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Abstract: For modern radar systems, small unmanned aerial vehicles (UAVs) belong to a typical
types of targets with ‘low, slow, and small’ characteristics. In complex combat environments, the
functional requirements of radar systems are not only limited to achieving stable detection and
tracking performance but also to effectively complete the recognition of small UAV targets. In this
paper, a multi-dimensional feature fusion framework for small UAV target recognition utilizing a
small-sized and low-cost high-resolution radar is proposed, which can fully extract and combine the
geometric structure features and the micro-motion features of small UAV targets. For the performance
analysis, the echo data of different small UAV targets was measured and collected with a millimeter-
wave radar, and the dataset consists of high-resolution range profiles (HRRP) and micro-Doppler
time–frequency spectrograms was constructed for training and testing. The effectiveness of the
proposed method was demonstrated by a series of comparison experiments, and the overall accuracy
of the proposed method can reach 98.5%, which demonstrates that the proposed multi-dimensional
feature fusion method can achieve better recognition performance than that of classical algorithms
and higher robustness than that of single features for small UAV targets.

Keywords: radar target recognition; deep learning; small UAV target; radar target characteristics;
multi-dimensional feature fusion

1. Introduction

A small unmanned aerial vehicle (UAV) is a kind of aircraft that can fly autonomously
or remotely, which has wide application prospects and potential. With the progress of
science and technology and the reduction in costs, small UAVs play a vital role in economic
construction and social development with their advantages of high efficiency, low cost and
multi-aspect monitoring in agricultural plant protection, forest fire fighting, and environ-
mental monitoring, etc. [1]. Although the development of small UAVs has brought conve-
nience to our lives and work, it has also brought adverse effects on public safety and other
aspects. Because of its low price and simple operation, it is also abused in unsafe and even
criminal behavior, threatening the national economic development and national security [2].
Therefore, the recognition of small UAV targets has important application value.

The existing small UAV detection and recognition technology is mainly divided into
four categories, namely radio-based detection [3], photoelectric-based detection [4], audio-
based detection [5], and radar-based detection technology [6]. Radio-based detection
utilizes radio frequency scanning technology to carry out real-time monitoring, analysis
and direction finding of the frequency band of the transmission signal. The technology can
obtain the UAV control signal waveform by scanning the frequency band and compare it
with the waveform in the system library to determine whether there is a small UAV and
determine its type. However, the single station measurement of radio-based detection
usually can only obtain the target orientation information, and the measurement accuracy
is low [7]. Photoelectric-based detection technology mainly uses visible light and infrared
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images to complete small UAV target detection and recognition, but it is easily affected
by light and weather. In addition, the photoelectric signal of small UAVs is weak, the
signal-to-noise ratio is low, and the target masking effect further increases the difficulty of
detection, tracking and recognition of small UAVs [8]. Audio-based detection technology
can measure the sound of propeller rotation, and it has a good detection and recognition
effect on large UAVs. However, because it is susceptible to noise and clutter, and the sound
of small and medium-sized UAVs is small, the detection effect of small UAVs is poor [9].
As an important means of air target detection, radar is widely used in the detection and
recognition of small UAV targets since it can work well in bad weather or weak light,
and does not require any target signal. However, since small UAV targets usually fly
at low altitudes and at low speeds, and the radar cross-sectional area is small, which is
susceptible to background clutter, radar-based recognition of small UAV targets also faces
great challenges [10].

High-resolution radars are capable of capturing subtle characteristics of small UAV
targets, such as structure characteristics and motion characteristics. In [11], the German
Institute of Applied Sciences built a multi-channel external radiation source radar detection
system using the Global System for Mobile communications signals in the environment
to explore the possibility of external radiation source radar acquiring small UAV targets’
micro-motion characteristics. Knoedler et al. [12] adopted ultra-high-frequency-band
signal and multi-frequency and single-frequency networking detection, which can not
only realize continuous positioning and tracking of small UAV targets at 3 km but can
also detect the micro-Doppler effect of multi-rotor UAV. Hoffmann et al. [13] utilized
a new generation of frequency modulation continuous waveform radar to distinguish
small UAV targets from bird targets by micro-motion characteristics. Jahangir et al. [14]
introduced the holographic radar using a digital array system, which can obtain fine feature
representations of targets, and the system can classify small UAV targets and non-UAV
targets through a machine learning algorithm based on a decision tree classifier. Therefore,
the high-resolution radar system pushes the detection and recognition of small UAV targets
to more refined applications. However, the small UAV targets may appear in the field of
view of the radar monitoring equipment in a variety of different angles and directions, and
these changes in the angle of view cause the target to be partially obscured or deformed,
thus increasing the difficulty of target recognition.

