Classifying Stand Compositions in Clover Grass Based on High-Resolution Multispectral UAV Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Processing
2.4. Training and Validation Data
2.5. Texture Feature Extraction
2.6. Random Forest Classifier
2.7. Wrapper Analysis
2.8. Classification Setup
3. Results
3.1. Wrapper Analysis
3.2. Classification Results
4. Discussion
4.1. Objective I: Single Plant Clover Grass Classification
4.2. Objective II: Texture Features and Feature Selection
4.3. Objective III: Development of Spatial Composition of Clover Grass Mixture
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | unmanned aerial vehicle |
MS | multispectral |
RF | random forest |
OOB | out-of-bag |
OA | overall accuracy |
IDM | inverse difference moment |
OBs | original bands |
TBSA | texture bands: stage-adapted |
TBSI | texture bands: stage-independent |
References
- EEC. Council Directive of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (91/676/EEC). Off. J. Eur. Communities 1991, 375. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0676 (accessed on 19 February 2024).
- Snapp, S.; Sapkota, T.B.; Chamberlin, J.; Cox, C.M.; Gameda, S.; Jat, M.L.; Marenya, P.; Mottaleb, K.A.; Negra, C.; Senthilkumar, K.; et al. Spatially differentiated nitrogen supply is key in a global food–fertilizer price crisis. Nat. Sustain. 2023, 6, 1268–1278. [Google Scholar] [CrossRef]
- Eriksen, J.; Askegaard, M.; Søegaard, K. Residual effect and nitrate leaching in grass-arable rotations: Effect of grassland proportion, sward type and fertilizer history. Soil Use Manag. 2008, 24, 373–382. [Google Scholar] [CrossRef]
- Ledgard, S.; Schils, R.; Eriksen, J.; Luo, J. Environmental impacts of grazed clover/grass pastures. Ir. J. Agric. Food Res. 2009, 48, 209–226. Available online: https://www.jstor.org/stable/20720369 (accessed on 19 February 2024).
- Gaudin, A.C.M.; Westra, S.; Loucks, C.E.S.; Janovicek, K.; Martin, R.C.; Deen, W. Improving resilience of northern field crop systems using inter-seeded red clover: A review. Agronomy 2013, 3, 148–180. [Google Scholar] [CrossRef]
- Arturi, M.J.; Aulicino, M.B.; Ansìn, O.; Gallinger, G.; Signorio, R. Combining Ability in Mixtures of Prairie Grass and Clovers. Am. J. Plant Sci. 2012, 3, 1355–1360. [Google Scholar] [CrossRef]
- Zarza, R.; Rebuffo, M.; La Manna, A.; Balzarini, M. Red clover (Trifolium pratense L.) seedling density in mixed pastures as predictor of annual yield. Field Crop. Res. 2020, 256, 107925. [Google Scholar] [CrossRef]
- Kirwan, L.; Lüscher, A.; Sebastià, M.T.; Finn, F.A.; Collins, R.P.; Porqueddu, C.; Helgadottir, A.; Baadshaug, O.H.; Brophy, C.; Coran, C.; et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 2007, 95, 530–539. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 150–163. [Google Scholar] [CrossRef]
- Suter, M.; Connolly, J.; Finn, J.A.; Loges, R.; Kirwan, L.; Sebastià, M.T.; Lüscher, A. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Chang. Biol. 2015, 21, 2424–2438. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.; Søegaard, K.; Pirhofer-Walzl, K.; Eriksen, J. N2-fixation and residual N effect of four legume species and four companion grass species. Eur. J. Agron. 2012, 36, 66–74. [Google Scholar] [CrossRef]
- Bloor, J.M.G.; Tardif, A.; Pottier, J. Spatial Heterogeneity of Vegetation Structure, Plant N Pools and Soil N Content in Relation to Grassland Management. Agronomy 2020, 10, 716. [Google Scholar] [CrossRef]
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [Google Scholar] [CrossRef]
- Skovsen, S.; Dyrmann, M.; Mortensen, A.K.; Steen, K.A.; Green, O.; Eriksen, J.; Gislum, R.; Jørgensen, R.N.; Karstoft, H. Estimation of the Botanical Composition of clover grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks. Sensors 2017, 17, 2930. [Google Scholar] [CrossRef] [PubMed]
- Bonesmo, H.; Kaspersen, K.; Bakken, A.K. Evaluating an Image Analysis System for Mapping White Clover Pastures. Acta Agric. Scand. Sect. Soil Plant Sci. 2004, 54, 76–82. [Google Scholar] [CrossRef]
