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Abstract: On a global scale, wetlands are suffering from a steady decline in surface area and envi-
ronmental quality. Protecting them is essential and requires a careful spatialisation of their natural
habitats. Traditionally, in our study area, species discrimination for floristic mapping has been
achieved through on-site field inventories, but this approach is very time-consuming in these difficult-
to-access environments. Usually, the resulting maps are also not spatially exhaustive and are not
frequently updated. In this paper, we propose to establish a complete map of the study area using
remote sensors and set up a long-term and regular observatory of environmental changes to monitor
the evolution of a major French wetland. This methodology combines three dataset acquisition
technologies, airborne hyperspectral and WorldView-3 multispectral images, supplemented by Li-
DAR images, which we compared to evaluate the difference in performances. To do so, we applied
the Random Forest supervised classification methods using ground reference areas and compared
the out-of-bag score (OOB score) as well as the matrix of confusion resulting from each dataset.
Thirteen habitats were discriminated at level 4 of the European Nature Information System (EUNIS)
typology, at a spatial resolution of around 1.2 m. We first show that a multispectral image with
19 variables produces results which are almost as good as those produced by a hyperspectral image
with 58 variables. The experiment with different features also demonstrates that the use of four bands
derived from LiDAR datasets can improve the quality of the classification. Invasive alien species
Ludwigia grandiflora and Crassula helmsii were also detected without error which is very interesting
when applied to these endangered environments. Therefore, since WV-3 images provide very good
results and are easier to acquire than airborne hyperspectral data, we propose to use them going
forward for the regular observation of the Brière marshes habitat we initiated.

Keywords: remote sensing; wetlands; EUNIS habitat classification; invasive alien species; WorldView-3;
Brière marshes; hyperspectral; Random Forest

1. Introduction

Wetlands are among the most productive environments on our planet, playing a vital
role in the ecosystem. Their functions and values are now widely recognised [1]: wetlands
act as carbon sinks [2]; regulate flooding [3]; improve water quality [4]; and play a major
role in the landscape by providing unique habitats for a wide variety of plant and animal
species [5].

Worldwide, 3.4 million square kilometres of freshwater wetlands disappeared between
the years 1700 and 2020, mainly due to conversion to arable land [6]. This loss is now being
amplified by the acceleration of global climate change: rising air temperatures, increased
evapotranspiration, and lower winter precipitation [7]. Added to this is the degradation of
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water quality through eutrophication and the threat of saltwater intrusion [5]. These distur-
bances are already causing, and will continue to cause in the future, numerous changes in
the specific composition of these environments. To monitor and understand these changes,
it is essential to have accurate, spatially distributed, and up-to-date information on the
species habitats identified by the vegetation specific to wetlands.

Traditionally, species discrimination for floristic mapping is carried out using field
inventories [8,9]. Although very accurate, these methods are extremely demanding in terms
of human and technical resources, very time-consuming, and almost impracticable for
large-scale studies requiring frequent data collection [10,11]. Many wetlands are located in
remote areas that are logistically difficult to access and where travelling is often hampered.
These factors explain why maps are often not updated for a long time after they have been
drawn up.

Remote sensing appears to be an appropriate means of mapping wetland habitats.
The possibility of repeated acquisitions allows researchers to detect changes over time,
and the digital data resulting from these classifications can be integrated into a geographic
information system (GIS) [12,13].

Airborne hyperspectral methods are widely used to discriminate and map wetland
vegetation at the species level [8,14,15]. However, their high cost and the difficulty of setting
up overflights, where necessary, have led researchers to turn to multispectral satellite
remote sensing images to map these environments [16–18]. They have the advantage
of being cheaper in terms of manpower and material resources, and they are easier and
quicker to obtain. In addition, Light Detection And Ranging (LiDAR) data are used to help
discriminate between species on the basis of their height or the deformation of the return
wave produced by their structure [19,20].

In France, major heritage wetlands are protected by various mechanisms such as the
Natural Zone of Interest for Ecology, Flora and Fauna (ZNIEFF), Natura 2000 sites, and re-
gional natural parks. However, they are still declining. As a result, the characterisation and
monitoring of these environments have been identified as priority elements of European
and regional action programs initiated by local stakeholders [21,22].