Deep learning is an efficient intelligent processing method, which is more suitable for
mining higher-dimensional abstract features than traditional machine learning methods,
and has good generalization ability. It has been applied in the field of target recognition of
high-resolution radar [15]. The deep neural network can acquire various hidden features of
the target from the data without constructing complex high-fidelity models, so it has a very
good application prospect in the recognition of high-resolution range profile (HRRP), micro-
Doppler spectrum and range-Doppler spectrum. Dong et al. [16] proposed a lightweight
UAV detection model to achieve high-precision and lightweight detection and recognition
of fixed-wing and multi-rotor UAVs in low-altitude complex environments. Yang et al. [9]
utilized the deep learning method to analyze the radar signal time series of the UAV
target and estimate the UAV’s micro-motion parameters to realize the target recognition.
Solaiman et al. [10] designed a convolutional neural network (CNN) model to extract and
recognize the features of UAV and non-UAV targets. Wei et al. [17] proposed an information
fusion strategy of radar signals and computer vision for UAV target recognition. The deep
learning-based target recognition method performs well in the small UAV target recognition
task, but it also has some obvious shortcomings, such as requiring a large amount of labeled
data for training, using an end-to-end black box model, which is difficult to explain its
classification learning process, and prone to poor generalization performance in practical
applications [18].

Although great progress has been made in high-resolution radar systems and target
recognition algorithms, small UAVs are difficult to recognize due to their unique nature.
Currently, this research field is still in the initial research stage, and the construction of
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CNN, deep feature extraction, parameter setting and dataset construction need further
research. To improve the recognition performance of small UAV targets, in this paper, a
multi-dimensional feature fusion framework for small UAV target recognition utilizing a
small-sized and low-cost high-resolution millimeter-wave radar is proposed, which can
fully explore the structure features from HRRP and the micro-motion features from a micro-
Doppler spectrum of small UAVs. The main contributions are summarized as follows:

• The geometric structure feature and micro-motion feature parameters of small UAVs
are closely related to UAV type, motion state, radar observation mode and environment
background, etc. Therefore, the relationship between parameters is explored from
the perspective of echo signal mathematical modeling and radar target characteristic
cognition, and the small UAV target recognition is further carried out based on feature
differences.

• Considering the complex motion and environment factors in real applications, the
internal relationships are often difficult to describe in terms of models and parameters,
a multi-dimensional feature fusion framework for small UAV target recognition is
designed, which utilizes structure features from HRRP and micro-motion features from
micro-Doppler spectrograms comprehensively to improve the recognition accuracy of
small UAV targets.

• In order to verify the performance of the fusion model, measured data of two kinds of
small UAVs is collected by a high-resolution millimeter-wave radar, and the dataset of
HRRP and micro-Doppler spectrograms is constructed for training and testing. The
proposed multi-dimensional feature fusion model is evaluated on the collected dataset,
and different experiments were conducted for comparison.

The rest of this paper is organized as follows: Section 2 introduces measuring devices
and conditions. Radar echo modeling and target characteristics analysis of high-resolution
radar are described in Section 3. In Section 4, the proposed multi-dimensional feature
fusion network for small UAV target recognition is introduced. In Section 5, the experi-
mental results and comparative recognition performance analysis of the proposed model
are presented and evaluated. Section 6 discusses the potential challenges and research
opportunities. Finally, the conclusion is presented in Section 7.

2. Related Work
2.1. FMCW Radar System

The FMCW radar sensor utilized in this paper for small UAV target recognition
is based on the AWR1642 radar board, which is presented in Figure 1. It is a highly
integrated 76~81 GHz radar-on-chip millimeter wave radar, which is specifically designed
for the field of automotive applications and manufactured by Texas Instruments. The
raw radar echo data are captured by DCA1000 board. The radar device comprises a
radio frequency module, radio processor module and sensing evaluation module. The
radio frequency module consists of an onboard etched antenna with four receivers and
two transmitters to implement radio frequency and analog baseband signal chains. The
customer-programmable radio processor module utilizes a 600 MHz digital signal processor
and a 200 MHz ARM Cortex-R4F microcontroller to implement signal generation and data
processing. The sensing evaluation module is utilized for the storage and extension of
real-time radar data.

In this AWR1642-based radar system, the transmitted sawtooth-modulated FMCW
radar signal can be expressed as (1):

ST(t) = exp(j2π f0t + jπµt2) (1)

where f0 represents the start frequency of signal, µ = B/T denotes the slope of sweep
frequency, in which B represents the bandwidth, and T represents the sweep period.
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The returned echo signal of radar can be denoted as (2):

SR(t) = exp(j2π f0(t − τ) + jπµ(t − τ)2) (2)

where τ = 2(R + νt)/c represents the round-trip time delay, in which R represents the
range between radar and target, ν represents the velocity of the target, and c denotes the
light speed.

The received signal is mixed with the transmitted signal, and the intermediate fre-
quency signal with a fixed frequency can be obtained through the low-pass filter. The beat
signal representation is depicted as (3):

SB(t) = exp(j2π f0τ + j2πµtτ − jπµτ2) (3)

The intermediate frequency is denoted as (4):

fb = ft − fr = µ
2R
c

+
2 f0ν

c
(4)

where ft represents the transmitted signal frequency, and fr represents the received
signal frequency.

The related radar waveform parameters and experimental parameters are set in Table 1.

Table 1. Specifications of the FMCW radar utilized in experiments.