- Himstedt, M.; Fricke, T.; Wachendorf, M. Determining the Contribution of Legumes in Legume–Grass Mixtures Using Digital Image Analysis. Crop. Sci. 2009, 49, 1910–1916. [Google Scholar] [CrossRef]
- Mortensen, A.K.; Karstoft, H.; Søegaard, K.; Gislum, R.; Jørgensen, R.N. Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis. J. Imaging 2017, 3, 59. [Google Scholar] [CrossRef]
- Fricke, T.; Richter, F.; Wachendorf, M. Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor. Comput. Electron. Agric. 2011, 79, 142–152. [Google Scholar] [CrossRef]
- Lussem, U.; Bolten, A.; Menne, J.; Gnyp, M.; Martin, L.; Schellberg, J.; Bareth, G. Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. J. Appl. Remote Sens. 2019, 13, 034525. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.A.; López-Granados, F.; De Castro, A.I.; Peña-Barragán, J.M. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management. PloS ONE 2013, 8, e58210. [Google Scholar] [CrossRef] [PubMed]
- Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges. Remote Sens. 2021, 13, 1204. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Michez, A.; Lejeune, P.; Bauwens, S.; Herinaina, A.A.L.; Blaise, Y.; Castro Muñoz, E.; Lebeau, F.; Bindelle, J. Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System. Remote Sens. 2019, 11, 473. [Google Scholar] [CrossRef]
- Li, K.; Burnside, N.G.; de Lima, R.S.; Peciña, M.V.; Sepp, K.; Yang, M.; Raet, J.; Vain, A.; Selge, A.; Sepp, K. The Application of an Unmanned Aerial System and Machine Learning Techniques for Red Clover-Grass Mixture Yield Estimation under Variety Performance Trials. Remote Sens. 2021, 13, 1994. [Google Scholar] [CrossRef]
- Albert, P.; Saadeldin, M.; Narayanan, B.; Fernandez, J.; Mac Namee, B.; Hennessey, D.; O’Conner, N.E.; McGuinness, K. Detection and quantification of broadleaf weeds in turfgrass using close-range multispectral imagery with pixel- and object-based classification. Int. J. Remote Sens. 2022, 42, 8035–8055. [Google Scholar] [CrossRef]
- Abduleil, A.M.; Taylor, G.W.; Moussa, M. An Integrated System for Mapping Red Clover Ground Cover Using Unmanned Aerial Vehicles, A Case Study in Precision Agriculture. In Proceedings of the 12th Conference on Computer and Robot Vision, Halifax, NS, Canada, 3–5 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 277–284. [Google Scholar] [CrossRef]
- Böhler, J.E.; Schaepman, M.E.; Kneubühler, M. Crop Classification in a Heterogeneous Arable Landscape Using Uncalibrated UAV Data. Remote Sens. 2018, 10, 1282. [Google Scholar] [CrossRef]
- Hahn, D.S.; Roosjen, P.; Morales, A.; Njip, J.; Beck, L.; Cruz, C.V.; Leinauer, B. Detection and quantification of broadleaf weeds in turfgrass using close-range multispectral imagery with pixel- and object-based classification. Int. J. Remote Sens. 2021, 42, 8035–8055. [Google Scholar] [CrossRef]
- Li, S.; Yuan, F.; Ata-Ul-Karim, S.T.; Zheng, H.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. [Google Scholar] [CrossRef]
- Grüner, E.; Wachendorf, M.; Astor, T. The potential of uav-borne spectral and textural information for predicting aboveground biomass and n fixation in legume-grass mixtures. PloS ONE 2021, 15, e0234703. [Google Scholar] [CrossRef] [PubMed]
- Grüner, E.; Astor, T.; Wachendorf, M. Prediction of biomass and n fixation of legume–grass mixtures using sensor fusion. Front. Plant Sci. 2021, 11, 603921. [Google Scholar] [CrossRef] [PubMed]
- Grizzonet, M.; Michel, J.; Poughon, V.; Inglada, J.; Savinaud, M.; Cresson, R. Orfeo ToolBox: Open source processing of remote sensing images. Open Geospat. Data Softw. Stand. 2017, 2, 15. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst (DWD). Open Data Bereich des Climate Data Center. Available online: https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html?nn=17626 (accessed on 16 December 2023).
