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Abstract: Cables are vital load-bearing components of cable-stayed bridges. Surface defects can lead
to internal corrosion and fracturing, significantly impacting the stability of the bridge structure. The
detection of surface defects from bridge cable images faces numerous challenges, including shadow
disturbances due to uneven lighting and difficulties in addressing multiscale defect features. To
address these challenges, this paper proposes a novel and cost-effective deep learning segmentation
network, named Trans-DCN, to detect defects in the surface of the bridge cable. The network
leverages an efficient Transformer-based encoder and integrates multiscale features to overcome the
limitations associated with local feature inadequacy. The decoder implements an atrous Deformable
Convolution (DCN) pyramid and dynamically fuses low-level feature information to perceive the
complex distribution of defects. The effectiveness of Trans-DCN is evaluated by comparing it
with state-of-the-art segmentation baseline models using a dataset comprising cable bridge defect
images. Experimental results demonstrate that our network outperforms the state-of-the-art network
SegFormer, achieving a 27.1% reduction in GFLOPs, a 1.2% increase in mean Intersection over Union,
and a 1.5% increase in the F1 score. Ablation experiments confirmed the effectiveness of each module
within our network, further substantiating the significant validity and advantages of Trans-DCN
in the task of bridge cable defect segmentation. The network proposed in this paper provides an
effective solution for downstream cable bridge image analysis.

Keywords: deep learning; defect segmentation; bridge cable surface defects; non-destructive cable
health assessment

1. Introduction

Bridge cables have undergone significant technological advancements, evolving from
iron chains to modern high-strength steel cables. These cables play a crucial role in ex-
panding bridge spans and ensuring structural stability and safety, serving as essential
load-bearing components in suspension bridges and cable-stayed bridges. However, due
to exposure to the harsh natural environment, high-intensity load, and material corrosion,
bridge cables are susceptible to various defects, including cracks, potholes, scratches, etc.
The surface defects may result in the rapid deterioration of the bridge cables, posing signifi-
cant threats to bridge safety [1]. Therefore, timely monitoring of the structural health of the
bridge cables is imperative to inform appropriate maintenance interventions [2].

The traditional methods for detecting bridge cable defects relied solely on manual
visual inspection and basic physical measurement tools, such as laser scanning. Manual
inspection is extremely labor-intensive and inefficient, particularly when confronted with
numerous extreme working environments. With the progression of science and technol-
ogy, certain physical technical applications, such as ultrasonic detection methods and
optical fiber sensing technology, have gradually been implemented [3,4]. However, these
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instruments tend to be costly and are more suited for detecting internal defects, making
it challenging to observe and evaluate surface integrity. The potential incompleteness in
surface inspection poses a hazard, as these surface defects can rapidly lead to internal cor-
rosion and fractures. In recent years, computer vision technology and artificial intelligence
algorithms have demonstrated their efficacy in various engineering domains and have
been extensively employed in bridge cable defect detection.

Cable-climbing robots have become prevalent in inspecting bridge cable defects due to
their efficient data acquisition capabilities and stability. Currently, numerous studies have
explored the integration of cable-climbing robots with computer vision systems for bridge
defect detection tasks [5–7]. Leveraging the widespread availability and convenience of
these cable-climbing robots, we employed an embedded system-based vision acquisition
device for cable defect detection. This device comprises four RGB cameras arranged around
a central cable, a pulley power system, an image acquisition system, and a wireless control
system, as shown in Figure 1. The robot can adapt to cables of various sizes and capture
exterior images from four perspectives.

RGB
Camera

RGB
Camera

Control
System

Pulley Power
System

(a) (b)

Figure 1. Cable-climbing robot. (a) Basic components of our cable-climbing robot. (b) Cable-climbing
robot is deployed on the bridge cable, ready for work.

One of the primary challenges in bridge cable surface inspection lies in the effectively
utilizing collected imagery to rapidly identify the precise locations of defects and damage
details. Current research has integrated cable-climbing robots with computer vision for
application in bridge cable defect detection tasks, encompassing both classical computer
vision algorithms and advanced deep learning methodologies for detection purposes.
The former often require significant manual intervention for preprocessing and struggle
to cope with the challenges posed by lighting variations. The latter approach reduces
the preprocessing stage but demands a large volume of image samples [8]. Moreover,
the conventional network framework lacks generalization ability and robustness when
confronted with changes in lighting and complex distributions of defects [9].

We identify two primary challenges in enhancing the generalization capability and
robustness of deep neural networks for bridge cable defect extraction. The first challenge
arises from constantly changing collection environments, such as insufficient lighting or an-
gles obstructed by shadows, as well as complex background texture interference other than
the cable itself. This can lead to the omission of local features and incorrect associations. It
is crucial to fully extract effective feature information from the images. Transformers, based
on the self-attention mechanism, establish direct global relationships among all pixels in the
image, effectively capturing and utilizing long-range dependency information [10–12], thus
effectively addressing this challenge. Therefore, in our proposed deep neural network, we
introduce a novel Transformer as the encoder to comprehensively extract global contextual
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feature relationships, compensating for the lack or absence of local features, a capability not
inherent in convolutional methods based on local spatial aggregation [13]. Additionally,
we integrate feature information from all stages, retaining potential defect-related features
to precisely delineate defect areas according to the requirements in the decoder.

Another challenge arises from the intricate and varied genre of bridge cable defects,
mainly reflected in the fact that the same defect may appear in multiple sizes and the defects
exhibit a broad spectrum of changes and diverse textures. Particularly, cracks typically
appear as thin dark lines or strips with constantly varying angle and direction, such as cir-
cumferential cracks, longitudinal cracks, and minor cracks. Standard convolutions struggle
to adequately capture such elongated features, as different positions may correspond to
defects of different scales or deformations [14]. Fixed spatial aggregation methods may con-
fuse the encoding of positional information for deep networks. Therefore, it is imperative
to comprehensively extract these defect regions. We proposed a Serial-Parallel pyramid
module based on atrous Deformable Convolution (SPP-DCN) in the decoder, employing
multiple progressively dilated Deformable Convolutions to adaptively capture the distribu-
tion of defect features. This is followed by the utilization of the Squeeze-and-Excitation (SE)
mechanism to accentuate effective boundary information. Meanwhile, within the low-level
layers of the encoder, which capture rich edge information at the local level, we introduce
several shortcuts between the encoder and the decoder. An efficient Adaptive Spatial
Feature Fusion (ASFF) module is employed to comprehensively integrate and summarize
this edge information in the decoder, ensuring the integrity of defect extraction.

RGB natural images are a common data format in the field of defect detection. Conse-
quently, our study focuses on developing a deep learning network for bridge cable defect
detection based on RGB data input. Traditional segmentation frameworks often employ
a simple encoder–decoder structure to extract features, followed by direct deconvolution or
upsampling to obtain segmentation results. However, this approach is not well suited for
the specific characteristics of cable defect detection. To achieve effective, rapid, and robust
detection of surface defects in bridge cables and address the aforementioned challenges,
we propose an end-to-end efficient semantic segmentation deep neural network named
Trans-DCN. The Trans-DCN model features an efficient feature extraction encoder and
a fully refined feature-aware decoder, which are crucial for bridge cable defect segmenta-
tion. The code is publicly available at https://github.com/hzh1231/Trans_dcn (accessed
on 21 July 2024).