The mapping data available for the study area (see Section 2.1 below) are not spatially
exhaustive and show a simplification of the habitat mosaics. Some of them have been
drawn up entirely on the basis of field surveys between 2017 and 2019 and were time-
consuming and people-intensive. Others have not been updated since the 1980s, which
means that changes cannot be monitored on a regular basis.

Consequently, the objectives of this study are (1) to draw up an accurate map of the
study area habitats by comparing the performance between an airborne hyperspectral
image coupled with five LiDAR variables and a multispectral scene from the WorldView-3
satellite (due to its high spatial resolution particularly suitable for classifying wetlands) with
one LiDAR variable, and (2) to propose a strategy for setting up a long-term monitoring
observatory that will enable the mapping to be updated on a regular basis in the future in
order to quantify changes.

2. Materials and Methods
2.1. Study Area

The Natura 2000 site FR5212008 “Grande Brière, Marais de Donges et du Brivet” in
Loire-Atlantique is composed of a series of marshy depressions and alluvial marshes located
between the Loire estuary to the south and the Vilaine to the north. The site is located
within the Brière regional natural park (PnrB) and covers 19,754 ha (Figure 1). For the
purposes of the study, a sector at 1.79 m NGF (general levelling of France), corresponding to
the maximum flood level, was traced using a digital terrain model from the LiDAR dataset
acquired for the study. The territory of the park boasts an exceptional natural heritage.
However, it is threatened by a number of pressure points, including the proliferation of
invasive exotic species, changes in management methods, the degradation of water bodies,
and the effects of climate change [23].
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Figure 1. Location of the natural regional Park of Brière and the coverage for the two types of remote
sensing images used in the study.

2.2. Data Acquisition

In order to guarantee the implementation of spatial monitoring of the Brière in the
future, a hyperspectral airborne image and a WorldView-3 satellite image with very high
spatial resolution (1.24 m) (Table 1) were acquired in early summer 2023 (23 June for
WorldView-3 image and 13 July for hyperspectral data). This time period was the best
compromise for the development of most of the plant communities of the site and made
it possible to compensate for the prolonged flooding of some areas of marshland. This
choice was complicated by the presence of peripheral plant groups whose phenology was
already advanced.

The hyperspectral data were acquired using hyperspectral sensors (Hyspex Mjolnir
VS-620 camera from Norsk Elektro Optikk, Skedsmokorset, Norway) from OSUNA (Obser-
vatoire des Sciences de l’Univers Nantes Atlantique) on a plane belonging to GEOFIT-expert
(a firm of surveyors).

The WorldView-3 image was ordered from European Space Imaging (EUSI). This
image is particularly suitable for classifying land and water features because it is the most
spatially and spectrally precise satellite constellation. In multispectral mode, the bands
provide a clear picture of vegetation properties [24]. As this is a test image, its surface area
is smaller than that of the hyperspectral images, and it does not cover the entire study area
(Figure 1).

In addition, LiDAR data were acquired on 9 October 2022 by Titan DW600 cameras
from Teledyne Optech Incorporated, Vaughan, Ontario, Canada, for the Nantes-Rennes
LiDAR platform from OSUNA and OSUR (Observatoire des Sciences de l’Univers de
Rennes) on a plane belonging to GEOFIT-expert.

This equipment consists of a topo-bathymetric laser with a wavelength in the green
region (channel C3: 532 nm) and a topographic laser with a wavelength in the near infrared
(channel C2: 1064 nm) region. For this study, only the topographic informationwas acquired
in order to obtain information on the microtopography of the marsh and the structure of
the vegetation. This is called fullwaveform (FWF), meaning that the entire return signal is
recorded by the sensor.

The complete characteristics of the sensors are shown in Table 1.
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Table 1. Technical specifications of the HySpex Mjolnir VS-620 (VNIR V-1240 and SWIR S-620)
hyperspectral sensors, the WorldView-110 camera (sensor mounted on the WorldView-3 satellite),
and the Titan DW600 LiDAR sensor.