- Petrou, M.; Sevilla, P.G. Image Processing: Dealing with Texture; John Wiley & Sons: Chilchester, UK, 2006; pp. 1–10. [Google Scholar]
- Gallardo-Cruz, J.A.; Meave, J.A.; González, E.J.; Lebrija-Trejos, E.E.; Romero-Romero, M.A.; Pérez-García, E.A.; Gallardo-Cruz, R.; Hernández-Stefanoni, J.L.; Martorell, C. Predicting Tropical Dry Forest Successional Attributes from Space: Is the Key Hidden in Image Texture? PLoS ONE 2012, 7, e30506. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. Mach. Learn. 2012, 45, 157–175. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bramer, M. Avoiding overfitting of decision trees. Princ. Data Min. 2007, 119–134. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2022, 2, 18–22. [Google Scholar]
- Robnik-Šikonja, M. Improving Random Forests. In European Conference on Machine Learning; Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3201, pp. 359–370. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Lan, T.; Hu, H.; Jiang, C.; Yang, C. A comparative study of decision tree, random forest, and convolutional neural network for spread-F identification. Adv. Space Res. 2020, 65, 2056–2061. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Fernandez-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [Google Scholar] [CrossRef]
- Cao, X.; Wei, C.; Han, J.; Jiao, L. Hyperspectral Band Selection Using Improved Classification Map. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2147–2151. [Google Scholar] [CrossRef]
- Su, J.; Yi, D.; Coombes, M.; Liu, C.; Zhai, X.; MacDonald-Maier, K.; Chen, W. Spectral analysis and mapping of blackgrass weed by leveraging machine learning and UAV multispectral imagery. Comput. Electron. Agric. 2022, 192, 106621. [Google Scholar] [CrossRef]
- Breiman, L. Out-of-Bag Estimation. Technical Report, Statistics Department, University. 1996. Available online: https://www.stat.berkeley.edu/pub/users/breiman/OOBestimation.pdf (accessed on 10 April 2024).
- Adugna, T.; Xu, W.; Fan, J. A Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sens. 2022, 14, 574. [Google Scholar] [CrossRef]
- Shetty, S.; Gupta, P.; Belgiu, M.; Srivastav, S.K. Assessing the Effect of Training Sampling Design on the Performance of Machine Learning Classifiers for Land Cover Mapping Using Multi-Temporal Remote Sensing Data and Google Earth Engine. Remote Sens. 2021, 13, 1433. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 1: Literature Review. Remote Sens. 2021, 13, 2450. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurj, M.; Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [Google Scholar] [CrossRef]
- Freiesleben, T.; Grote, T. Beyond generalization: A theory of robustness in machine learning. Synthese 2023, 202, 109. [Google Scholar] [CrossRef]
- Ashapure, A.; Jung, J.; Chang, A.; Oh, S.; Maeda, M.; Landivar, J. A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sens. 2019, 11, 2757. [Google Scholar] [CrossRef]
- Peng, Y.; He, M.; Zheng, Z.; He, Y. Enhanced Neural Network for Rapid Identification of Crop Water and Nitrogen Content Using Multispectral Imaging. Remote Sens. 2023, 13, 2464. [Google Scholar] [CrossRef]