Thus, the primary contributions of this paper are as follows:

1. The introduction of an efficient backbone based on Transformer, complemented by
a multi-layer feature aggregation module in the encoder, facilitating the comprehen-
sive utilization of global contextual defect features.

2. The establishment of a serial–parallel structure featuring multiple atrous Deformable
Convolutions, which dynamically adjust the receptive field according to the defect
distribution, ensuring a comprehensive detection with multiple granularities.

In this paper, we specifically illustrated the technical details of the network and
conducted experiments comparing it with state-of-the-art models. We also analyzed and
discussed the effectiveness of each module in our work to demonstrate the new baseline
performance in bridge cable defect detection.

2. Related Work
2.1. Bridge Cable Surface Defect Detection

Polyethylene (PE) pipes serve as the protective layer for bridge cables. Once the PE
pipe ages or ruptures, corrosive substances can infiltrate the internal steel wires through
the defect in the protective layer [15]. Therefore, it is crucial to assess the surface defect of
the cables non-destructively [16]. Figure 2 illustrates some common surface defects found
in bridge cables.

Traditional manual inspection methods are inefficient and subjective, making it dif-
ficult to meet the maintenance needs of modern bridges. Numerous researchers have

https://github.com/hzh1231/Trans_dcn
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explored the utilization of cameras mounted on Unmanned Aerial Vehicles (UAVs) or cable-
climbing robots to capture images of surface defects on bridges. These images are then
subjected to intelligent analysis through computer vision techniques [7,17–19]. Threshold-
based methods, which rely on the analysis of grayscale and gradient features of images,
can achieve basic defect extraction [20,21]. However, directly applying image processing
methods for defect detection encounters challenges regarding insufficient robustness, often
necessitating extensive preprocessing to attain satisfactory results. With further technologi-
cal advancements, machine learning, by constructing high-level feature representations,
can effectively address the challenges posed by changes in lighting conditions [22]. Li et al.
achieved high accuracy in defect image classification experiments by deploying the Support
Vector Machine (SVM) based on particle swarm optimization [1]. Nonetheless, feature
extraction for defect images still required the use of mathematical statistical methods.

Typically, deep learning has proven effective in detecting defects in domains with simi-
lar distributions [23]; some research has already achieved basic defect detection by utilizing
simple and common network architectures [24–26]. However, these generic framework
methods struggle to adapt to the specific characteristics of cable images, particularly when
facing predominantly strip-like cracks, which often result in missed or false detections of
defects. Therefore, we have developed an advanced approach for defect detection that takes
into account environmental disturbances and the distribution characteristics of defects,
with the aim of fully enhancing the potential of neural network applications.

(a) Crack

(b) Scratch

(c) Spalling

Figure 2. Some examples of surface defects on cables, where helical fillets are designed to suppress
rain–wind-induced vibrations.
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2.2. Image Segmentation Based on Deep Neural Network

Most previous studies have proposed methods based on image classification or object
detection using bounding boxes [27–29]. However, these methods cannot provide precise
information regarding defect paths and densities. Therefore, there is a pressing demand for
a pixel-based segmentation approach to distinguish defective pixels.

With sufficient training data, supervised learning strategies significantly enhance the
capabilities of segmentation models. The Convolutional Neural Network (CNN) framework
is the most commonly used approach, as CNNs demonstrate powerful feature extraction
capabilities, especially in capturing local features within images [13,30–32]. In particular,
Long et al. initially introduced the Fully Convolutional Network (FCN), which can be
trained end-to-end, greatly improving accuracy and paving the way for deep learning-based
pixel-level semantic segmentation [33]. This advancement assists intelligent systems in
grasping spatial relationships or making critical judgments [34]. Shi et al. segmented cracks
in steel and rubber bearing corrosion images using VGG-Unet [35]. Despite being affected
by the imbalance between foreground and background in the dataset, this encoder–decoder
framework was considered one of the most well-designed architectures for segmentation,
as it is well suited for recovering multiscale details of target objects [36]. Deng et al.
incorporated the Atrous Spatial Pyramid Pooling (ASPP) module into LinkNet, achieved
high recognition accuracy for bridge surface structural damage based on a pre-trained
encoder, even on small datasets [37]. The network proposed is based on an encoder–
decoder framework and utilizes transfer learning from large datasets to quickly deploy
into our small domain of defect segmentation. Additionally, composite loss functions were
employed to better learn foreground defect features.

Although convolutional networks demonstrate powerful capabilities in extracting
local features, their fixed receptive fields limit the ability to correlate features at large scales.
In contrast, self-attention mechanisms enrich the representation capability of features based
on global texture modeling, effectively compensating for the limitations of convolutions.
Self-attention has recently gained favor among many researchers after Transformers became
the new state of the art in Natural Language Processing (NLP) [12]. This led to the develop-
ment of Vision Transformer (ViT) [11], which has been adapted for image segmentation
tasks [38–40]. The Swin Transformer confines self-attention within sliding windows, sig-
nificantly reducing computational costs [41]. He et al. embedded the Swin Transformer
into UNet to form a dual encoder, which is used in remote sensing image segmentation,
enhancing the accuracy of small-scale ground objects through a spatial interaction module
and a feature compression module [42]. However, the increased computational cost is
not conducive.

Our proposed model effectively integrates Transformers and convolutional networks.
The efficient encoder, developed based on the Transformer, comprehensively extracts
potential defect features, while Spatial Reduction Attention (SRA) is introduced to reduce
complexity [43]. Subsequently, in the convolution-based decoder, features extracted by the
encoder are further refined, ultimately yielding critical bridge cable defect predictions.

3. Method

We propose an encoder–decoder defect image segmentation architecture, Trans-DCN,
designed to efficiently achieve comprehensive detection of the defect areas of bridge cables.
In this section, we will outline our overall network architecture. The flowchart of Trans-
DCN is shown in Figure 3. Before that, it is necessary to provide a brief overview of some
relevant techniques used in the network, including Dot Product Self-Attention (DPSA),
Deformable Convolution (DCN), Depthwise Separable Convolution (DSC), and SE.
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Tran-DCN

Encoder: Effective Transformer

Decoder: Adaptive Aggregation

Overlap Patch Merging

Effective Transformer Encoder

Multi-layer Feature 
Aggregation Modules

Serial-Parallel Pyramid Based on 
Atrous Deformable Convolution Module

Adaptive Spatial Feature Fusion Module

Figure 3. The flowchart of our proposed network Trans-DCN, detailed in Section 3.2.

