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Abstract: The matching of remote sensing images is a critical and necessary procedure that directly
impacts the correctness and accuracy of underwater topography, change detection, digital elevation
model (DEM) generation, and object detection. The texture of images becomes weaker with increasing
water depth, and this results in matching-extraction failure. To address this issue, a novel method,
homography-based motion statistics with an epipolar constraint (HMSEC), is proposed to improve
the number, reliability, and robustness of matching points for weak-textured seafloor images. In
the matching process of HMSEC, a large number of reliable matching points can be identified from
the preliminary matching points based on the motion smoothness assumption and motion statistics.
Homography and epipolar geometry are also used to estimate the scale and rotation influences of
each matching point in image pairs. The results show that the matching-point numbers for the
seafloor and land regions can be significantly improved. In this study, we evaluated this method
for the areas of Zhaoshu Island, Ganquan Island, and Lingyang Reef and compared the results to
those of the grid-based motion statistics (GMS) method. The increment of matching points reached
2672, 2767, and 1346, respectively. In addition, the seafloor matching points had a wider distribution
and reached greater water depths of −11.66, −14.06, and −9.61 m. These results indicate that the
proposed method could significantly improve the number and reliability of matching points for
seafloor images.

Keywords: remote sensing; image matching; seafloor; motion smoothness; homography

1. Introduction

The surveying and mapping of underwater topography for coastal zones, islands,
and reefs is one of the most crucial research fields in oceanography and provides key
geographic information data for nearshore navigation [1–3], ocean geomorphology [4,5],
coral reef studies [6,7], and hydrography [8,9]. Currently, underwater topography in coastal
zones and island areas is primarily dependent on airborne light detection and ranging
(LiDAR) and spaceborne photogrammetry, and the efficiency of shipborne acoustic systems
in these areas is extremely low [10,11]. However, the detection area of this method is
usually limited by the airborne platform [12]. Another mainstream method for underwater
topography is spaceborne photogrammetry based on high-resolution multispectral stereo
images, which can efficiently obtain expansive underwater topography of coastal, island,
and reef areas [13]. In the process of spaceborne photogrammetry, remote sensing image
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matching is a critical and necessary procedure that directly impacts the correctness and
accuracy of underwater topography [14]. Furthermore, image matching is identified as a
crucial step, with the quality of the match exerting a direct influence on the performance of
applications, such as change detection, object detection and tracking, and image stitching.
Compared with conventional image matching for land areas [15–17], the remote sensing
image matching of coastal zones and islands includes some areas covered by the water col-
umn with different depths, which decreases the image texture information and significantly
increases the matching difficulty [18,19].

The process of remote sensing image matching can be divided into two steps: (1) extraction
and matching of the point pairs from the stereo image pairs, and (2) optimization of the
matching points [20]. Methods for the extraction and matching of the point pairs can be gen-
erally classified into two categories: area-based methods and feature-based methods [21].
Area-based methods, also referred to as correlation-like or template matching, establish
correspondence between reference and sensed pixels using a similarity measure. Feature-
based methods aim to identify distinctive features in images and then match these features
to establish correspondence between reference and sensed images. However, area-based
matching methods are only suitable for homologous images with linear radiometric dif-
ferences and face challenges when used to extract common features between image pairs.
Conversely, feature-based matching is more suitable for situations involving significant
scales of offset, geometric distortion or scale differences between two images [22]. Typical
solutions rely on feature detectors, descriptors, and matchers to generate putative corre-
spondences. At present, feature-matching methods, such as invariant feature transform
(SIFT) [23], speeded-up robust features (SURF) [24], accelerated KAZE (AKAZE) [25], and
oriented brief (ORB) [26], are generally performed based on “feature points” detection and
description by their local intensity or shape patterns.