Radar Experimental Parameters Value

Radar waveform FMCW
Radar antenna 2TX & 4RX
Slope of sweep frequency µ 50 MHz/us
Signal sweep bandwidth B 4 GHz
Signal sweep period T 80 us
Speed of light c 3 × 108 m/s
Number of chirps N 256
Signal sampling frequency fs 10 MHz
Radar range resolution ∆R 3.75 cm
Radar velocity resolution ∆ν 4.75 cm/s

2.2. Multi-Rotor UAVs

In order to evaluate the recognition performance of small UAV targets, various radar
echo data of several types of rotary-wing UAVs flying in the air are recorded. In order to
ensure the diversity of data, two types of rotorcrafts, mainly from Tenxind, as shown in
Figure 2a and Rgds, as shown in Figure 2b, are utilized to collect returned radar signals.
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Each type of UAV is different in size, shape and material, etc. More specifically, a four-rotor
drone is larger and heavier in size and weight, while the coaxial helicopter is thinner and
lighter. The body of the four-rotor drone is made of polycarbonate, magnesium alloy and
plastic, and the rotary wing is made of carbon fiber. The material of the coaxial helicopter
comprises magnesium–aluminum alloy and plastic, and then the blade is made of carbon
fiber-reinforced nylon. In addition, the measurement data during the collection process
is influenced by trees, buildings and telegraph poles surrounding the location. Therefore,
to obtain measurement data from various environments, we collected a small amount of
non-UAV measurement data such as moving cars, running people, and flying birds for
analysis and comparison.
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3. Multi-Feature Extraction of Small UAV Targets
3.1. Modeling of High-Resolution Radar Echo of Small UAV Targets

UAV targets are unique in that almost all UAVs have one or more propellers. The
rotating parts of common aerial targets are usually made of metal or alloy materials, which
have strong reflection ability to electromagnetic waves and can form strong target echo,
which is the physical basis for studying radar characteristics of aerial targets. For the
general high-resolution radar, the radar cross section (RCS) characteristics of aerial targets
are in the optical region, so the target can be regarded as a set of independent scattering
points, and the target echo is the sum of the scattered points on it [19]. Considering that the
body and rotating components of all kinds of small UAV targets meet a certain proportional
relationship in size, the radar echo data are a superposition of body components and
rotating components in a certain proportion.

It is assumed that the target echo is only composed of the body component of the UAV
target and the micro-motion component of the rotating component, without considering
the echo of other components such as the wheel hub. For a multi-rotor UAV, it is assumed
that the RCS of each rotor blade is the same and all are set as 1. Based on the helicopter
rotor model [20,21], the model of the multi-rotor UAV can be constructed as follows:

ssum =
M
∑

m=1
L exp

{
−j

4π

λ
[Rm + zm sin βm]

}
·

N−1
∑

K=0
sin c

{
2πL

λ
cos βm cos(ωmt + φm +

2πk
N

)

}
· exp{−j2π fdt}

(5)

where M represents the total number of rotors, N represents the total number of blades
of a single rotor, L represents the length of rotor blades, Rm denotes the distance from the
radar to the center of the mth rotor, zm represents the height of the mth rotor blade, βm is
the pitch angle from the radar to the center of the mth rotor, approximately equal to the
pitch angle from the radar to the center of the UAV axis, namely, β1 = β2 = . . . = βM = β,
ωm represents the rotation angular frequency of the mth rotor, and φm is the initial rotation
angle of the mth rotor.
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The instantaneous Doppler frequency of the echo signal can be obtained by calculating
the time derivative of the phase function of the signal, and the equivalent instantaneous
micro-Doppler frequency of the kth blade of the mth rotor can be expressed as (6):

fm,k(t) = − Lωm

λ
cos βm sin(ωmt + φm +

2πk
N

) (6)

The instantaneous Doppler frequency of a scattering point P on the blade can be
denoted as (7):

fm,k,P(t) = −2lPωm

λ
cos βm sin(ωmt + φm +

2πk
N

) (7)

where lP represents the distance from the scattering point P to the rotor rotation center, and
0 ≤ lP ≤ L.

The above formula shows that the micro-Doppler frequency of scattered points on
the blade is a sinusoidal curve, the number of curves indicates the number of blades, and
the sinusoidal curve frequency is the same as the blade rotation angular frequency [22].
The Doppler frequency amplitude value at the top of the blade is the largest, and then the
maximum micro-Doppler frequency can be expressed as (8):

fmdmax = −2Lωm

λ
cos βm (8)

When the target translational speed equals zero, the maximum spread of the micro-
Doppler frequency of the blade is expressed as (9):

fsmax = fmdmax − fmdmin =
4Lωm

λ
cos βm (9)

The blade length of the rotor can be deduced as (10):

L =
λ fsmax

4ωm cos βm
(10)

Therefore, the type and motion state of the small UAV target can be determined by the
estimated parameters such as the number of rotors, the number of blades, blade length,
rotor speed, etc., to achieve the purpose of recognizing multi-rotor small UAV targets.