3.1. Overview of Related Methods

Self-attention mechanism. In a self-attention [12], given an input sequence
s ∈ RN×d, we obtain Q(query), K(key) and V(value) ∈ RN×D matrices with different
spatial relationships by multiplying three learnable mapping matrices Wq, Wk, Wv ∈ Rd×D

with s. The Dot Product Self-Attention is defined by scaling the dot product of Q and K
and passing it through a softmax activation to produce attention weights, which are then
applied to the V , represented as follows:

Attention(Q, K, V) = so f tmax
(

Q · KT
√

D

)
V (1)

where
√

D represents the scaling parameter, and N is the length of the embedding sequence.
Self-attention can be regarded as the weighted average of the input sequence with respect
to itself and all other sequences. It aggregates information from all sequences, thereby
extracting rich contextual information from the image. Meanwhile, the computational
complexity of self-attention is quadratic, O

(
N2D

)
, primarily dependent on the number of

input sequences.
The self-attention mechanism has been widely utilized in the field of NLP. ViT is one

of the earliest works to apply a pure Transformer to computer vision and demonstrates
a powerful large-scale correlation capability of image features, a degree of correlation that
is challenging for convolution-based networks to achieve. Given the large-scale variations
observed in defect areas of bridge cables, the broad-contextual feature correlation enabled
by self-attention can enhance the network’s capability to extract relevant information.
Therefore, we proposed a multiscale feature alignment-utilizing backbone to serve as the
encoder of the model.

Deformable Convolution. For regular 2D convolution in the field of image processing,
we first define a receptive field grid R, which represents the deviation from the center of
the convolution kernel. Taking a convolutional kernel 3 × 3 as an example, R with one
dilation is as follows: R = {(−1,−1), (−1, 0), · · · , (1, 1)}. For a given input feature map
x, after convolutional computation, each element po on the output feature map y can be
obtained through the following calculation:

y(po) = ∑
pn∈R

w(pn) · x(po + pn) (2)

where qn enumerates the elements of R, and w is the learnable weight. It is worth noting
that bias has not been considered in this formulation.



Remote Sens. 2024, 16, 2711 7 of 29

Compared to attention mechanisms, regular convolution exhibits lower computational
complexity but is constrained by certain spatial aggregation capabilities, thereby sacrificing
the ability to aggregate broad-contextual information. Deformable Convolution seeks to
strike a balance between self-attention and regular convolution by introducing additional
learnable offsets [14], as shown in Figure 4a. In Deformable Convolution, the external
offset ∆pn is added to the receptive field grid R. Therefore, Deformable Convolution is
represented in Equation (2) as follows:

y(po) = ∑
pn∈R

w(pn) · x(po + pn + ∆pn) (3)

where ∆pn is learnable from the input feature map and maintains the same number of R.
Particularly, the learned ∆pn are floating-point numbers, while the feature map is integer.
Bilinear interpolation sampling is required to obtain x(po + pn + ∆pn).

Deformable Convolution inherits the efficient capability of regular convolution while
also possessing adaptive spatial aggregation capability and dynamic adjustment of the
range of perceived features, which is similar to self-attention. We propose a serial–parallel
Deformable Convolution module in the decoding stage, which achieves adaptive multiscale
spatial feature aggregation and ensures a comprehensive perception of the defects.

convolution
2D offset field

offset

Input feature Output feature

 Sampling & Convolution

(a)

Input Feature Depthwise Kernel

(1) Depthwise Convolution

Pointwise Kernel

Output Feature

(2) Pointwise Convolution

Output Feature

×n

Input Feature

×n

(b)

Figure 4. (a) Deformable Convolution. The offset field is learned from the input feature. Tak-
ing a 3 × 3 convolution as an example, each element of the offset field contains a dimension of
9 × 2 elements because the offset is decomposed into a two-dimensional vector. The dotted arrows
indicate the calculation of the offset, and the solid arrows indicate the final convolution calculation.
(b) Depthwise Separable Convolution.

Depthwise Separable Convolution. Depthwise Separable Convolution was first
introduced in MobileNet [44]. It factorizes a standard convolution into a depthwise convo-
lution and a pointwise convolution. Specifically, each input feature channel corresponds to
a unique kernel in depthwise convolution, ensuring that the convolution operates inde-
pendently on each channel. Subsequently, information from different channels is linearly
combined into a fixed number of channels in 1 × 1 pointwise convolution, facilitating
efficient information exchange and integration between channels, as shown in Figure 4b.

In addition, we also incorporate batch normalization and ReLU activation after each
layer, enhancing the convolutional operations’ fitting capabilities [45]. Depthwise Separable
Convolution is more efficient than standard convolution. Given the kernel size K and
output channel size N, we can obtain the ratio of computational complexity to standard
convolution as 1

N + 1
K2 . Therefore, we utilize DSC as a substitute for standard convolution

to reduce computational costs in our model.
Squeeze-and-Excitation. The SE introduces compression (Squeeze) and excitation

(Excitation) operations to establish relationships between channels, enabling the model
to adaptively learn the importance of each channel and adjust its contribution in the
feature map [46]. Therefore, the model can focus more on important channels, enhancing
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the discriminative capability of target feature. The SE mechanism can be represented
as follows:

SE(F) = F
⊗

sigmod(FC(ReLU(FC(GP(F))))) (4)

where F is the input feature,
⊗

denotes the element-wise multiplication operation, FC
represents the fully connected layer, GP stands for the global pooling layer, and sigmod
and ReLU are non-linear activation layers.

3.2. Proposed Network Architecture

In this paper, we propose a state-of-the-art segmentation model Trans-DCN (Figure 5)
that combines the effective feature extraction capability of Transformers as the encoder
(Section 3.3), and integrates the adaptive aggregation structure as the decoder (Section 3.4).
By establishing an encoder–decoder framework that combines the advantages of self-
attention and convolution, we aim to establish a baseline that could accurately identify
defect locations on bridge cables.

Input

Patch Embed

Transformer
Encoder 1

Transformer
Encoder 2

[128, 128, 64]

Transformer
Encoder 3

[64, 64, 128]

[32, 32, 320]

Transformer
Encoder 4

[16, 16, 512]

MFA Module
[32, 32, 768]

SPP-DCN

FCN Head

ASFF

1×1
ConvModule

1×1
ConvModule

1×1
ConvModule

Upsample
by 2

Upsample
by 4

Upsample
by 4

Upsample
by 4

Dropout

Upsample
by 16

Aux
Output

Output

Encoder

Decoder Shortcut

Forward

3×3 DSConv

BatchNorm

LeaklyReLU

Dropout

1×1 DSConv

(c)

N×N DSConv

BatchNorm

LeaklyReLU

(b)

Flatten

Linear

Reshape

3×3
ConvModule × 2

3×3
ConvModule 

Upsample
by 2

MLP

1×1
ConvModule

(a)

1×1
ConvModule

1×1
ConvModule

Softmax

Multiply

Addition

3×3
ConvModule

(d) 

C Concat

C

C

1×1 DSConv

 DCN Module
k3, p3, s1, r3C

 DCN Module
k3, p6, s1, r6C

 DCN Module
k3, p12, s1, r12C

 DCN Module
k3, p18, s1, r18C

 DCN Module
k3, p24, s1, r24C

Average Pool

1×1
ConvModuleC

Upsample

(e) 

Only Training

Dropout

3×3
ConvModule

3×3
ConvModule

C

1×1 DSConv

Figure 5. Our proposed network Trans-DCN. (a) is the Multi-layer Feature Aggregation (MFA)
module, detailed in Section 3.3.3. (b) is the basic convolution module. (c) is the Fully Convolu-
tional Network (FCN) head. (d) is the Adaptive Spatial Feature Fusion (ASFF) module, detailed
in Section 3.4.2. (e) is the Serial-Parallel pyramid module based on atrous Deformable Convolution
(SPP-DCN), detailed in Section 3.4.1. Best viewed with zoom in.