HySpex Mjolnir
V-1240

HySpex Mjolnir
S-620

WorldView-110
Camera Titan DW 600

Sensor CCD Si MCT (Hg Cd Te) / Channel (nm) C2: 1064 C3: 535

Pixels 1240 620 / Laseraperture
(mrad) C2: 0.35 C3: 0.7

Channels 160 256 8 Operational
altitude (m) 1300

Spectral range
(nm) 410–990 970–2500 400–1040 Laser shot

frequency (kHz) 100

Spectral resolution
(nm) 3.0 5.1 / Scan frequency

(Hz) 70

Sampling per
channel (nm) 3.6 6.0 / Field of view (◦) 20

Field of view (◦) 20 20 / Vertical accuracy
(cm) 5–10

Altitude above
ground (m) 3500 3500 617,000

Waveform
feedback recording
(Go/s)

1 per nanosecond

Spatial resolution
(m) 0.94 1.89 1.24 Roll compensation on

2.3. Image Pre-Processing

The airborne hyperspectral image is pre-processed in a combined atmospheric and
geometric processing chain with the ATCOR4 [25] and PARGE [26] applications.

The WorldView-3 image is ordered with the “map ready ortho” option and can be
used directly without radiometric calibration or orthorectification. Both images are masked
using a NIR band threshold value, which can distinguish between pixels on land and water
to make classification easier.

2.4. Field Data Sampling

Field sampling should represent the variability of all communities present in the
Natura 2000 area [27,28]. Since we are using the EUNIS typology, the EUNIS guide from
the French Biodiversity Agency recommends “paying attention to mosaic habitats, those
that are very degraded or in transitional states” [29].

Reasoned choice (non-random) sampling and the definition of a “laboratory” itinerary
are generally practised [30]. We selected 74 ground reference areas (Regions of Interest,
ROIs) on the basis of the visual interpretation of the WorldView-3 image positioned in
areas that are a priori physically and floristically homogeneous, taking into account the full
range of textural and spectral variability of the image and preferably along access roads
or canals in order to optimise travel times. In the case of fragmented habitats (distributed
around the territory in small areas), several replicates of the same colour and texture are
selected. Similarly, in the case of very heterogeneous environments, other plots of the same
type are selected in order to include all the stages of development and evolution of the
same plant formation.

For each type of area to be sampled, we defined the extent of the ROIs to be greater
than several times the size of the pixels in the image (at least 3 pixels × 3 pixels). This
ensures that the plot is representative of the environment under consideration and not
accidental or relict, so that the classification algorithms can learn from it correctly. This
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procedure has sometimes been difficult to implement because of the spatial distribution of
certain small habitats (for example, some lawns do not form continuous grass beds).

These points were then recorded on a smartphone in the MerginMap mobile applica-
tion [31] by the MerginMap QGis plugin [32] on QGis 3.28 software [33], so that the areas
to be surveyed could be easily visualised once in the field.

The surveys corresponding to the points were carried out over the same period as the
airborne hyperspectral and WolrdView-3 data acquisition (in 3 sessions on 26 June and
4–5 July) in order to avoid the rapid change in phenology in these environments [8].

Once on the field, the specific composition is determined, as well as the dominant
character of each species. When possible, and if the vegetation is no more than 2 metres
high, several vertical photos are taken of the survey to confirm the coverage at a later date
by another observer if necessary, including one wide-angle shot of the context to keep a
record of the reality on the field and better understand the results of the classifications
(for example, confusion between similar habitat classes). The centre of the field survey
was marked by a white stick placed vertically with a known height (1.10 m), allowing
the height to be estimated at a later date if necessary. The GPS coordinates of the survey
are taken using a Trimble Geo 7X differential GPS and Trimble TerraSync Professional
Software 5.70 [34]. Considering the species it contains, each survey is associated with a
level 3 or 4 of the EUNIS (European Nature Information System) typology. EUNIS has
a hierarchical typology system, divided into 6 levels, from the most general to the most
detailed. It consists of a letter (level 1) to which a number is added as you go down to the
finest levels of species, up to 5 numbers (level 6). A table of results is drawn up for each of
them (Table 2).

Table 2. Example of a survey form completed for each ROI in the field.