After the process of extraction and matching of the point pairs, extensive matching
points are extracted, including true and false matches. Therefore, the initial result of the
matching points should be optimized to remove false matches. A large portion of true
matches are eliminated to limit false matches [27]. Several techniques have been proposed
to solve this problem, for example, the ratio test (RT) and GMS [9,28]. The RT identifies high-
quality matches by comparing the distances of the two closest candidate points. However,
due to the lack of more stringent constraints, many incorrect matches remain difficult
to eliminate in complex scenes. GMS are related to optical flow, point-based coherence
techniques, and patch-match-based matchers, directly using smoothness to help match
estimations [29–31]. However, during the separation of true and false matches with GMS,
the scale and rotation of matching points are only detected and estimated by five and eight
discrete grid kernels [32–34]. In addition, a series of putative matches are included in one
grid, in which the different scales and rotations of matches are averaged. Therefore, a large
portion of true matching points could be considered false matches and removed.

For remote-sensing images of coastlines, islands, and reefs that contain seafloor image
pixels, the local self-similarity of the seafloor terrain leads to weak texture features and a lack
of salient point features [35]. In addition, the quality of imaging in water areas is affected by
waves, solar flares, and water properties [36,37]. As a result, traditional matching methods
have low matching accuracy. Feature-matching points that are automatically extracted
in areas with poor texture still require a significant amount of manual editing before
practical application [38]. To overcome the existing issues with the weak texture areas of
the seafloor for remote sensing images, the homography-based motion statistics with an
epipolar constraint (HMSEC) method is proposed. This method can effectively improve
the number, reliability, and robustness of matching points for weak-texture seafloor images
by translating a large number of putative matches into high-match quality and using
the homograph and epipolar geometry to estimate the scale and orientation influence of
matching points. In combination with ORB, the matching number and accuracy are ensured
and enhanced, and the distribution of matching points in the seafloor area is improved with
increasing depth. In addition, different experiments were performed using the island and
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reef images to validate the correctness and accuracy of the proposed method. Furthermore,
various matching metrics were used to compare and estimate matching results obtained
by the various methods. Finally, the matching points obtained by different methods were
projected into the water-depth image to analyze the distribution of matching results and
estimate the detection capability of HMSEC at different water depths.

2. Methodology

The HMSEC method with ORB was adopted to achieve robust feature matching and
obtain highly reliable matching points based on the neighborhood information of matching
points. The ORB method was used to generate a sufficient number of putative matching
points. For each initial putative matching point generated by ORB, the neighborhood
information used in HMSEC was used to determine correctness and remove false matching
points. In addition, epipolar geometry was used as a constraint with homography-based
motion statistics to ensure the reliability of the extracted true matching points. To realize
this aim, the proposed method, HMSEC with ORB, has four parts: (1) putative matching,
(2) filtering with motion statistics, (3) homography-based scale and orientation adaption,
and (4) matching-metrics evaluation. Figure 1 shows the flow chart of HMSEC with ORB.
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Figure 1. Flow chart of HMSEC with ORB.

2.1. Filtering with Motion Statistics

HMSEC rely on the motion smoothness constraint, the assumption that neighboring
pixels in one image move together as they often land in one object or structure. Although
the assumption is not generally correct, e.g., it is violated in image boundaries, it suits
most regular pixels. This is sufficient for our purpose as we are not targeting a final cor-
respondence solution but a set of high-quality correspondences for RANSAC (Random
Sample Consensus)-like approaches. The assumption means that neighboring true corre-
spondences in one image are also close in other images, while false correspondences are
not. This allows us to classify a correspondence as true or false by simply counting the
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number of its similar neighbors and the correspondences that are close to the reference
correspondence in both images.

True matches are influenced by the smoothness constraints, while false matches are
not. Let similar neighbors refer to those matches that are close to the reference match in
both images. True matches often have more similar neighbors than false matches, as shown
in Figure 2. To identify true matches, HMSEC use the number of similar neighbors.
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Let M be all matches across images I1 and I2, and let mi be one match correspon-
dence that connects the points ai and bi between two images. We define m′is neighbors as
Ri = {mj | mj ∈M, mj 6= mi, d

(
ai, aj

)
< δ}, and its similar neighbors as Ci = {mj | mj ∈ Ri,

d
(
bi, bj

)
< δ}, where d(·, ·) refers to the Euclidean distance of two points. We term |Ci|, the

number of elements in Ci, motion support for mi.
The motion support can be used as a discriminative feature to distinguish true and

false matches. Modeling the distribution of |Ci| for true and false matches, we obtain
Equation (1), in which B(·, ·) refers to the binomial distribution, and |R i| refers to the
number of neighbors for mi. The symbol t represents the probability of one true match
supporting its neighbor pixels, which is close to the correct rate of correspondences. The
false-match probability is denoted by f and is usually small, as false correspondences
approximately satisfy the random distribution in regular pixel regions.