- Yang, X.; Tridandapani, S.; Beitler, J.J.; Yu, D.S.; Yoshida, E.J.; Curran, W.J.; Liu, T. Ultrasound GLCM texture analysis of radiation-induced parotid-gland injuryin head-and-neck cancer radiotherapy: An in vivo study of late toxicity. Med. Phys. 2012, 39, 5732–5739. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, N.J.; Suter, M.; Finn, J.A.; Husse, S.; Lüscher, A. Do belowground vertical niche differences between deepand shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures? Plant Soil 2015, 394, 21–34. [Google Scholar] [CrossRef]
- Hofer, D.; Suter, M.; Haughey, E.; Finn, J.A.; Nyncke, J.; Hoekstra, N.J.; Buchmann, N.; Lüscher, A. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 2016, 53, 1023–1034. [Google Scholar] [CrossRef]
- Tahir, M.; Li, C.; Zeng, T.; Xin, Y.; Chen, C.; Javed, H.H.; Yang, W.; Yan, Y. Mixture Composition Influenced the Biomass Yield and Nutritional Quality of Legume–Grass Pastures. Agronomy 2022, 12, 1449. [Google Scholar] [CrossRef]
Stage | Date | Days after Mowing | Phenological Stage Grass | Phenological Stage Clover |
---|---|---|---|---|
Stage 1 | 27 July | 11 | Begin of tillering | Begin of tillering |
Stage 2 | 11 August | 25 | End of tillering | Begin of flowering |
Stage 3 | 26 August | 40 | Ear emerging | Flowering |
Iteration | Stage 1 | Stage 2 | Stage 3 |
---|---|---|---|
1 | NIR | NIR | NIR |
2 | Red | Red | Red |
3 | Green | Green | Blue |
4 | RedEdge | RedEdge | RedEdge |
5 | Blue | Blue | Green |
Iteration | Stage 1 | Stage 2 | Stage 3 | |||
---|---|---|---|---|---|---|
Feature | Band | Feature | Band | Feature | Band | |
1 | Cluster Prominence | NIR | Cluster Prominence | NIR | Cluster Prominence | NIR |
2 | Haralick Correlation | Red | Haralick Correlation | Red | Haralick Correlation | NIR |
3 | Haralick Correlation | NIR | Haralick Correlation | NIR | Haralick Correlation | Red |
4 | Energy | Red | Correlation | NIR | Cluster Shade | Red |
5 | Cluster Shade | NIR | Entropy | NIR | IDM | Red |
6 | Energy | NIR | Cluster Prominence | Red | Entropy | NIR |
Stage | Class | F1 Score [%] | |||||
---|---|---|---|---|---|---|---|
OB | TBSA | TBSI | |||||
Mean | ± | Mean | ± | Mean | ± | ||
Clover | 77.8 | 1.5 | 89.4 | 1.3 | 88.7 | 1.1 | |
S1 | Grass | 77.4 | 1.2 | 87.9 | 0.5 | 87.5 | 1.4 |
Others | 92.8 | 0.7 | 94.8 | 0.7 | 94.6 | 0.6 | |
Clover | 79.6 | 1.2 | 86.3 | 1.1 | 86.8 | 0.7 | |
S2 | Grass | 75.6 | 1.3 | 80.6 | 1.3 | 79.1 | 1.4 |
Others | 92.8 | 0.6 | 92.9 | 1.2 | 92.6 | 0.7 | |
Clover | 86.2 | 1.3 | 91.8 | 1.2 | 91.7 | 1.3 | |
S3 | Grass | 79.0 | 1.3 | 83.8 | 1.9 | 83.8 | 1.8 |
Others | 90.0 | 1.1 | 91.0 | 1.9 | 90.6 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahrstedt, K.; Reuter, T.; Trautz, D.; Waske, B.; Jarmer, T. Classifying Stand Compositions in Clover Grass Based on High-Resolution Multispectral UAV Images. Remote Sens. 2024, 16, 2684. https://doi.org/10.3390/rs16142684
Nahrstedt K, Reuter T, Trautz D, Waske B, Jarmer T. Classifying Stand Compositions in Clover Grass Based on High-Resolution Multispectral UAV Images. Remote Sensing. 2024; 16(14):2684. https://doi.org/10.3390/rs16142684
Chicago/Turabian StyleNahrstedt, Konstantin, Tobias Reuter, Dieter Trautz, Björn Waske, and Thomas Jarmer. 2024. "Classifying Stand Compositions in Clover Grass Based on High-Resolution Multispectral UAV Images" Remote Sensing 16, no. 14: 2684. https://doi.org/10.3390/rs16142684
APA StyleNahrstedt, K., Reuter, T., Trautz, D., Waske, B., & Jarmer, T. (2024). Classifying Stand Compositions in Clover Grass Based on High-Resolution Multispectral UAV Images. Remote Sensing, 16(14), 2684. https://doi.org/10.3390/rs16142684