3.2. HRRP of Small UAVs Target and Structure Feature Extraction

The range resolution can be greatly improved after the adoption of a wide-band
signal in radar, and the received echo is no longer a “point” echo, but a one-dimensional
range profile distributed in different radial range units along the radar line-of-sight (LOS),
forming a “range extension target”. HRRP is the coherent sum of the echo of the target
scatterer in each range unit, which indicates the projection of the complex received signal
of the target scattering center on the radar LOS and can reflect the size, shape, structure and
energy distribution information of the target. Measurement is an important solution for
the study of the HRRP characteristics of the small UAV targets, the HRRP of the four-rotor
drone and coaxial helicopter is presented in Figure 3.

Different from the echo signal returned from the small UAV targets, HRRP can present
richer details and more obvious feature contours, which are obtained through a one-
dimensional fast Fourier transform of the echo signal. As shown in Figure 3, these features
can reflect the target structure information, which has stable statistical characteristics. The
features with physical meaning include the length of the target, the strong scattering center,
and the radial energy distribution, etc., which can be expressed as follows.
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The HRRP sequence corresponding to the radial length L is denoted as (11):

x̂H = [x̂H(n), x̂H(n + 1), . . . , x̂H(m)]T (11)

where x̂H() represents the HRRP amplitude, i = n, n + 1, . . . m represents the number of
range cells.

(1) Center of scattering M. The center of scattering, or center of mass reflects the shape
characteristic of HRRP, which is normalized between 0 and 1. It can be denoted as (12):

M =

(
m

∑
i=n

ix̂H(i)/
m

∑
i=n

x̂H(i)− n

)
/(m − n) (12)

(2) Length of radial L. Although it cannot be directly estimated from the HRRP in
some LOS anomalies, the length of radial is one of the most significant features in target
recognition based on HRRP. It is estimated by calculating the difference between the first
range unit that exceeds the noise threshold and the last range unit, which can be denoted
as (13):

L = {max{i|x̂H(i) > Th} − min{i|x̂H(i) > Th}}∆l (13)

where Th represents the threshold of noise, and ∆l represents the range unit that considers
the effect of LOS on the length measurement.

(3) Number of peaks NP. By adopting the peak-seeking algorithm to calculate the
peak number of HRRP, which can represent the scattering point distribution and target
structure complexity. It is calculated as (14):

NP =
m

∑
i=n

u(i), u(i) =
{

1 x̂H(i) > x̂H(i ± 1)
0 else

(14)
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(4) Range between peak points D1. By adopting the peak-seeking algorithm to calculate
the range between the two largest peaks from the extracted HRRP, which can be expressed
as (15):

D1 =

∣∣∣∣argmax
i

{x̂H(i)|n ≤ i ≤ m} − argmax
j

{x̂H(j)|n ≤ j ≤ m&j ̸= i}
∣∣∣∣∆l (15)

(5) Range between maximum peak and nearest edge D2. Calculating the range between
the maximum peak point and the nearest edge of the extracted HRRP by adopting the
peak-seeking method, which can be denoted as (16):

D2 =

∣∣∣∣argmax
i

{x̂H(i)|n ≤ i ≤ m} − iedge

∣∣∣∣∆l

iedge =

{
n |i − n|≤|i − m|
m else

(16)

These above features were selected because they depend on the structure of the small
UAV targets with physical meaning and are relatively stable. However, HRRP is sensitive
to the LOS, even though the scattering point model of the target changes slowly with the
line-of-sight, the HRRP changes faster. Therefore, it is significant to explore the robust
structural feature extraction method based on HRRP for small UAV target recognition.

3.3. Micro-Doppler Time-Frequency Spectrograms of Small UAVs Target and Micro-Motion
Feature Analysis

Motion characteristic is another main characteristic of target recognition, in which the
micro-motion (vibration, spin, precession, etc.) feature can provide new means for target
recognition. UAVs are unique in that almost all have one or more rotating parts, such as
the rotating blades of helicopters, the rotating propellers of fixed-wing aircraft, etc. Due to
periodic rotation, the amplitude and phase of the electromagnetic wave scattered by the
rotating parts will present periodic changes, resulting in the micro-Doppler effect. Because
the rotating part belongs to the fine structure of the target, the controllability is low, and the
micro-motion characteristics are not easy to imitate. Therefore, the micro-motion feature
becomes the unique motion signature of the radar target. Using modern technology to
extract these fine motion features can provide new features with good stability and high
differentiation for radar target recognition.

Time-frequency analysis can depict both time domain and frequency domain informa-
tion of non-stationary signals, which explicitly exhibit the change in frequency over time
and reveal the transient variation characteristics. Different from the time domain and fre-
quency domain, the time–frequency domain of the signal contains sufficient time–frequency
distribution information, which can intuitively present more time–frequency features, and
the signal also can present stronger anti-noise performance in the time–frequency domain.
Classical time–frequency analysis methods include Wigner-Ville Distribution (WVD) [23],
smooth pseudo-Wigner–Ville Distribution (SPWVD) [24], and Short-time Fourier transform
(STFT) [25]. WVD method is easy to generate serious cross-terms, which is not conducive to
the study of micro-Doppler characteristics and the extraction of micro-motion parameters.
Although the SPWVD method greatly reduces the cross-terms of WVD, its calculation is
more complicated and computational complexity is high. STFT is a linear transformation
method that does not produce cross-terms and requires less computation.