Surveyor GPS Point
Number Date Species/Type of

Habitat
EUNIS
Code

Pictures
Numbers Height/Comments

Thomas Lafitte 7 26 June 2023

Mixed sedge meadow
vegetation: Carex elata

dominant, Reed
canary-grass,

lysimachia, iris
appended

D5.21 292-293-294
Late flooding,
50 cm, water

between the carex

Thomas Lafitte 15 4 July 2023 Pure reedbed with
Phragmites australis C3.21 469-470-471 2.30–2.50 m

Ten months apart, with no significant changes in plant composition in these buffered
environments, we decided to use other botanical surveys conducted in the same period in
summer 2022 based on the NGI (National Geographic Institute) BD Ortho IRC (Orthopho-
tographic Database in Infra-Red Colours) of 2020’s textural features. These surveys were
primarily carried out to gain a better understanding of the terrain and the dominant species,
but they could be added to the pool of ROIs acquired in 2023 if the latter was insufficient
for some habitats.

In order to avoid incorporating too much variability in the reference polygons (water
holes and small shrubs), their shape was sometimes reworked using a GIS and others were
eliminated because they were too close to a contact zone or were too small in area, thus
rigorously reducing the number of ROIs to 95, distributed as follows over the study area
(Figure 2) and by habitat type (Table 3).
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Figure 2. Location of the 95 ROIs overlaid on the WorldView-3 image in false-colour composition
(Red channel: band 6; Green channel: band 5; Blue channel: band 4).

Table 3. Distribution of the 95 ROIs divided into each class of habitats.

Class of Habitats Number of ROIs

Upper saltmarshes 5

Common reed ([Phragmites]) beds 11

Reed canary-grass ([Phalaris]) beds 15

Euro-Siberian perennial amphibious communities 3

Beds of large [Carex] species 10

Closed non-Mediterranean dry acid and neutral grassland 5

Atlantic and sub-Atlantic humid meadows 7

Flood swards and related communities 6

Purple moorgrass ([Molinia]) meadows and related communities 4

Willow carr and fen scrub 4

Atlantic pedunculate oak—birch woods 5

Crassula 10

Ludwigia 10

The WV-3 image was acquired two weeks before the HS. In order to save time and
ensure that phenology was not too far advanced, the ROIs were defined on the basis of
WV-3. Given the poor weather that year, and the fact that the overflight had already been
delayed, it was important not to compromise the use of WV-3. Once the hyperspectral
flight had been successfully completed, we were able to start the performance comparisons.
Since WV-3 did not cover the entire area delimited at 1.79 m and the ROIs had already been
characterised, we checked that there were no new shapes and colours (and therefore new
habitats) in the sectors of HS not covered by WV-3. If in doubt, they were visited. However,
in order to compare the two images on an equal basis, and not to provide additional or
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different training plots for the HS, we decided to keep only the ground reference data that
were common to both images, i.e., that of the smaller scene, WV-3. This explains why there
are no ROIs on the right side of the study area.

2.5. Classification Method
2.5.1. Variables’ Calculation

Spectral indices commonly used in vegetation mapping were used, adapted to the
bands of each type of image. Details of the indices and bibliographical references used
are given in Table 4. The hyperspectral image includes bands in the SWIR, enabling the
calculation of various indices. This capability allows for comparing the performance of an
image with extensive spectral information against a simpler multispectral image.

Table 4. List of the indices calculated for the study. WV-3: WorldView-3 bands; HS: hyperspectral bands.

Dataset Index Description Formula Reference

WV-3, HS EVI Enhanced Vegetation Index 2.5 × (NIR − R)/((NIR + 6 × R −
7.5 × B) + 1) [35]

WV-3, HS NDVI Normalised Difference
Vegetation Index (NIR − R)/(NIR + R) [36]

WV-3, HS MTCI MERIS Terrestrial Chlorophyll Index (RE2 − RE1)/(RE1 − R) [37]

WV-3 CRE Chlorophyll Red-Edge index ((NIR/RE1)−1) [38]

WV-3 MCARI Modified chlorophyll absorption in
reflectance index

[(RE1 − R) − 0.2 (RE1 − G)] ×
(RE1 − R) [39]

WV-3 GNDVI Green Normalised Difference
Vegetation Index (NIR − G)/(NIR + G) [40]

WV-3 PSSRa Pigment Specific Simple Ratio NIR/R [41]