In the encoder, we adopt the fundamental Transformer encoding paradigm [11,41,43]
to capture global contextual relationships. Our proposed Transformer encoder comprises
four stages without positional encoding (The positional information is contained in the
FNN module subsequently). Preceding each encoder, we include a patch merging layer for
patch fusion and downsampling (Section 3.3.1). Notably, recognizing the significance of
retaining all potentially relevant target features comprehensively to furnish the decoder
with ample target feature information, we preserve the output of each Transformer encoder
layer and forward them into subsequent Multi-layer Feature Aggregation (MFA) modules
through shortcuts (Section 3.3.3).
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In the decoder, we SPP-DCN module to receive feature information from the MFA
module. This module dynamically adjusts the perception range, enabling comprehensive
attention to incorporate local fine-grained details across different scales. Additionally, we
employ ASFF module to adaptively fuse the feature maps originating from the first three
layers of the Transformer encoder, which maximizes the exploitation of low-level feature
information in the encoder (Section 3.4.2).

3.3. Encoder Based on Effective Transformer

The Transformer has significantly advanced the evolution of deep network models
in various fields and tasks. Presently, a majority of large models are derived from the
evolution of the Transformer. Likewise, we inherit the advantages of self-attention and
employ efficient Transformers in the encoding stage.

Overall, the Transformer backbone we use can be divided into four stages (Figure 6a).
Each stage includes a patch merging module and multiple stacked Transformer encoders.
The patch merging module is responsible for image patch merging and downsampling,
while the Transformer encoder module computes self-attention to obtain global
contextual information.

Input im
age

Transform
er

Block 1
×3

Patch
Em

bedding

[128, 128, 64]

Stage 1

Transform
er

Block 2

[64, 64, 128]

Stage 2

Transform
er

Block 3

[32, 32, 320]

Stage 3

Transform
er

Block 4

[16, 16, 512]

Stage 4

O
verlap Patch 

M
erging

Transform
er

Encoder

O
utput patch

(a)

Q, K, V
Q, K, V Q, K, V

(1) ViT (2) Swin (3) Ours

(b)

Figure 6. (a) Effective Transformer backbone in the encoder. (b) Comparing our self-attention
relationships with ViT and Swin.

3.3.1. Overlap Patch Merging

ViT divides the input image into patches using fixed divided windows, which poses
the issue of no overlap information exchange between windows. Conversely, Swin Trans-
former utilizes sliding windows to carry contextual window information. Unlike both
approaches, we ingeniously utilize convolution to construct patches with overlap relation-
ships. This approach simplified patch construction between overlapping windows while
ensuring efficient contextual correlation with local information, as shown in Figure 6b.
Specifically, we use stride and kernel size to control the overlap range and also map the
patch embedding dimension at the same time.

We use OS to represent the downsampling scale. Taking a stage i (i = 1, 2, 3, 4) as an
example, we use convolutional kernels with a stride si (si > 1) to establish patches with
overlapping relationships on the input feature map H

OSi−1
× W

OSi−1
× EDi−1. We design the

kernel size ki and padding pi to downsample the feature map. Therefore, the size of the
output feature map becomes H

OSi
× W

OSi
× EDi. The specific parameters for each stage are

elaborated on in Table 1. It is worth noting that we use larger convolutional kernels in the
first stage to achieve greater downsampling, thereby reducing the computational costs of
the backbone.
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Table 1. Parameters of the Transformer backbone in the encoder. We got inspiration from SwinTrans-
former [41] and ResNet [47].

Stage i

Overlap Patch Merging Efficient Multi-Head Attention

Overlap
Convolution

(k, s, p)

Embedding
Dimension

(ED)

Output Stride
(OS)

Multi-Head
Number Depth Reduction

Ratio

Stage 1 (7, 4, 3) 64 4 1 3 8
Stage 2 (3, 2, 1) 128 8 2 4 4
Stage 3 (3, 2, 1) 320 16 5 6 2
Stage 4 (3, 2, 1) 512 32 8 3 1

3.3.2. Effective Transformer Encoder

The Transformer encoder is tasked with establishing contextual relationships among
input patch embeddings. A fully complete Transformer encoder includes the following
components: layer normalization, self-attention, feedforward neural network (FNN), and
two residual connections, as shown in Figure 7.

Input Patch

DPMSA

Layer Norm

Layer Norm

FNN module

Output Patch

×N

Linear

GELU

Dropout

Linear

Dropout

3×3
DWConv

Multi-Head
Attention

q k v

Sparse
Reduction

Element-wise add

Figure 7. Effective Transformer encoder.

Effective Multi-Head Attention. Due to the quadratic computational complexity of
self-attention, it poses a significant computational burden, particularly with larger input
image sizes. Inspired by the Pyramid Vision Transformer (PVT) [43], we introduce SRA to
alleviate computational costs. Given the matrices K, V, we reduce their dimensions through
Reshape and Linear transformations, represented as follows:

K′, V′ = Reshape
(

N
R

, D · R
)
(K, V)

K̂, V̂ = Linear(D · R, D)
(
K′, V′) (5)
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where R denotes the reduction ratio. Notably, reduction solely applied to K, V will not
change the output dimension of the self-attention, and it decreases the computational
complexity of the self-attention from O

(
N2D

)
to O

(
N2D

R

)
.

Moreover, to comprehensively capture spatial information with varying emphases and
bolster the backbone’s generalization, we employ multiple mapping matrices to transform
the input sequence into Q, K, V ∈ RN×Dh located in distinct spatial domains, and then
compute multi-head self-attention parallelly using Equation (1). Subsequently, we combine
the results of multi-head self-attention through mapping, which fuses the contextual
relationships from multiple spatial domains, represented as follows:

DPMSA(s) = [DPSA1(s); DPSA2(s); · · · ; DPSAh(s)] · W (6)

where W ∈ Rh·Dh×D is the mapping matrix, and h is the multi-head number. The effective
multi-head attention is shown in Figure 7.

FNN module. The feedforward neural network plays a pivotal role in introducing
non-linearity to the outputs post self-attention. Given the absence of positional encoding
in the Transformer encoder, it can be particularly important to compensate for positional
information in FNN. Specifically, we employ an added 3 × 3 depthwise convolution with
zero padding in FNN, which incorporates positional information efficiently [48]. The FNN
module could be represented as follows:

FNN(s) = MLP(GeLU(DWConv3×3(MLP(s)))) (7)

Overall, the Transformer encoder can be represented as follows:

s′l = DPMSA(LN(sl−1)) + sl−1

sl = FNN
(

LN
(
s′l
))

+ s′l
(8)

where sl represents the sequence of the l-th layer of the Transformer encoder, and LN
represents layer normalization.