The main idea of STFT is to window the time domain signal and divide the total time
domain signal into many short signals of equal length, each of which is approximately
stable after segmentation. The signal frequency in the corresponding time period can be
obtained by Fourier transform analysis of these short time periods so as to obtain the
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distribution relationship between the time and frequency of the signal. The transform
method can be expressed as (17):

STFT(t, f ) =
∫ +∞

−∞
x(τ)g(τ − t)e−j2π f τdτ (17)

where x(τ) represents the discrete signal and g(t) denotes the window function with a
very short time.

The STFT is utilized to convert the echo signal into a two-dimensional time–frequency
image. STFT cannot achieve high resolution in both the time domain and frequency domain,
which means that the longer the sliding window time, the higher the frequency resolution,
and the shorter the sliding window time, the higher the time resolution. The micro-Doppler
time–frequency spectrograms of the four-rotor drone and coaxial helicopter are presented
in Figure 4.
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Figure 4. The time–frequency spectrograms of a four-rotor drone and a coaxial helicopter from dif-
ferent LOS. 
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Figure 4. The time–frequency spectrograms of a four-rotor drone and a coaxial helicopter from
different LOS.

As can be seen from Formula (6), the micro-Doppler characteristics of multi-rotor
UAVs are composed of several sinusoidal curves and are affected by carrier frequency,
number of rotors, rotor speed, number of blades, blade length, initial phase and radar LOS,
in which blade length, carrier frequency and radar LOS are only related to micro-Doppler
frequency amplitude, while the rotor speed, number of rotors, number of blades and initial
signal phase will affect the amplitude and phase of the micro-Doppler time–frequency
distribution curve.

4. Multi-Feature Fusion Network for Small UAVs Target Recognition

Radar echo signal contains a wealth of target characteristic information, such as
geometric structure and motion information. In this section, a small UAV target recognition
method based on multi-feature fusion is introduced, which uses the combination of LSTM
and CNN to fully exploit the geometric structure feature from HRRP and the micro-motion
feature from micro-Doppler time–frequency of radar echo signal for fusion recognition. The
multi-feature fusion architecture for small UAV target recognition is presented in Figure 5.
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The proposed architecture consists of two parallel feature extraction sub-networks
and a classifier, in which HRRP and time–frequency spectrograms are taken as input
data, respectively. In the first sub-network, the structural features of a small UAV target
are extracted from HRRP through an LSTM network; while in the second sub-network,
deep micro-motion features are extracted directly from time–frequency spectrograms of
a small UAV target by a multi-layer CNN. After that, these two features from different
sub-networks are concatenated and then entered into the classifier to obtain the final
classification result.

4.1. The Network of Geometric Structure Feature Extraction from HRRP

According to the analysis of HRRP characteristics of small UAV targets in Section 3.2,
the HRRP sample can be considered as a projection of radar echoes from a series of scatterers
distributed in the range unit along the radar LOS. In order to explore the internal temporal
dependence between range cells of each HRRP sample and predict the corresponding UAV
target type based on its structural characteristics, the HRRP samples are converted into
sequential inputs first. For an HRRP sample x ∈ ℜD, the amplitude of the nth HRRP
sample can be denoted as (18):

x̂(n) = (|x1(n)|, |x2(n)|, . . . , |xD(n)|) (18)

where |xi(n)| represents the amplitude of the ith range cell of the nth HRRP sample, and D
represents the total number of range cells in one sample.

The sequential HRRP sample can be segmented by time step t as (19):

x̂t(n) = (xt1(n), xt2(n), . . . , xT(n)) (19)

Taking the segmented HRRP samples as the inputs of the sequential model, LSTM is
adopted to explore the temporal correction within an HRRP sample, and the corresponding
hidden state at time step t is introduced (20):

ŷt = W l f ht + b f n = W l f (go · tanh(ct)) + b f n (20)
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where
g f (i,o) = σ(W f (i,o) · [ht−1, xt] + b f (i,o))
ĉt = tanh(Wc · [ht−1, xt] + bc)
ct = g f · ct−1 + gi · ĉt

(21)

where g f , gi, go denotes the forget gate, input gate and output gate, respectively, W f ,
Wi, Wo, b f , bi,bo represents the corresponding weight and threshold, W l f represents the
connection weight between the fully connected layer and LSTM, b f n denotes the bias of the
fully connected layer, and ĉt represents the state of current input cell.

As discussed above, the target region in the HRRP sample indicates the essential
geometric structure information of the small UAV target in the recognition task, which
deserves special attention. Therefore, the attention mechanism is adopted to assign more
weights to the output of the corresponding target regions, thereby paying more attention to
the discriminative features of the target regions in HRRP. The calculation method of each
attention weight of the hidden state can be expressed as (22):

at =
exp(Wt)

∑T
l=1 Wl

ht (22)

where ht represents the hidden state, and Wt denotes the attention weights.