WV-3 S2REP Sentinel-2 red-edge position 705 + 35 × ((((NIR + R)/2) −
RE1)/(RE2 − RE1)) [42]

WV-3 IReCI Inverted Red-Edge
Chlorophyll Index (NIR − R)/(RE1/RE2) [42]

WV-3 SAVI Soil Adjusted Vegetation Index ((NIR − R)/(NIR + R + 0.428)) ×
(1 + 0.428) [43]

HS NGLI Normalised Green Leaves Index (R555 − R501)/(R555 + R501) [44]

HS IdGL Index Green Leaves (2 × R555)/(R501 + R602) − 1 [44]

HS NDGL Normalised Difference Green
Leaves Index (R922 − R773)/(R922 + R773) [44]

HS ND ChlaI Normalised Difference Chl-a Index (R642 − R675)/(R642 + R675) [44]

HS Leaves water / (R921 − R976) (R921 + R976) [20]

HS NDWI Normalised Difference Water Index (NIR-SWIR1)/NIR + SWIR1) [45]

HS TND Cellulose Triple Normalised Difference (2
bands) of Cellulose

(R1082 − R1214 + R1274 − R1334 +
R1695 − R1773)

Personal
communication

HS Ids Water VG Indices with 3 vegetation
water bands (–R1003 + 2 × R1082 − R121) Personal

communication

B, G, R, RE1, RE2, NIR, and SWIR1 represent the blue, green, red, red-edge 1, red-edge 2, near infrared, and
short-wave infrared 1 spectral bands, respectively.

Spectral Angle Mapping (SAM) calculations are performed on the mean spectral
signature of the ground reference areas (ROIs) of each European Nature Information
System typology (EUNIS) habitat with the hyperspectral image bands in the VNIR and
SWIR being used as additional variables.
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Using the LiDAR data, we produced a Digital Surface Model (DSM), a Digital Terrain
Model (DTM), and a Digital Height Model (DHM) by the subtraction of both. With the
full-waveform signal, we calculated the derived normalised centred cumulative FWF
(dNCCFWF) [46] and extracted the intensities at ranges of −1 m, 0.75 m, and +1 m, values
that are characteristic of the waveforms of herbaceous vegetation, with the −1 value also
making it possible to reject the effects of slopes [19].

Table 5 summarises the variables used in each case.

Table 5. Summary of variables used to classify the WV3 and hyperspectral images.

Spectral Bands Spectral Indices Additional
Variables

LiDAR
Dataset

Total
Variables

WorldView3

Coastal Blue, Blue,
Green, Yellow, Red,

Red edge,
Near-IR1, Near-IR2

EVI; NDVI; MTCI; CRE;
MCARI;
GNDVI; PSSRa; S2REP; IReCI;
SAVI

/ DHM 19 variables

Hyperspectral
/

None of them are
used as is

EVI; NDVI; MTCI; NGLI;
IdGL; NDGL; IdsCellulose;
NDChlaI; Ids Water VG; TND
Cellulose; Ids Cellulose0;
NDWI; Eau feuilles

Spectral angle
mapping in VNIR

and SWIR

DHM; DTM;
dNCCFWF 58 variables

2.5.2. Classification Algorithm

The classification method used is the “Random Forest” algorithm [47], a supervised
classification machine learning algorithm. It was performed with R software (version 3.6.2)
(R Development Core Team 2024), using the “randomforest” package [48] and the “caret”
package [49]. Various studies have demonstrated its ability to produce accurate vegetation
type mappings [50–52]. In the RF model, the training data are randomly sampled with
replacements, generating “bootstrap” samples. Each “forest” decision tree is built on an
“in bag” fraction of the data, which is used to train the algorithm. For each pixel in the
remaining fraction (“out of bag”), its class can be predicted by all the decision trees, making
it possible to evaluate the final result (OOB score). The OOB score shows the error rate
of the trees on the individuals left “out of bag” by the model, the aim being to obtain the
lowest possible OOB (for the complete description of the Random Forest model and the
OOB score, see Belgiu and Drăguţ, 2016 [53]).