3.3.3. MFA Module for Feature Fusion

We employed a multi-hierarchical feature extraction architecture based on the Trans-
former, where low-level features emphasize fine-grained relationships, while high-level
features capture global contextual relationships. To fully utilize both global and local
multiscale information, we deploy an MFA module to aggregate results from all Trans-
former stages, as shown in Figure 5. Specifically, we first map all feature maps through an
MLP layer to a unified channel dimension to balance the contribution level of each stage.
Subsequently, we use the feature map with an OS of 16 as the reference and align and unify
the other feature maps accordingly. This process involves bilinear upsampling the feature
map with an OS of 32, and downsampling the feature maps with an OS of 4 and 16. Finally,
we merge these four feature maps through concatenation. This module effectively balances
efficiency and memory consumption. The details of the structure are shown is Figure 5c.

3.4. Decoder Based on Adaptive Aggregation

In the decoding stage, we aim to focus attention on the target areas by fully utilizing
encoding feature information, refining target boundaries, and sharpening segmentation
results. To comprehensively correlate the multiscale range in the defect areas, we propose
the SPP-DCN module. Additionally, to effectively reuse the information extracted by the
encoder, we employ the ASFF module.

3.4.1. Serial0-Parallel Pyramid Based on Atrous Deformable Convolution Module

Inspired by DeepLabv3 [49] and DenseASPP [50], we have designed a multi-branch
pyramid structure with a Deformable Convolution module called SPP-DCN, as shown in
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Figure 5e. This module connects the MFA module from encoder and dynamically adjusts
the perception field of defects efficiently.

In our approach, we use 7 parallel branches in the pyramid. Among them, two are
designed to retain the essential original feature information, and one branch initializes the
receptive field using a 1 × 1 Depthwise Separable Convolution. Furthermore, we employ
another branch with a global average pooling layer to maximize the receptive field. The
remaining 5 branches utilize Deformable Convolutions with varying dilation rates. Inspired
by DenseASPP [50], we set the dilation rates to {3, 6, 12, 18, 24}. It is worth noting that in
addition to parallel branches, we also incorporate a serial structure. Specifically, the outputs
of branches with Deformable Convolution are stacked with the input of the subsequent
branch through concatenation operation. This strategy is aimed to establish cascading
dilated convolution relationships, compensating for the loss of local perceptual details with
larger dilation rates.

In this module, another improvement is the redesign of the Deformable Convolution
module with dilation rates, as depicted in Figure 5a. Firstly, we followed the method pro-
posed by Huang et al. [51], which involves incorporating modulation scalar in Deformable
Convolutions to distinguish whether the areas we offset are regions of interest. Secondly,
we introduce group convolution in Deformable Convolutions. Specifically, each group has
its own sampling offsets, enabling different groups within a convolutional layer to exhibit
distinct spatial aggregation patterns, which enriches features for decoding. Therefore, the
Deformable Convolutions (Equation (3)) can be enhanced as follows:

y(po) = ∑
g∈G

∑
pn∈R

mgk · wg(pn) · xg(po + pn + ∆pn) (9)

where G is the total number of groups. mgk represents the modulation scalar of the k-th
sampling point in the g-th group, and it undergoes softmax normalization along the k
dimension. w represents the convolutional learning weights along the g-th group. Both
mgk and ∆pn are learned from the input feature map. We introduce dilation rates in
Deformable Convolutions to allow pn to span larger regions while ∆pn achieves minor
adjustments, allowing the convolution to to dynamically focus more effectively on distant
feature relationships.

Subsequently, we employ channel-wise feature weighting using the SE module, fol-
lowed by channel mapping through an MLP module, as shown in Figure 8. Furthermore,
we integrate a shortcut path to preserve the original features, designed to prevent over-
fitting.

1×1
ConvModule

Deformable Convolution
k, p, s, r Drop Path SE Block MLP Drop Path

Figure 8. Atrous Deformable Convolution Module, where k is kernel size, p is padding, s is stride,
and r is dilation rate.

3.4.2. Adaptive Spatial Feature Fusion Module

To fully capitalize on the defect feature information extracted by the encoder, we
establish shortcut connections from the first three stages between the encoder and decoder.
These features are particularly beneficial for locating defect areas and refining edge details.
The ASFF module is introduced to receive feature maps that have been aligned in channels
and scales through separate 1 × 1 convolutions and upsampling, as shown in Figure 5.

In the ASFF module, we uniformly compress and concatenate the three input features,
then obtain the weight parameters for each feature through convolution and softmax.
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Finally, we perform weighted summation on the original input features, which can be
represented as follows:

W1, W2, W3 = so f tmax( f 1
64→1, f 2

128→1, f 3
320→1)

ASFF( f 1, f 2, f 3) = W1 · f 1→1 + W2 · f 2→1 + W3 · f 3→1
(10)

where f i represents the feature from the i-th stage, f·→· represents the feature dimension
transformation, and f ·→· represents the feature scale alignment. As described, we dynami-
cally adjust the contributions of the feature maps through the ASFF module, adapting the
low-level information required for the decoding stage.

3.5. Loss Function

We train the segmentation network by minimizing a multi-loss function:

Ltrain = Llast_out + γLaux_out (11)

where Llast_out represents the final output of the decoder, while Laux_out represents the
prediction loss comes from the FCN head, as shown in Figure 5. γ represents the balancing
weight, which was set at 0.5 in our experiment (the experiment is shown in Section 5.5).

The FCN head is exclusively utilized during training, with its specific structure out-
lined in Figure 5a. Our purpose is to establish a shortcut to directly supervise the training
of the backbone, accelerating the convergence speed of the network.

For each loss, specifically, we supervise them with the linear combination of Cross-
Entropy (CE) loss and Dice loss [52], aiming to balance the contributions between positive
and negative samples. The composite loss function is formulated as follows:

L = αLCE + βLDice (12)

where α and β are balancing weights. The CE loss is defined as follows:

LCE = − 1
n

n

∑
i=1

yi · lnpi + (1 − yi)ln(1 − pi) (13)

where n represents the number of pixels in the image, pi denotes the predicted classes of
the pixel, and yi denotes the label classes of the pixel. The Dice loss is introduced to balance
the training loss where background learning dominates in the CE loss:

LDice = 1 − ∑n
i=1 pi · yi + ε

∑n
i=1 pi + yi + ε

− ∑n
i=1 (1 − pi)(1 − yi) + ε

∑n
i=1 2 − pi − yi + ε

(14)

where ε is the smooth parameter introduced to prevent overly large changes. It was set to 1
in our experiment.

4. Experiment Results
4.1. Datasets

The RGB image dataset used in the experiments was collected by a cable climbing
robot, with detected bridge locations predominantly situated at some large cable-stayed
bridges in Shanxi Province, China. We manually conducted a rough screening of images
with defects as the dataset and uniformly cropped them to a size of 960 × 540. The
dataset comprises a total of 2304 images, which were divided into training, validation, and
test sets according to a ratio of 7:2:1. Subsequently, we manually annotated the ground
truth of the defects for supervising network training, which included but was not limited
to circumferential cracks, longitudinal cracks, scratches, spalling, and attachments. To
ensure the robustness of our network in complex backgrounds, we intentionally retained
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elements such as the bridge-climbing robot itself and natural environmental factors, while
maintaining an oblique perspective during image capture, as shown in Figure 9.