4.2. The Network of Micro-Motion Feature Learning from Time-Frequency Spectrograms

The target micro-motion features reflect the electromagnetic scattering characteristics,
geometric structure and motion characteristics of the target, which is helpful for small
UAV target recognition. Time-frequency analysis is a commonly used method to extract
micro-motion features. According to the analysis in Section 3.3, three-channel spectrogram
can be obtained and processed as the input of the micro-motion feature extraction network.

A deep CNN architecture is adopted for small UAV target recognition based on micro-
Doppler time–frequency spectrograms, which generally perform both feature extraction and
classification within the same architecture. The cascaded features of different complexity
from the time–frequency representation are extracted by seven convolution layers and
seven pooling layers, the feature map of the last layer is flattened and output to the classifier.
To accelerate training and prevent overfitting, batch normalization and dropout are utilized
in the DCNN architecture. The output feature map can be expressed as (23):

ym = xm−1 ⊗ Km + bm (23)

where xm−1, Km, and bm represent the input, convolution kernel, and bias of the mth
convolutional layer, and ⊗ represents the two-dimensional convolution operators.

The output flatten features of these two subnetworks are weighted concatenated and
entered to the classifier, which is implemented by 4 fully connected networks and an output
layer with softmax activation function.

The cost function is defined in the form of cross entropy (24):

Lclc = − 1
K ∑ ∑ y log(p) (24)

where K represents the total number of samples in one batch, y represents the label value,
and p represents the predicted value.

The stochastic gradient descent (SGD) is adopted to minimize the regulation of the
cost function in backpropagation until the network converges. The parameters of the
multi-fusion network for small UAV target recognition are summarized in Table 2.
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Table 2. Specifications of the proposed fusion network for small UAV target recognition.

Network Name Network Layer No. Kernels Pooling

Micro-motion feature extractor

Conv1 3 × 3@6 2 × 2 max pooling
Conv2 3 × 3@16 2 × 2 max pooling
Conv3 3 × 3@32 2 × 2 max pooling
Conv4 3 × 3@64 2 × 2 max pooling
Conv5 3 × 3@128 2 × 2 max pooling
Conv6 3 × 3@64 2 × 2 max pooling
Conv7 3 × 3@32 2 × 2 max pooling

Classifier

Fc5 @2021
Fc6 @512
Fc7 @128
Fc8 @3

5. Experimental Results and Performance Analysis
5.1. Data Collection and Experiment Settings

In order to verify the performance of the proposed multi-dimensional feature fusion
network for small UAV target recognition, radar echo data returned from a four-rotor drone
and a coaxial helicopter were collected from different radar LOS angles by the AWR1642
radar system, and preprocessed to form the one-dimensional sequential HRRP and two-
dimensional time–frequency spectrograms, respectively. Data acquisition experiments
were mainly conducted in the drill ground at North China University of Technology, as
shown in Figure 6. The observation angle is from −60◦ to 60◦ and the attitude angles of the
helicopter or drone are from −15◦ to 15◦ relative to the radar antenna’s normal direction.
In addition, in order to obtain measurement data from different environments, a small
amount of non-UAV measurement data such as moving cars, running people, and flying
birds were also collected for analysis and comparison.
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Figure 6. Data collection setup and experiment scenario.

The proposed multi-feature fusion algorithm is evaluated on the self-built small UAV
target dataset, which mainly contains HRRP samples and micro-Doppler time–frequency
spectrograms. The dataset is depicted as follows:

• A total of 3180 pieces of HRRP samples and 3180 pieces of micro-Doppler time–
frequency spectrograms are included in the dataset, in which 1800 pairs of samples
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are used to train the multi-features fusion model, 900 pairs of samples for validation
and 480 pairs of samples for testing.

• The HRRP sample is represented as the amplitude, and the number of range cells in one
HRRP sample is 256; the size of the input three-channel time–frequency spectrograms
is 900 × 1200.

• Three types of targets are included in the dataset: 1200 samples of four-rotor drones,
1200 samples of coaxial helicopters and 780 samples of other targets (moving cars,
running people, flying birds).

The hyperparameters such as hidden size, number of layers, kernel size, number of
kernels, network depth, learning rate and dropout rate are optimized. The network model
was trained using backpropagation and SGD optimizer with an initial learning rate of
0.001, a dropout rate set to 0.3, and a batch size of 100. The measured data were collected
and processed by the MATLAB 2020 platform, and all experiments were conducted on the
server equipped with GPU 3060Ti, and using Python 3.7 for model implementation.

Considering the explicit and convenient demand for analysis and comparison, four
accuracy evaluation metrics including overall accuracy, precision (average accuracy), recall,
and F1 score were utilized to evaluate the recognition performance of small UAV targets.
The accuracy evaluation metrics can be defined as follows:

OA =
1
N

M

∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(25)

P =
1
M

M

∑
i=1

TPi
TPi + FPi

(26)

R =
1
M

M

∑
i=1

TPi
TPi + FNi

(27)

F1 =
1
M

M

∑
i=1

2 × Pi × Ri
Pi + Ri

(28)

where TP, FPi, and FNi represent the true positive, false positive, and false negative counts
of the ith class, respectively.

