and FY-3D MWTS-2/MWHS-2 clear-sky radiance and cloud-sky retrieval data, these two
types of data remain challenging for forecasting severe convective weather, particularly
the assimilation of all-sky satellite data. While joint assimilation shows the overall best
performance in predicting rainfall bands in this study case, there is a reduction in the
intensity at the center of heavy rainfall. This necessitates further investigation into the
physical effects of the data on the assimilation system, which could be achieved through
case studies and further physical research. For the batch experiments where the rmse
and bias profiles show negative effects at some heights, this needs to be examined for the
observations at these heights, and further research is required. Additionally, this study
only addresses the weather conditions of precipitation. To more comprehensively reveal
the impact of the two types of data on assimilation and forecasting, future work should
extend to cases involving typhoons, cold waves, and severe convective weather.
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