Image

Label

(a) Longitudinal crack (b) Circumferential crack (c) Scratch (d) Attachment (e) Spalling

Figure 9. Bridge cable datasets. Particular emphasis was given to showcasing some types of defects
along with their labels.

To avoid over-fitting, it is crucial to mention that before training the model, we
randomly cropped images patch to a size of 512 × 512, and performed common data
augmentations to enhance the diversity of input shapes, including but not limited to
Random Horizontal Flip, Random Scale Crop, Random Gaussian Blur, and Random Rotate.

4.2. Evaluation Metrics

To report the performance of bridge cable defect segmentation, we employed the
following evaluation metrics: accuracy (Acc), mean Intersection over Union (mIoU), and
F1 score.

1. Acc indicates the agreement between the predicted class and the ground truth labels
for all pixels, and it can be expressed as follows:

Acc =
NTP + NTN

NTP + NFP + NFN + NTN
(15)

where NTP is the number of true positives, NFP is the number of false positives, NFN
is the number of false negatives, and NTN is the number of true negative.

2. mIoU indicates the mean Intersection over Union (IoU) between the predicted class
and the ground truth label, which can be expressed as follows:

mIoU =
1

n + 1

n

∑
i=0

NTP
NTP + NFP + NFN

(16)

where n represents the number of classes.
3. F1 score is a harmonic mean of precision and recall, and it can be calculated as follows:

F1 =
2 × Precision × Recall

Precision × Recall
(17)

where

Precision =
NTP

NTP + NFP

Recall =
NTP

NTP + NFN

(18)

The metrics mentioned range from 0 to 1, where values closer to 1 indicate higher
segmentation accuracy.

4.3. Implementation Details

We implemented our methods on Pytorch 1.8.0 and conducted training on a work-
station equipped with four Nvidia RTX 3090 GPUs. SyncBatchNorm was applied before
each weight layer in our implementation for parallel training across multiple GPUs. For
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training, we determined the optimal optimizer parameters through cross-validation. The
specific experimental results are presented in Appendix A. The best parameter settings
identified were to use the SGD optimizer with an initial momentum of 0.9 and a weight
decay of 5 × 10−4. The learning rate was scheduled using a polynomial exponential decay,
starting with an initial value of 0.007.

We pre-trained the backbone on the ImageNet-1K dataset and randomly initialize the
remaining structure. During fine-tuning with the bridge cable defect dataset, we trained
the models for 100 epochs with a batch size of 15. Subsequently, we selected the model
with the best mIoU for testing.

4.4. Comparison with Regard to State-of-the-Art Models

In this section, we evaluate the segmentation performance of Trans-DCN in detecting
bridge cable defects through a series of experiments. We compare Trans-DCN with various
baselines, such as DeepLabv3+, DANet, SegNeXt, ViT-CoMer, and others, employing
different backbones. We used cross-validation experiments to determine the optimal
training parameters, ensuring that these models achieve the best performance on the bridge
cable defect dataset we established. The optimal training parameters identified are detailed
in Appendix B. Those segmentation results are shown in Table 2. It is worth noting that,
along with evaluation metrics (including Acc, mIoU, and F1 score), we also provide the
parameter count and computational cost of each model, which is because segmentation
accuracy is influenced by these factors. Our efficient model aims to minimize the parameter
count and computational cost while ensuring excellent evaluation. We selected some
challenging cases for model prediction, and the visualization of the segmented defect area
is presented in Figure 10.

Table 2. Comparison with state-of-the-art methods. ↑ represents a better segmentation performance,
↓ represents lower computing requirements.

Method Model Architecture Params. (M) ↓ GFlops ↓
Evaluation ↑

Acc (%) mIoU (%) F1-Score (%)

Convolution-
based

U-Net [53] 13.39 124.49 96.33 78.21 74.25
FCN (VGG-16) [33] 35.31 148.53 96.90 79.12 76.31
SegNet (VGG-16) [54] 29.44 160.68 97.34 81.41 79.25
PSPNet (ResNet50) [55] 46.71 59.21 97.03 78.26 74.45
DeepLabv3 (ResNet50) [49] 41.99 173.79 97.12 78.69 74.98
DeepLabv3+ (MobileNet-V2) [56] 41.83 33.75 97.02 78.90 76.17
DeepLabv3+ (ResNet101) [56] 74.87 82.88 97.09 80.72 78.32
DenseASPP (DenseNet121) [50] 9.20 43.19 96.79 75.67 69.33
DANet (ResNet101) [57] 66.56 283.44 96.86 75.61 69.06
LR-ASPP (MobileNet-V3) [58] 30.22 20.07 96.57 76.93 72.99
SegNeXt (Base) [59] 29.91 41.55 94.66 65.34 56.13

Transformer-
based

SegFormer (B2) [60] 47.22 71.36 97.31 81.47 79.36
Swin-Unet (Tiny) [61] 27.17 5.92 96.71 78.02 74.61
Bi-Former (Base) [62] 56.81 91.10 95.12 68.02 58.25
ViT-CoMer (Small) [63] 60.50 1194.16 96.70 77.32 73.49
Trans-DCN (ours) 44.96 52.03 97.49 82.63 80.89
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Figure 10. Segmentation results compared to state-of-the-art models. (a,d,h,m) represent strip defects,
(l) represents low illumination conditions, (e) depicts minor scratches, (b,j) illustrate severe defects,
while (c,f,g,i,k) examples show mixed defect conditions. Best viewed with zoom in.
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As shown in Table 2, our model, employing with effective Transformer as the encoder
and adaptive aggregation as the decoder, achieves a performance of 82.63% in mIoU, at-
taining state-of-the-art performance among the baseline models. Compared to the latest
baseline (ViT-CoMer), our model demonstrates an accuracy improvement of 5.31%. Fur-
thermore, compared to the state-of-the-art baseline (SegFormer), our accuracy improved by
1.16%. Our model exhibits a significant improvement and outperforms other baselines in
defect extraction by dynamically adjusting the perceived field and promptly adjusting the
utilization of backbone features. Notably, our model’s parameter count and computational
cost remain lower, indicating that our proposed method is not only high-performing but
also efficient. Specifically, our parameter count and computational cost are almost as same
as the PSPNet baseline, but our accuracy has been improved by 4.37% (mIoU). Moreover,
compared with ViT-CoMer using the UperNet method, our proposed method achieves
a parameter reduction of 15.34 M and a computation reduction of 1096 GFlops. This high-
lights the significant efficient improvement achieved by using an effective Transformer and
Depthwise Separable Convolution fully.