|Ci| =
{

B(|R i|, t), i f mi is true
B(|R i|, f ), i f mi is f alse

(1)

E|Ci | =

{
Et =|Ri| ·t, i f mi is true

E f =
∣∣∣Ri

∣∣∣ · f , i f mi is f alse
(2)

V|Ci | =

{
Vt =|Ri|·t·(1− t), i f mi is true

Vf =
∣∣∣Ri

∣∣∣· f ·(1− f ), i f mi is f alse
(3)

Furthermore, the expectation of |Ci| can be derived and formulated as Equation (2),
and its variance is expressed by Equation (3).

s =

∣∣∣Et − E f

∣∣∣
√

Vt +
√

Vf

=
|Ri|·(t− f )√

|Ri|·t·(1− t)+
∣∣∣Ri

∣∣∣· f ·(1− f )
(4)
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Then, the separability between true and false matches can be defined as S and de-
scribed by Equation (4), where S ∝

√
|Ri|, and if |Ri|→ ∞ , S→ ∞ . This indicates that the

value of S is greater, andthe separability becomes increasingly reliable when the number
of feature points is sufficiently large. This occurs when t is just slightly larger than f , and
as a result, it is possible to obtain reliable matches from difficult scenes by increasing the
number of detected feature points.

mi ∈
{

T, i f |Ci| > αi
F , i f |Ci| ≤ αi

(5)

αi= β
√
|Ri| (6)

In addition, it shows that improving feature quality (t) can also boost separability. The
distinctive attributes allow us to decide if mi is true or false using the threshold |Ci| given
in Equations (5) and (6), where T and F denote true and false match sets, respectively. αi is
the threshold of |Ci|. The symbol β is a hyperparameter, which is empirically set to range
from 4 to 6.

2.2. Homography-Based Scale and Orientation Adaptation

In the matching process for two images, significant image changes in scale and rotation
exist in each image [39]. To address this issue, multi-scale and multi-rotation solutions are
adopted for image homography, which describes a geometric projective transformation
from one image space to the other. I1 and I2 are shown in Figure 3.x′

y′

1

 =
1
s
· A · R · T

x
y
1

 = λ · H ·

x
y
1

 = λ ·

h00 h01 h02
h10 h11 h12
h20 h21 h22

x
y
1

 (7)
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The homography between the two images is described by the H matrix, and the
homographic transformation is represented by Equation (7), in which the coordinates of I1
and I2 are represented by (x, y) and (x′, y′); (h00, h01, h02, h10, h11, h12, h20, h21, h22) represent
the nine elements of the matrix H, while h22 equals 1; the symbol s is the scale factor
between two images, and λ is the reciprocal of s; A means the matrix of the camera’s internal
parameters; and R and T represent the rotation and translation vectors of two images.

sx′ = h01x + h02y + h03
sy′ = h10x + h11y + h12

s = h20x + h21y + 1
(8)
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{
x′ = h01x+h02y+h03

h20x+h21y+1

y′ = h10x+h11y+h12
h20x+h21y+1

(9)

Through Equations (8) and (9), the scale factor of s is removed, and the coordinate
in image I2, corresponding to the coordinate of the matching point in image I1, can be
determined. In this process, the rotation of two images is taken into account and eliminated
by the rotation matrix R that is included in the matrix H.

In the process of the homography-based scale and orientation estimation, there are
deviations in the coordinates and angles for the matching points. The coordinate deviation
between the matching point after motion statistics and the point obtained by the homog-
raphy matrix is statistically counted for image I2, using standard deviation. Two-times
standard deviation (2σd) is used as a radius to construct a circle for each red point obtained
by the homography matrix, represented in Figure 3. When the corresponding matching
point after motion statistics is outside the circle, such as the green point P1, this means
its deviation is greater than the two-times standard of coordinate deviation, and it is an
unreliable matching point. On the contrary, the matching points P2 and P3 are reliable
matching points to be reserved. To improve the matching accuracy of the entire image, the
angle deviation between the lines connects each matching point in I1 with its corresponding
matching point in I2 and the calculation point. Then, the two-times standard deviation
(2As) of the angle deviation shown by the orange dashed line can be calculated and is used
to evaluate the matching point correctness and reliability. Finally, for each matching point,
when its coordinate and angle deviations in total are greater than the corresponding values
of 2σd and 2As, the point is considered unreliable and removed.