For the tuning of the model, two parameters can be adjusted: “Ntree” that determines
the number of decision trees to be generated (Ntree is fixed with the build of a plot with
x-axis = number of trees from 0 to 1000) and the y-axis is the error rate; and “Mtry” that
sets the number of variables to be randomly selected for each split at each branch of the
trees (Mtry =sqrt (p), where p is number of variables).

For our analyses, the relevant parameters were Ntree = 300 and Mtry= 7 for the HS
and Mtry = 4 for the WV-3 image (due to difference in variable numbers).

Confusion matrices were produced to complement the OOB score of the Random
Forest classifier. A confusion matrix is a table showing the observed data in rows and the
data predicted by the algorithm in columns. The diagonal shows the number of individuals
with a good classification, i.e., individuals whose prediction matches the observed data.
The other values correspond to the individuals misclassified by the algorithm.

The diagram below summarises the overall classification approach (Figure 3).
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3. Results
3.1. Variables Importance

The contribution of each variable (spectral bands and vegetation indices) to the accu-
racy of the RF classification is based on the Mean Decrease Gini (MDG). All the variables
are ranked in ascending order according to their importance [48] (Figure 4).
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Figure 4. Average contribution of each variable to RF accuracy. The points represent the Mean
Decrease Gini value, indicative of the importance of each variable (a) for the 19-variable WorldView-3
image and (b) for the 58-variable hyperspectral image (only the first 29 are shown because the
contributions of the following are close to zero).

For the WV-3 image, the DHM variable leads the Mean Decrease Gini. The next four
most important variables are bands from the image and spectral indices, as follows in order
of importance: the blue band, the IRECI, the GNDVI, and the yellow band.

For the hyperspectral image, the DHM is also the most discriminating variable. The
four most important variables are all derived from LiDAR: dNCCFWF −1.0 m, dNCCFWF
0.75 m, and the DSM. The first vegetation index (MTCI) only came fifth.
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During a first Random Forest classification test on the WV-3 image with only 8 VNIR
bands and 10 indices, the OOB was 13.17% (Figure 5). In order to improve the OOB, we
decided to add the DHM variable, which was the most discriminating variable for the
hyperspectral image. It was not included in the first test because we wanted to make the
classification as simple as possible with only the WV-3 variables. This information on the
height of the vegetation reduced the OOB to 4.01% (Figure 5). The confusion matrices
below show the classes improved by DHM. The table shows the observed data in rows
and the data predicted by the algorithm in columns. The diagonal shows the number
of individuals with a good classification, i.e., individuals for whom the prediction of the
algorithm’s prediction matches the observed data. The other values correspond to the
individuals misclassified by the algorithm.
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(b) for the 8 VNIR bands and 10 indices, with the addition of the DHM.

In addition to a substantial improvement in all classes, there was a clear improvement
in the Phragmites reedbed class (C3.21), which fell from a class error of 0.49 to 0.14. The
flood swards class (C3.44) remains the worst classified, even with the DHM (0.38 compared
with 0.32 class error). The invasive exotic species of Ludwigia sp. and Crassula helmsii have
no poorly classified pixels. This can be explained by the very dense mat-like appearance of
these species, which cannot be confused with any other habitat.

3.2. Up-to-Date Mapping of Habitats

The classification methods applied enabled us to identify 11 species habitats at level 4
of the EUNIS typology (Table 6). In addition to these classic wetland vegetation com-
munities, it is possible to detect two invasive alien plant species of particular concern in
the Brière: the Australian swamp stonecrop (Crassula helmsii Kirk) and the Uruguayan
primrose willow (Ludwigia grandiflora (Michx.) Greuter & Burdet). The classification results
are shown in Figure 6 and pictures of some characteristic habitats are shown on Figure 7.

Table 6. Code and name of mapped habitats according to the EUNIS typology.