Benefiting from the powerful Transformer serving as the backbone for the full con-
textual feature correlation mechanism, our method excels in detecting large-scale defect
distributions, as shown in Figure 10b,c,g,k. Our method achieved defect predictions closest
to the ground truth compared to other baselines. Taking Figure 10b,c as examples, our
method has a comprehensive perception of defects in the image, effectively capturing
even the smallest local damages compare to convolutional models represented by SegNet.
DenseASPP and DANet also display shortcomings in predicting long cracks, resulting
in fractured segmentation areas. Transformer models represented by Bi-Former tend to
segment areas exceeding the boundaries, while ViT-CoMer shows incorrect segmentation.
Additionally, in Figure 10j, SegNet, LR-ASPP, and Bi-Former show more false positives,
mainly due to the presence of interfering textures outside the circumferential crack. How-
ever, our method, by fully considering multi-level features, was able to suppress this noise
and preserve the integrity of the target.

Additionally, thanks to the well-designed adaptive Deformable Convolution and
dynamic spatial aggregation module, our method accurately predicts strips defects and
maintains complete edges, as shown in Figure 10a,d,h,m. Models based on fixed convo-
lution patterns inevitably exhibit discontinuities when faced with elongated features, as
seen in PSPNet and DANet (particularly highlighted in Figure 10d,h,m). Models based on
ASPP, such as LR-ASPP and DenseASPP, encounter difficulties in aggregating sufficient
spatial information when dealing with this type of challenge, as atrous convolutions lose
their advantage in strip targets. Although our approach also involves atrous convolutions,
it promptly corrects unnecessary expansions through a combination with Deformable
Convolutions. Transformer-based models, such as Bi-Former and ViT-CoMer, still perform
disappointingly in this scenario. The SegFormer baseline performs similarly to ours, but
there is a significant difference observed in Figure 10h.

Meanwhile, we intentionally select defect images featuring shallow scratches or cap-
tured in environments with low or uneven lighting conditions to illustrate the robustness
of our method under challenging conditions, as shown in Figure 10e,i. The results demon-
strate that our model is capable of fully exploring potential defect information, with sharp
edges observed. However, some false positives are present simultaneously. The predic-
tion is incomplete in Figure 10e, while SegFormer performs satisfactorily in Figure 10i by
exploring complete information at multiple granularities.

In most cases in Figure 10, our detection accurately captures the area of defects
adequately. Specifically, Figure 10a,d,h,j,l highlight the strong segmentation integrity of
our model. Therefore, our proposed network sets a new state-of-art performance in bridge
defect segmentation.
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5. Analysis
5.1. Ablation Study

In this section, we introduce ablation experiments, wherein MFA (Section 3.3.3), SPP-
DCN (Section 3.4.1), ASFF (Section 3.4.2), and Aux-Loss (Section 3.5) are included as
ablation units. The results of these experiments are shown in Table 3. Specifically, in the
model without using the MFA module, only the output of the last stage is utilized in the
decoder. In the model without the SPP-DCN module, a regular convolution is directly
employed for the connection. In the model without the ASFF module, the shortcut is
directly removed.

Table 3. Ablation study. ↑ represents a better segmentation performance.

Model MFA SPP-DCN ASFF Aux-Loss
Evaluation ↑

Acc (%) mIoU (%) F1-Score (%)

1 - - - - 95.55 77.12 70.23
2 ✓ - - - 97.13 80.29 77.89
3 ✓ - - ✓ 97.14 80.48 78.03
4 ✓ ✓ - ✓ 97.35 81.42 79.24
5 ✓ - ✓ ✓ 97.30 81.14 78.87
6 ✓ ✓ ✓ ✓ 97.49 82.63 80.89

From Table 3, it is evident that the accuracy of our model can be increased by up to
5.5% (mIoU) with our improvements. Specifically, solely adding the MFA module resulted
in a 3.1% increase in mIoU, indicating the necessity of fully integrating multiscale feature
maps in the encoder. Subsequently, incorporating auxiliary training loss led to a slight
improvement in mIoU during validation. Furthermore, the cross-validation model (4–5),
which integrates the SPP-DCN module or ASFF module, exhibited a 1% or 0.7% increase in
mIoU, respectively, highlighting the effectiveness of each proposed module in the model.
Additionally, captured from Figure 11, it can be observed that removing each effective
module causes a decrease in the validation accuracy of our model. Overall, each well-
designed module in our model has proven to be indispensable, resulting in a final mIoU
score of 82.63%.

0 20 40 60 80 100
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0.3

0.4

0.5

0.6

0.7

0.8

m
Io

U

With MFA
With MFA, Aux-Loss
With MFA, SPP-DCN, Aux-Loss
With MFA, ASFF, Aux-Loss
With MFA, SPP-DCN, ASFF, Aux-Loss

Figure 11. The training evolution curve based on mIoU, where the variables are the units of the
ablation study.
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5.2. Influence of Transformer Backbone

In this section, we compare and evaluate the segmentation accuracy and parameter
count using different backbones to demonstrate the performance of our proposed method.
We selected several convolution-based and Transformer-based backbones, using their
default parameters from the officially provided codes and enabling pre-training. It is
worth noting that for backbones with multiple versions, we attempted to match them with
parameter counts comparable to our proposed method. Their version and the experimental
results are shown in Table 4.

Table 4. Comparison with different backbones in the encoder. ↑ represents a better segmentation
performance, ↓ represents lower computing requirements.

Method Backbone Params. (M) ↓
Evaluation ↑

Acc (%) mIoU (%) F1-Score (%)

Convolution-
based

ResNet-101 [47] 42.5 96.37 78.70 73.69
ResNeXt-101 (32 × 8d) [64] 86.74 96.60 79.93 76.72
Xception [56] 37.87 89.32 57.16 48.66
MobileNet-V2 [65] 15.4 96.96 75.14 66.91
ConvNeXtV2-B [66] 88.72 93.37 65.35 55.27

Transformer-
based

Swin Transformer-T [41] 96.52 93.62 76.76 72.81
Swin TransformerV2-T [67] 27.58 95.94 69.00 59.86
ViT-CoMer-S [63] 37.34 96.90 78.98 75.94
Proposed method 24.2 97.49 82.63 80.89

Our proposed method, compared to the latest Transformer-based backbone ViT-CoMer,
achieves an improvement of 3.6% in mIoU, with a parameter reduction of 13 M. Compared
to the state-of-the-art convolution-based backbone ResNeXt-101, our method still achieves
a 2.6% mIoU improvement, with a parameter reduction of 62.54 M, fully highlighting the
advantages of our method. Additionally, our method outperforms the backbone MobileNet-
V2 by 7.5%, with an increase of only 8.8 M parameters. Therefore, our method stands out
as the most cost-effective choice.

Additionally, we conducted experiments on the embedding dimensions in the back-
bone. We compared the segmentation accuracy of the original embedding dimensions in
ResNet [47] with our optimized dimensions. The experimental data are presented in Table 5.
It is noteworthy that the multi-head number in the multi-head attention mechanism varies
with the embedding dimensions. We ensured that every 64 dimensions correspond to one
head in the self-attention calculation, thereby guaranteeing richer spatial learning patterns.

Table 5. Accuracy, parameter count and computational cost as a function of the embedding dimension
of the Transformer backbone. ↑ represents a better segmentation performance, ↓ represents lower
computing requirements.