5.2. Experiment Results and Performance Analysis

To validate the superiority of the proposed multi-feature fusion algorithm in small
UAV target recognition, support vector machine (SVM), random forest (RF), and AdaBoost
algorithms based on HRRP manual structural feature extraction, LSTM algorithm based
on one-dimensional sequential HRRP and CNN algorithm based on two-dimensional
time–frequency spectrograms were utilized for comparison experiments.

(1) Geometric structure feature extraction and analysis

According to the HRRP characteristics defined in Section 3.2, the HRRP geometric
structure features of the four-rotor drone and the coaxial helicopter are calculated, respec-
tively, which is shown in Tables 3 and 4. The statistical results demonstrate that there are
strong structural similarities between adjacent HRRP samples in the same LOS angle. Due
to the existence of the rotating components, the amplitude of HRRP will be modulated
by the echo of the rotating parts; therefore, the amplitude fluctuation is relatively large
in a small angle range, and there is also a certain amplitude disturbance. In other words,
the peak position of the size of the adjacent HRRP sample remained basically unchanged,
while the amplitude of the peak fluctuated slightly differently.
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Table 3. Geometric structure features of the four-rotor drone target from HRRP.

Structure Features LOS Angle 1 LOS Angle 2 LOS Angle 3 LOS Angle 4

Center of scattering 7.109 7.101 7.043 7.028
Length of radial 0.424 0.423 0.413 0.392

Number of peaks 1.110 1.115 1.116 1.108
Range between peak points 0.198 0.286 0.290 0.275

Range between maximum peak and nearest edge 0.330 0.334 0.345 0.328

Table 4. Geometric structure features of the coaxial helicopter target from HRRP.

Structure Features LOS Angle 1 LOS Angle 2 LOS Angle 3 LOS Angle 4

Center of scattering 7.629 7.431 7.123 6.944
Length of radial 0.413 0.435 0.447 0.397

Number of peaks 1.119 1.119 1.111 1.113
Range between peak points 0.128 0.106 0.169 0.102

Range between maximum peak and nearest edge 0.360 0.316 0.304 0.395

In addition, the strong correlation component in a single HRRP within the same frame
mainly depends on the target scattering center structure. Since the scattering center of
the HRRP sample in the same frame does not cross the range cell, its structure basically
remains unchanged, so the strong correlation component between different HRRP samples
in the same frame is similar or approximately equal. The unknown amplitude disturbance
component mainly results from the change in the target attitude.

In a word, for the same target, the statistical features of HRRP are relatively stable and
slightly different of different LOS angles, while for different targets, the statistical structure
features are obviously different. Therefore, making full use of the structural features in
HRRP is useful and meaningful for target recognition of small UAVs.

(2) Performance analysis of different algorithms

In order to verify the performance of the proposed small UAV target recognition
algorithms based on multi-dimensional feature fusion, it is compared with other related
machine learning and deep learning algorithms including SVM, RF, AdaBoost, LSTM,
and CNN on the self-built dataset, in which SVM, RF, AdaBoost methods are performed
on manually extracted geometric structure features, while LSTM method is performed
on one-dimensional sequential HRRP dataset and CNN algorithm is performed on two-
dimensional time–frequency spectrograms, respectively. The recognition performance
is evaluated by OA, precision, recall, and F1 score. Experimental results of different
algorithms are compared and presented in Table 5 and Figure 7. The best results for each
item are highlighted in bold.

Table 5. Recognition result (%) comparison of different methods for small UAV targets.

Type SVM RF AdaBoost LSTM CNN Ours

Four-rotor drone 87.39 ± 2.17 89.83 ± 2.45 89.56 ± 1.83 94.28 ± 1.47 96.08 ± 1.48 98.50 ± 1.26
Coaxial helicopter 86.40 ± 1.13 88.85 ± 2.71 90.73 ± 1.78 95.65 ± 1.75 96.52 ± 1.34 98.25 ± 0.78

Others 89.16 ± 2.34 88.70 ± 2.73 91.29 ± 2.46 94.21 ± 2.11 96.01 ± 1.72 98.74 ± 0.34

OA (%) 87.60 ± 2.13 89.01 ± 1.58 90.63 ± 1.86 94.27 ± 1.08 96.51 ± 0.79 98.56 ± 0.47
Precision (%) 87.91 ± 2.27 88.15 ± 2.37 90.45 ± 1.79 94.39 ± 1.53 96.06 ± 1.82 98.43 ± 0.14

Recall (%) 88.68 ± 2.67 89.06 ± 2.42 89.66 ± 2.53 94.28 ± 1.45 96.13 ± 1.32 98.49 ± 0.55
F1 (%) 88.29 ± 2.92 89.03 ± 2.63 90.05 ± 2.32 94.33 ± 1.73 96.09 ± 1.40 98.47 ± 0.69
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Figure 7. Confusion matrix between the proposed method and other comparison methods.