EUNIS Code (Level 4) EUNIS Name

A2.52 Upper saltmarshes

C3.21 Common reed ([Phragmites]) beds

C3.26 Reed canary-grass ([Phalaris]) beds

C3.41 Euro-Siberian perennial amphibious communities

D5.21 Beds of large [Carex] species

E1.7 Closed non-Mediterranean dry acid and neutral grassland

E3.41 Atlantic and sub-Atlantic humid meadows

E3.44 Flood swards and related communities

E3.51 Purple moorgrass ([Molinia]) meadows and related communities

F9.2 Willow carr and fen scrub

G1.81 Atlantic pedunculate oak—birch woods
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The EUNIS typology does not include an additional level for habitats E1.7 and F9.2.
They are therefore considered to be at the same level as the other habitats, i.e., level 4.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 17 
 

 

E3.44 Flood swards and related communities 
E3.51 Purple moorgrass ([Molinia]) meadows and related communities 
F9.2 Willow carr and fen scrub 
G1.81 Atlantic pedunculate oak—birch woods 

The Eunis typology does not include an additional level for habitats E1.7 and F9.2. 
They are therefore considered to be at the same level as the other habitats, i.e., level 

4. 

 

Figure 6. Habitat classification obtained (a) from the hyperspectral image and (b) from the 
WorldView-3 image. The size of the WV-3 image has been reduced because this was a test phase. 
Arrows and numbers on (a) correspond to Figure 7 pictures numbers. 

Figure 6. Habitat classification obtained (a) from the hyperspectral image and (b) from the WorldView-
3 image. The size of the WV-3 image has been reduced because this was a test phase. Arrows and
numbers on (a) correspond to Figure 7 pictures numbers.

The overall classification accuracy OOB is 4.01% for the Worldview-3 image and 0.56%
for the hyperspectral image.
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Figure 7. Pictures of some characteristic habitats of the Brière marshes. (a) Reed canary-grass
([Phalaris]) beds—EUNIS C.26; (b) beds of large [Carex] species—EUNIS D5.21; (c) Atlantic and sub-
Atlantic humid meadows—EUNIS E3.41; (d) Willow carr and fen scrub (along a channel)—EUNIS
F9.2; (e) Crassula helmsii beds; (f) Ludwigia sp. beds.

4. Discussion
4.1. Mapping the Distribution of the Habitats

The initial aim of this study was to establish an up-to-date map of the habitats of the
Brière marshes, using remote sensing, in order to monitor and quantify the changes taking
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place in this complex ecosystem. The mapping method used for this study differs from the
traditional approaches used in the area up to now, which consist of scouring the area in
selected sectors, as this is very time-consuming and requires a lot of technical and human
resources in the field. In this case, there is no need, as 95 targeted points of interest can be
used to carry out the classification, eliminating the need for time-consuming surveys and
making it possible to get into areas that are difficult to access. This is all the more interesting
for alien invasive species because, until now, inventories were carried out by annual field
surveys. Moreover, in this case, our method makes it possible to detect primary clumps of
colonisation within very dense plots where access on foot is impossible.

Compared with other studies that used WorldView images to map habitats, we are
working here on a very large surface area, similar to other studies which have nevertheless
managed to discriminate fewer habitats [54,55]. However, it should be remembered that
our mapping does not show the small herbaceous patrimony species that are sentinels
of changes in the quality of the environment (for example in Brière, Damasonium alisma
Mill. or Caropsis verticillato-inundata (Thore) Rauschert). This is not possible with a spatial
resolution of around one metre. Nevertheless, it is more effective to focus on the responses
of dominant species to global change, due to their structuring role in terms of abundance
and their impact on communities [56]. Furthermore, from a change modelling perspective,
studying a community through its dominant species can enable predictions to be made on
larger spatial or temporal scales [57,58].

The resolution of less than 2 metres of hyperspectral or multispectral WorldView-3
image mapping is better for monitoring wetlands than most satellite data. Some studies
have attempted to use Sentinel-2 images at 10 metre [59] or Landsat at 20 metre spatial
resolutions [60], but all agree that this makes it difficult to monitor and identify wetland
habitats, which are often narrow and small in area [12,55].

4.2. Long-Term Monitoring Strategy

The second main objective was to set up a long-term monitoring observatory. The
performance comparisons show that the use of a multispectral satellite image accompanied
by a single height variable derived from LiDAR (DHM) provides results of comparable
quality to that of a 416-channel hyperspectral image completed by numerous indices and
several LiDAR variables. Given the greater ease with which the Wordlview-3 image can
be controlled, this would appear to be a very promising way forward for the observatory.
Moreover, WV-3 satellite images can be easily ordered (all you have to do is provide an
Area Of Interest in shape format and indicate the dates you wish to acquire it) and are
less expensive than a hyperspectral aerial survey (34 USD/km2 for panchromatic and
eight-band collection WorldView-3 versus 80 USD/km2 for the hyperspectral combined
with full waveform LiDAR).