2.3. Matching-Metrics Evaluation

To evaluate the reliability and accuracy of HMSEC for nearshore remote sensing
images, five matching metrics were applied based on the results of various algorithms
and their comparisons. Therefore, this comprehensive set of metrics allowed us to embed
our analysis into the existing body of work. The standard metric is a metric that is pro-
posed for binary descriptor evaluation and used to assess the accuracy and reliability of
feature-descriptor matching [17]. In addition, the putative match ratio (PMR) and matching
score (MS) are also used for the raw matching performance of each image pair. Further-
more, a set of different metrics, the seafloor match ratio (SMR), seafloor matching number
(SMN), and total matching number (TMN), were adopted to evaluate the image-matching
results for the nearshore area via comparison with other methods and analysis of the
HMSEC characteristics.

The following notations are used to illustrate the metrics in this paper: Mp denotes
all putative matches across two images; F denotes all the features; Min denotes all inlier
matches across two images; Me denotes all matches across two images with an epipolar
constraint; Meo denotes all seafloor matches across two images with an epipolar constraint.
The PMR was adopted and used to quantify the selectivity of the descriptor in terms of the
fraction of the detected features initially identified as a pair of key point matches, which is
represented by the formulation of |M p

∣∣∣/|F|. The ratio of these two values was generally
utilized to estimate the raw matching performance for each image. The MS is formulated
as |M in|/|F| to represent the inlier ratio among all detected features, which is used to
describe the robustness and transformation efficiency of feature points. The metric of the
SMR is represented by |M eo|/ |M e| and means the percentage of the seafloor matching
points in the whole set of matching points. A higher percentage value expresses a better
seafloor matching result.

In image-matching research, the parameters described above are generally used for the
overall evaluation of matching results. In addition, recognition and determination by the
human eye are also generally used to compare location matching points with true ground
points or the relative location of matching points in left and right images. However, for
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islands and reefs located far away from land, it is difficult for humans to access them, and
consequently, matching points in images are not often compared in situ with the ground
point at the seafloor.

3. Study Area and Dataset
3.1. Study Area

This study focused on Zhaoshu Island, Ganquan Island, and Lingyang Reef in the
South China Sea. Zhaoshu Island is a part of the Qilianyu Islands, which are situated
at a 16.956 north latitude and 112.318 east longitude in China’s Xisha Islands. Ganquan
Island and Lingyang Reef are in the Yongle Islands at a longitude of 111.592 and a latitude
of 16.523. Zhaoshu Island, Ganquan Island, and Lingyang Reef are shown in Figure 4,
and their locations are marked with red, blue, and orange stars, respectively. Zhaoshu
Island and Ganquan Island include both land and seafloor areas. The WorldView-2 image
shows a large reef flat containing various sediments in the shallow water of Zhaoshu Island.
However, the sediment situation on Ganquan Island is relatively simple, and its water level
is significantly lower than that on Zhaoshu Island. Lingyang Reef is a large atoll with a
lagoon in its middle and is completely submerged. The radiation quality in Zhaoshu Island
is slightly better than in the other two areas. Each of these three areas was selected to test
the performance of the proposed method because they represent a significant area in the
South China Sea.
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3.2. Data and Experiment

The WorldView-2 satellite provides high-resolution data at a resolution of 0.52 m
for panchromatic images and 1.8 m for multispectral images at an understellar point.
WorldView-2 multispectral stereo image pairs of Zhaoshu Island, Ganquan Island, and
Lingyang Reef with less than 10% cloud cover were used. The WorldView-2 multispectral
image has 8 bands with a spectral range from 450 to 1040 nm [29]. The calibration accuracy
of WorldView-2 image can reach 0.5%, providing high-quality geographic data. The wide
coverage range and high sensitivity of these datasets make them powerful tools for global
ocean measurements and monitoring. The images used in this study are detailed in Table 1.
The images were preprocessed with atmospheric corrections using a fast line-of-sight
atmospheric analysis of spectral hypercubes (FLAASH) model based on the environment
for visualizing images (ENVI) 5.3 [40,41]. A solar glint effect exists in the image of Ganquan
Island, which affects feature detection and matching-point extraction. Thus, the solar glint
effect was eliminated using a linear regression method with the near-infrared band [42].