The experimental results show that on the same dataset, the performance of the three
deep learning-based architectures for small UAV target recognition, including our pro-
posed multi-feature fusion algorithm, significantly outperforms that of the three advanced
statistical machine learning-based methods, such as the SVM algorithm with manually
statistical features. Since the echo data from high-resolution radar contains the geometric
structure features and motion features of the small UAV targets, the proposed multi-
feature fusion algorithm presents the highest radar target recognition metrics. Specifically,
the OA, precision, recall, and F1 score of the proposed multi-feature fusion algorithm
are 2.05–10.96%, 2.37–10.52%, 2.36–9.81%, and 2.38–10.18% higher than the other five al-
gorithms, respectively, which proves the effectiveness and stability of the fusion of the
geometric structure features from HRRP and the micro-motion features from micro-Doppler
time–frequency spectrograms.

As can be seen from Figure 8, the recognition accuracy and F1 score of the proposed
multi-dimensional feature fusion algorithm reaches 98.5%, which is superior to other algo-
rithms. Regardless of which classifier is utilized (i.e., SVM, RF, and AdaBoost), recognition
algorithms using only manual features have stable but relatively poor recognition perfor-
mance. Although the recognition results of the method using only with CNN or LSTM are
higher than those using only manual features, they are lower than that of the proposed
model, with a difference of about 2%. The results show that the multi-feature fusion method
has higher recognition accuracy than the single-feature-based method.
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6. Discussion

With the continuous development of deep learning, radar target recognition technol-
ogy has made remarkable progress in theoretical analysis, but there are still many serious
challenges in practical application. Combined with the application of deep learning in
real-world small UAV target recognition, the following aspects are still worth considering.

(1) Complex Environment.

The complex environment of small UAV target recognition includes atmospheric
disturbance, light condition change, background interference, multi-target tracking, etc.
In addition, the presence of a large number of occlusions in a complex environment, such
as buildings, trees, or others, may result in small UAV targets that may be completely
occluded, making target recognition more difficult. Moreover, complex environments are
often dynamic, with frequent changes in targets and backgrounds, such as birds or other
moving targets, requiring timely updates of the location and properties of the target, which
also brings challenges to small UAV target recognition.

To overcome these difficulties, the researchers tried a number of solutions. By using
deep learning methods to learn the feature and context information of the target from a
large amount of data [26], more accurate target recognition can be achieved in complex
environments. In addition, when the target is occluded or lost, the target re-recognition
technology [27] can be used to model and match the appearance features of the target, so
as to re-recognize the target. Furthermore, through motion prediction and model update,
the motion pattern and behavior of the target are analyzed, which can better recognize the
target and cope with the changes in the dynamic environment.

(2) Non-cooperative Target Recognition.

As a non-cooperative target, small UAV targets have low detectability, and their shape,
material, or coating may be similar to the surrounding environment, making them difficult
to distinguish from the background in sensor data [28]. However, due to the lack of a public
high-quality dataset, deep learning algorithms proposed by different research teams are
not easy to compare and verify each other, which limits the application and development of
deep learning in radar target recognition. At the same time, since radar target recognition
is generally applied to non-cooperative targets, the recognition ability of the model in real
scenarios also needs to be verified. In the next stage, the radar target recognition based
on deep learning can focus on the improvement of the recognition effect by the new deep
learning structure, as well as the application of the algorithm in practical scenarios.

Multi-spectral image sensors, infrared imaging sensors and high-resolution radar can
be adopted to improve the recognition ability of the non-cooperative small UAV targets [29].
Multi-spectral image sensors can capture small differences between a UAV target and its
surroundings, infrared imaging sensors can rely on thermal radiation from the UAV for
recognition, and radar can use the echo signal to recognize the presence of the small UAV
target. These advanced sensors can provide a diverse source of data, increasing the chances
of recognizing non-cooperative targets.

(3) “Low-Slow-Small” Target Characteristics.

Because the “low, slow and small” UAV is usually small in size, coupled with the
limited number of target pixels and easy to mix with the background, long-distance visual
detection is more difficult. The fast and agile movement of the “low, slow and small” UAV
target will produce rapid position and morphological changes in the image sequence, which
is prone to blur and position instability, making the recognition task more complicated. In
addition, a low-altitude flight environment can result in a low signal-to-noise ratio problem,
where sensor signals are affected by noise and interference, reducing the visibility of the
target in the sensor data.

One promising solution is to utilize high-resolution radar sensors to obtain more
detailed information to enhance the visibility of the target. Through sensor data fusion
and motion model prediction [30], inference caused by motion can be reduced, and the
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influence of complex environments on target recognition can be reduced. The compressive
use of multi-view or multi-sensor information can reduce the impact of occlusion and
improve the recognition performance of the small UAV target.

7. Conclusions

In this paper, a multi-dimensional feature fusion framework for small UAV target
recognition based on a high-resolution radar is proposed, which can fully utilize the
geometric structure features and micro-motion features of small UAVs for target recognition.
The echo data of different small UAV targets was measured and collected through a high-
resolution millimeter-wave radar, and further processed into HRRP and micro-Doppler
time–frequency spectrograms, respectively, for training and testing. The effectiveness
of the proposed multi-dimensional feature fusion method was verified by a series of
comparison experiments, and the experimental results demonstrate that the proposed
multi-dimensional feature fusion method can achieve better recognition performance and
higher robustness than that of single features for small UAV targets, which provides a new
feasible idea for the application of anti-UAV in complex scenarios.
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