For traditional habitats with slower rates of change, such as sedge meadows, reedbeds,
wet meadows, and amphibious turfs, with wetlands being buffered [61], it would seem that
mapping updated every 10 years would be sufficient, given the rates of change observed
in the study area from aerial archives. In this case, it will be necessary to order a new
WorldView-3 image, update and complete the ROIs because the specific composition may
have changed, and apply the classification methods developed in this article. However,
careful thought needs to be given to the optimum acquisition date, as not all habitats can
be visible in a single image. In wetlands, this is all the more difficult to determine as
vegetation in edge areas floods more quickly than topographically low-lying vegetation
with a delayed phenology. For this study, the choice of acquisition period is the result of a
compromise in order to test the mapping of as many groups as possible. In the future, to
avoid the peripheral areas of the habitats in the heart of the marshes being too far advanced,
an image should be taken at the beginning of July. However, the date will have to be
adapted each year, as there is considerable inter-annual variability in rainfall and therefore
in the lowering of water levels. If the aim is to monitor grassland habitats in particular, the
images should be taken from the end of May to avoid mowing.
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For the fast-growing species, such as alien exotic species, the tests carried out for the
detection of Ludwigia grandiflora and Crassula helmsii are extremely conclusive and confirm
the relevance of monitoring these fast-growing species each year by ordering a WV-3 image.
If the objective is to study their growth dynamics and mutual competition, two acquisition
dates should be considered, one at the beginning and one at the end of the summer. This
is demonstrated by the replacement of clumpsof Ludwigia, which grow earlier, by later-
growing Crassula, between the WV3 image on June 23 and the hyperspectral dataset on
July 12. It would be interesting to acquire an image later in the vegetative season, at the
optimum development of the two species towards the end of August, with water levels at
their lowest. In fact, during the pre-processing applied to the images, the water surfaces
were eliminated. As a result, we could no longer detect the cuttings known to be present
in open water and on the edges of canals. This late summer image could also be used to
detect traditional habitats that appear after flooding, such as Oxybasis rubra formations, not
mapped in this study.

For those which were not yet present in the area in 2023 (other invasive exotic species
may arrive via the ballast water of liners in the Loire estuary) or are too small to be
identified, we will need to ensure in the next images acquired that there are no new textures
or colours on the image which we will need to characterise and sample.

We have shown that the Digital Height Model was a highly discriminative variable
for the Random Forest classification. In the context of this study, this was derived from
aerial surveys. In France, the National Geographic Institute (IGN) is currently carrying out
a national LiDAR coverage campaign. In the future, the aim would be to use this public
LiDAR data, doing away with the need for aerial acquisition.

5. Conclusions

Monitoring wetlands using maps is a complex approach. These maps have not always
been sufficiently accurate to detect changes due to the great diversity of vegetation forms
found in these environments and the presence of ecotonal zones with steep environmental
gradients [2]. Nevertheless, multispectral satellite tracking appears to be a satisfactory
approach in terms of ease of implementation, processing, and cost. Although its perfor-
mance is lower than that of hyperspectral data for some plant formations, it is still very
encouraging for the regular monitoring of traditional wetland habitats and the study of the
dynamics of invasive alien species.

The remote sensing mapping we carried out and describe in this article is the first
spatially exhaustive mapping based on 13 EUNIS level 4 habitats in the study area. It
covers the entire wetland, at a spatial resolution of less than 2 metres. In order to better
separate the vegetation classes, we coupled spectral data with LiDAR vegetation structure
information in the variables used for the Random Forest model.

With a view of setting up a long-term observatory to detect changes in vegetation cover,
we propose a standardised method to update maps, based on the multispectral approach.
However, the methods proposed here are being developed using current technologies and
it is possible that in the years to come, with multispectral satellites providing a spatial
resolution of a few tens of 10 cm, this will be outdated. Climate change could also disrupt
the rate at which maps need to be revised [7].
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