Table 1. Zhaoshu Island, Ganquan Island, and Lingyang Reef image data.

Study Area Acquisition Time Image Name Resolution (m)

Zhaoshu Island 11 March 2017
17MAR11030327-M2AS-056861369020_01_P001

1.8

17MAR11030446-M2AS-056861369020_01_P001

Ganquan Island 2 April 2014
14APR02033318-M2AS-054801903010_01_P001
14APR02033200-M2AS-054801903010_01_P001

Lingyang Reef 2 April 2014
14APR02033159-M2AS-056861369050_01_P002
14APR02033318-M2AS-056861369050_01_P002

The newly proposed HMSEC with ORB method was used to perform matching for
various remote sensing images around the islands and the reef. The matching results were
compared with current frequently used methods to validate the matching capability and
accuracy of HMSEC. The experiments were conducted as follows: (1) the HMSEC method
was configured with the feature detections (ORB-HMSEC) to achieve matching extraction
for three study areas; (2) The matching results of ORB-HMSEC were compared with those
from other configured methods based on SIFT, SURF, AKAZE, and ORB with the RT, GMS,
and HMSEC; and (3) Assessment metrics were used to assess the matching capabilities and
accuracies of the various methods and ensure the correction and accuracy of HMSEC for
land and seafloor areas.

4. Results
4.1. Matching-Point Results

To validate and analyze the robustness and accuracy of the proposed matching method,
remote sensing images of Zhaoshu Island, Ganquan Island, and Lingyang Reef were used
for correspondence acquisitions using eight different methods (Table 2). The methods
were constructed by combining different matching methods, such as SIFT, SURF, ORB,
and AKAZE, and the false match removal methods, the RT, GMS, and HMSEC. The SIFT
and SURF algorithms use the differences in Gaussian key point detectors and Hessian
matrix detectors, respectively, both of which rely on image gradient changes. In addition,
to ensure the stability of key points and the accuracy of the descriptors, SIFT and SURF
algorithms typically set high thresholds, which filter out many potential key points in weak-
texture regions. Consequently, the number of matching points detected in weak-texture
regions is generally low [43,44]; thus, GMS and HMSEC are not suitable for these tasks.
ORB and AKAZE algorithms emphasize matching efficiency by using fast and simple
key-point-detection algorithms. This generally results in the retention of more matching
points; however, the accuracy is typically lower, and thus, they are suitable for the method
proposed in this study. Generally, the number of feature points obtained by SIFT and SURF
is reduced, especially for areas where the seafloor has a weak texture; therefore, GMS



Remote Sens. 2024, 16, 2683 9 of 18

and HMSEC are not suitable for the two methods. In this study, GMS and HMSEC were
combined with ORB and AKAZE. Based on the comparisons between the various methods,
the matching reliability and accuracy of HMSEC were evaluated statistically by analyzing
the characteristics of land and seafloor areas.

Table 2. Configuration methods for the extraction of matching points.

Matching Method False-Match Filter Method Configuration

SIFT RT SIFT-RT

SURF RT SURF-RT

AKAZE
RT AKAZE-RT

GMS AKAZE-GMS
HMSEC AKAZE-HMSEC

ORB
RT ORB-RT

GMS ORB-GMS
HMSEC ORB-HMSEC

Point matching was achieved for Zhaoshu Island, Ganquan Island, and Lingyang Reef
using the methods presented in Table 2. The matching results are shown in Figure 5a–c.
The highest number of matching points was obtained using the ORB-HMSEC method
(Figure 5a). The results obtained using the SIFT, SURF, ORB-GMS, and AKAZE-HMSEC
methods are similar and higher than those obtained using the AKAZE-RT, ORB-RT, and
AKAZE-GMS methods. For Ganquan Island, the matching result obtained using the ORB-
HMSEC method was better than that obtained using other methods (Figure 5b). The
ORB-RT and ORB-GMS methods yielded similar results that are higher than those obtained
using the other tested methods. Lingyang Reef is completely submerged. The number of
matching points extracted using the ORB-RT, ORB-GMS, and ORB-HMSEC methods are
similar and significantly higher than those extracted using other methods (Figure 5c).

4.2. Comparison and Evaluation of the Matching Results

To evaluate the matching correctness and reliability of the ORB-HMSEC method, five
matching metrics were used and compared with other methods. For Zhaoshu Island,
Ganquan Island, and Lingyang Reef, the matching metric values obtained using the various
methods are listed in Tables 2–4, respectively. The metrics obtained using the ORB-HMSEC
method were highest at 53.65, 60.20, 1812, and 3010 for the MS, SMR, SMN, and TMN,
respectively, but not for the PMR at 50.44 (Table 3). The corresponding minimum values
were obtained using the SIFT, ORB-RT, AKAZE-GMS, AKAZE-GMS, and AKAZE-RT
methods. When using the AKAZE-GMS method, the seafloor matching point could not be
detected; thus, the values of the SMR and SMN are zero.

Table 3. Comparison of the matching metrics obtained using different matching methods for
Zhaoshu Island.

Zhaoshu Island PMR (%) MS (%) SMR (%) SMN TMN

SIFT 40.15 36.91 57.58 399 693
SURF 49.85 40.68 57.02 256 449

AKAZE-RT 54.08 43.43 10 2 20
ORB-RT 48.11 34.31 4.942 17 344

AKAZE-GMS 54.09 42.44 0 0 25
AKAZE-HMSEC 53.57 43.79 43.44 182 419

ORB-GMS 48.11 40.54 26.92 91 338
ORB-HMSEC 50.44 53.65 60.20 1812 3010
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Table 4. Comparison of the matching metrics obtained using different matching methods for
Ganquan Island.

Ganquan Island PMR (%) MS (%) SMR (%) SMN TMN

SIFT 39.17 32.72 0 0 124
SURF 37.66 21.75 0 0 144

AKAZE-RT 56.35 31.22 2.35 2 85
ORB-RT 30.57 20.79 39.10 646 1652

AKAZE-GMS 57.01 33.18 3.33 3 90
AKAZE-HMSEC 56.54 32.36 1.37 3 219

ORB-GMS 31.89 33.22 44.32 1144 2581
ORB-HMSEC 31.27 34.31 24.13 1291 5348
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For Ganquan Island, the metric values of the MS, SMN, and TMN determined using
the ORB-HMSEC method were the highest, reaching 34.31, 1291, and 5348 (Table 4). The
PMR and SMR values were 31.27 and 24.13, which is in the middle of all results. The seafloor
matching points could not be extracted by the SIFT and SURF methods, and the SMR and
SMN values are zero. Using the AKAZE-RT, AKAZE-GMS, and AKAZE-HMSEC methods,
the SMN metric reached two or three. The TMN value obtained using the AKAZE-GMS
method was the lowest, reaching 90. The PMR and MS values obtained using the ORB-RT
method were 30.57 and 20.79, respectively, which are lower than the other methods.

For Lingyang Reef, five metric values were obtained using various methods (Table 5).
The SMR value for each method was 100, and the SMN and TMN values were equal because
the reef region covered by the image was submerged. The maximum PMR, MS, SMR, SMN,
and TMN values obtained using the ORB-HMSEC method were 65.95, 69.61, 100, 6369, and
6369, respectively. The minimum PMR and MS values obtained using the SIFT method
were 10.29 and 27.70, respectively. The matching point number was 50, and it was obtained
using the AKAZE-HMSEC method.

Table 5. Comparison of the matching metrics obtained using different matching methods for
Lingyang Reef.

Lingyang Reef PMR (%) MS (%) SMR (%) SMN TMN

SIFT 10.29 27.70 100 210 210
SURF 28.70 54.90 100 227 227

AKAZE-RT 20.89 38.61 100 60 60
ORB-RT 64.36 57.76 100 4821 4821

AKAZE-GMS 20.89 37.34 100 58 58
AKAZE-HMSEC 20.91 34.81 100 50 50

ORB-GMS 64.36 59.29 100 5023 5023
ORB-HMSEC 65.95 69.61 100 6369 6369

4.3. Distributions of Seafloor and Land Matching Points

Underwater image texture becomes weaker with increasing water depth, which results
in different distributions and matching results [45,46]. The ORB-GMS method achieved the
second-best performance (Table 5). Consequently, we focused on comparing the matching
capabilities of ORB-GMS and the proposed algorithm across various water depth intervals.
The distributions of the seafloor and land matching points obtained using the ORB-HMSEC
method at Zhaoshu Island, Ganquan Island, and Lingyang Reef were compared with the
corresponding results of ORB-GMS. To illustrate the weakening of underwater textures and
the reduction in the number of matching points with increasing water depth, the matching
results of the two methods were overlaid with a bathymetric map to visually demonstrate
the differences in the number of matching points at various depths. Distributions and
comparisons of the matching points obtained using the ORB-GMS and ORB-HMSEC
methods are shown in Figure 6. The white region represents the land on the island above
the water surface, and the underwater region with different water depths is represented by
different colors. The results for Zhaoshu Island and Ganquan Island reveal that the number
of seafloor matching points was higher with the ORB-HMSEC method than the ORB-GMS
method. The number of land matching points obtained from the ORB-HMSEC method was
also improved. Furthermore, the seafloor point distribution with the ORB-HMSEC method
was wider and deeper than that with the ORB-GMS method. Lingyang Reef is completely
submerged, and consequently, its matching points are all on the seafloor. The distribution
and number of matching points obtained using the ORB-HMSEC method were also higher
than those obtained using the ORB-GMS method.
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Figure 6. The matching distributions with the ORB-GMS method at (a) Zhaoshu Island, (c) Ganquan
Island, and (e) Lingyang Reef, and the corresponding distributions of ORB-HMSEC in (b,d,f).

The capability of the ORB-HMSEC method was assessed at various water depths.
The statistical distributions of matching-point numbers and different water depths at 1 m
intervals are compared in Figure 7. The matching points obtained using the ORB-HMSEC
method were improved at almost every water depth interval, except for the depth interval
from 2 to 4 m at Ganquan Island. In this interval, hundreds of matching-point numbers
were obtained using the two methods, and the matching number for GMS was slightly
higher than that for HMSEC. For Zhaoshu Island, Ganquan Island, and Lingyang Reef,
the maximum water depth of the matching points obtained by GMS is −5.88, −11.44, and
−7.12 m. The corresponding values of HMSEC are −11.66, −14.06, and −9.61 m, and the
deep increment reaches −5.78, −2.66, and −2.49 m, respectively.
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Figure 7. Distributions of the matching-point numbers at different water depths for (a) Zhaoshu
Island, (b) Ganquan Island, and (c) Lingyang Reef. The orange and blue curves indicate the matching-
point numbers at various water depths obtained by ORB-HMSEC and ORB-GMS, respectively. The
content in the red dashed rectangle is locally magnified and represented in detail.

5. Discussion

The results of various matching metrics (Tables 2–4) indicate that the PMR obtained
using the ORB-HMSEC method is at the middle level because the feature number detected
by ORB is notably larger than that detected by the other methods. The MS value obtained
using the ORB-HMSEC method was the highest for the three images, indicating that the
number of putative matching points and the conversion rate from features to putative
matches were the highest. The TMN values for the three study areas were determined using
various methods. The results show that the ORB-HMSEC method was significantly better
than the other tested methods, reaching 3010, 5348, and 6369 for Zhaoshu Island, Ganquan
Island, and Lingyang Reef, respectively; relative to the second-best values, the matching
numbers improved by 2317, 2767, and 1346, respectively. Thus, the results demonstrate that
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numerous putative matching points can be transformed efficiently into reliable matching
points using motion smoothness assumptions and motion statistics.

Compared with the ORB-GMS method, the ORB-HMSEC method achieved higher
SMN and TMN values. In the GMS method, only five relative scales and eight relative
rotations between image pairs were defined and considered for the matching estimation of
scale and rotation enhancement (Figure 8). Furthermore, the grid-based framework divided
two images into non-overlapping cells to reduce the complexity of the calculation, and only
cell pairs, not corresponding match points, were classified (Figure 8a,b). The grid kernel
was fixed on one image, and eight different grid kernels were used to simulate possible
relative rotations [32]. Five different grid kernels were used to simulate the potential relative
scales in other images. Therefore, during the matching process, the scale and rotation of the
image pairs should be discrete to achieve rough simulations and estimations, but this also
results in errors and the elimination of matching points [47,48]. To overcome this problem,
a homography-based adaptation method was proposed and used in the HMSEC method.
To accurately estimate the scale and rotation of each matching point, coordinate and angle
deviations were used (Figure 3). These results demonstrate that ORB-HMSEC has higher
filtering and estimating accuracy for matching points, and the number of matching points
can be confirmed and improved (Table 6).
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Table 6. Increments of matching points between HMSEC and GMS.

Study Area
Increments of the Matching Points

Land Points Underwater Points Total Points

Zhaoshu Island 951 1721 2672
Ganquan Island 2620 147 2767
Lingyang Reef - 1346 1346

In underwater areas, image texture becomes weaker as the water depth increases. The
distribution becomes wider, and the number of seafloor matching points acquired increases
when using the ORB-HMSEC method (Figures 6 and 7). The maximum water depth of the
matching points also improved, reaching −11.66, −14.06, and −9.61 m at Zhaoshu Island,
Ganquan Island, and Lingyang Reef, respectively. The number of seafloor matching points
increased with increasing water depth (Figure 7), and between −3 and −4 m, the matching
number peaks. In shallower areas ranging from 0 to −2 m, the wavelength and quantity
of white and breaker waves increased, which may have reduced the number of matching
points. Subsequently, increasing the depth reduced the image texture and the matching
number. With the ORB-HMSEC method, the number of matching points improved with
increasing water depth. Thus, the depth and distribution of underwater points could
be increased.
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Image homography was used to eliminate the matching error caused by multi-scale
and multi-rotation changes in each image. In this procedure, the two-times standard
of coordinate and angle deviations was adopted to further reduce the matching error
and ensure the reliability and stability of the matching results in most situations. As
shown in Figure 9, different values of the coordinate and angle thresholds were used to
obtain matching points for analyzing the changing trend of the matching-point number.
For the study areas of Zhaoshu Island, Ganquan Island, and Lingyang Reef, the value
of 2σd is 0.96, 1.12, and 0.75 pixels. The corresponding value of 2As is 0.36, 1.44, and
1.80 degrees. Through the results shown in Figure 9, it is clear that the number of matching
points changes relatively smoothly when values of the coordinate and angle threshold
range from one-time to two-times standard deviations. These results demonstrate that
the accuracy and reliability of matching points can be further evaluated and improved,
using the adaptation constraint with the homography-based scale and orientation. Seafloor
texture varies between island and reef locations. In relatively turbid and deep-water
environments, the radiation information in the image and image texture are reduced. For
this situation, two-time standard deviations of σd and angle deviations of As could be
further improved, ranging from two times to one time to ensure matching accuracy and
reliability in the ORB-HMSEC method.
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6. Conclusions

This study proposes a novel matching method, ORB-HMSEC, that uses homography-
based motion statistics. The proposed method efficiently transforms numerous putative
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matching points into reliable matching points using motion smoothness assumptions and
motion statistics. In this process, the scale and rotation of each matching point in the image
pairs can be estimated accurately to improve the accuracy and reliability of the matching
points. According to the experimental results and comparisons with other methods, the
ORB-HMSEC method efficiently improves the reliability and number of matching points
both on the seafloor and in land regions. The increment of the matching points reached 2672,
2767, and 1346 for the WorldView-2 multispectral images of Zhaoshu Island, Ganquan
Island, and Lingyang Reef, respectively. Furthermore, the seafloor matching points of
ORB-HMSEC had wider distributions and deeper water depths of −11.66, −14.06, and
−9.61 m, respectively. Thus, the ORB-HMSEC method is highly reliable, with a large
number of matching points in the study area. In the future, we plan to conduct a marching
experiment using various remote sensing images to further explore the potential of this
proposed method in different environments.
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