Stage i Embedding Dimension Multi-Head Number Params. (M) ↓ GFlops ↓
Evaluation ↑

Acc (%) mIoU (%) F1-Score (%)

1 64 1

92.06 69.72 97.41 81.89 79.822 256 4
3 512 8
4 1024 16

1 64 1

24.2 39.44 97.49 82.63 80.892 128 2
3 320 5
4 512 8
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As shown in the Table 5, our optimized embedding dimensions not only reduce the pa-
rameter count by 73% but also improve segmentation accuracy, which indicates that the di-
mensions we designed basically meet the efficient requirements for cable defect segmentation.

5.3. Influence of SPP-DCN

In this section, we individually evaluate the effectiveness of the internal structure of
the SPP-DCN module, as shown in Figure 5e. We conducted an ablation study specifically
designed for this module, wherein the shortcut, MLP, and SE modules serve as ablation
units. The experimental results are presented in Table 6.

Table 6. Ablation study based on SPP-DCN. ↑ represents a better segmentation performance.

Model Shortcut MLP SE
Evaluation ↑

Acc (%) mIoU (%) F1-Score
(%)

1 - - - 97.29 81.03 80.25
2 - ✓ ✓ 97.50 82.47 80.65
3 ✓ - - 97.38 80.10 80.22
4 ✓ - ✓ 97.46 81.14 80.21
5 ✓ ✓ - 97.37 82.16 80.31
6 ✓ ✓ ✓ 97.49 82.63 80.89

From the table, it is notable that simply adding a shortcut after the atrous Deformable
Convolution (model 3) does not yield a positive effect (mIoU decreases by 1%). This
is because the features do not pass through subsequent fully connected and channel-
attention layers, rendering the residual connection ineffective. Conversely, adding both
MLP and SE modules after the convolution simultaneously (model 2) can increase the
mIoU by 1.5%, which demonstrates that adding both modules can effectively enhance
the adaptively perceived defect information. Simultaneously, the cross-validation (model
4–5), which integrates the MLP module or SE module, exhibited a similar 1.1% increase
in mIoU. Consequently, the conclusion can be drawn that SPP-DCN’s capabilities can be
fully enhanced by combining all three methods (model 6), producing the best segmentation
outcomes (1.6% improvement).

Moreover, we provide the visualization of the receptive fields compared to the ASPP
module, as shown in Figure 12. Our receptive fields in SPP-DCN are more uniform and
flexible, which is advantageous for detecting scattered defects. The examples on the right
side well demonstrate that our design can better adjust the attention area, effectively
reducing the possibility of mis-segmentation.

ASPP
（DeepLabv3+）

Branch 3 All Branches

SPP-DCN
（Ours）

Branch 5 All Branches

（a）Receptive field （b）Attention hot map

Figure 12. SPP-DCN vs. ASPP. (a) Visualization of the receptive field based on the pyramid mod-
ule as we choose the large dilation rate branch, with yellow regions indicating higher attention.
(b) Attention visualizations on the defect image. The brightness corresponds to the attention level,
with red regions indicating higher attention.
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In addition, we conducted an experiment with branches with different dilation rates,
as shown in Table 7. The experimental results indicate that setting the dilation rates to
{3, 6, 12, 18, 24} achieved the highest segmentation mIoU, which is 6.7% higher than
the dilation rates of {6, 12, 18}. Our branch setup provides a maximum receptive field of
128, enabling better perception of defects over a large scale while ensuring the detection of
small-scale features. Consequently, this design is more effective in handling the varying
feature of cable defects.

Table 7. Accuracy as a function of the number of branches in the SPP-DCN. RF represents
receptive field. ↑ represents a better segmentation performance.

Branches Max RF
Evaluation ↑

Acc (%) mIoU (%) F1-Score (%)

(6, 12, 18) 73 96.29 75.95 71.62
(3, 6, 12, 18) 79 96.44 78.21 75.01

(6, 12, 18, 24) 122 96.76 79.94 77.25
(3, 6, 12, 18, 24) 128 97.49 82.63 80.89

5.4. Influence of ASFF

In this section, we analyze the impact of the channel alignment scale within the
ASFF on the performance. As illustrated in the network architecture (Figure 5), we fully
exploit the low-level features from the encoder through shortcuts and perform adaptive
aggregation in the decoder. Before softmax calculation, it is crucial to carefully determine
the channel alignment of each feature map, as it influences contributions post-concatenation
with the subsequent SPP-DCN module. We directly consider the channel dimension of the
feature maps in the three shortcuts, and the experimental results are detailed in Table 8.

Table 8. Accuracy, parameter count and computational cost as a function of the channel alignment
dimension of the ASFF. ↑ represents a better segmentation performance, ↓ represents lower comput-
ing requirements.

Model Channel Params. (M) ↓ GFlops ↓
Evaluation ↑

Acc (%) mIoU (%) F1-Score
(%)

1 64 0.06 0.7 97.47 82.12 80.16
2 128 0.2 2.64 97.49 82.63 80.89
3 320 0.99 15.43 97.33 81.80 79.81

In Table 8, we show performance alongside parameter count and computational cost,
varying with channel dimension. Notably, setting C = 128 yields commendable perfor-
mance while maintaining competitive computational cost. As the dimension increases,
there is a decline in mIoU, coupled with a substantial rise in computational cost. Conversely,
reducing the dimension compromises performance, rendering it unsatisfactory.

5.5. Influence of Composite Loss Function

In this section, we conducted experiments to evaluate the weight of the composite loss
function during model training (Section 3.5). We focused on understanding the impact of
the weight ratio between the CE loss α and the Dice loss β on both training accuracy and
convergence speed. Notably, we employed a step size of 0.5 for the CE loss and 0.25 for the Dice
loss, as larger Dice loss values may induce training instability. Additionally, we also included γ
as a variable in the experiment. The experimental results are detailed in the Table 9.

In Table 9, we can observe that the composite loss function with α = 2 and β = 0.5
achieves the highest performance with 82.63% in mIoU (1.23% improvement). Notably,
altering the values of α and β results in a decline in the validation segmentation perfor-
mance, and altering the γ will have a very slightly impact on the evaluation. Furthermore,



Remote Sens. 2024, 16, 2711 22 of 29

Figure 13 illustrates that the composite loss function with α = 2 and β = 0.5 exhibits
superior convergence and optimization capabilities compared to other combinations.

Table 9. Accuracy as a function of difference ratio of composite loss functions. ↑ represents a better
segmentation performance.

Ratio Evaluation ↑

α β γ Acc (%) mIoU (%) F1-Score (%)

1 0 0.5 97.28 81.40 79.27

1 0.5 0.5 97.37 81.71 79.65
1.5 0.5 0.5 97.39 82.09 80.19
2 0.5 0.5 97.49 82.63 80.89

2.5 0.5 0.5 97.42 82.41 80.36
3 0.5 0.5 97.37 81.95 80.01

2 0.25 0.5 97.36 81.94 80.00
2 0.75 0.5 97.44 82.29 80.44

2 0.5 0 97.44 82.06 80.10
2 0.5 0.25 97.44 82.17 80.27
2 0.5 0.75 97.55 82.46 80.60
2 0.5 1 97.46 82.20 80.30
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2.5×CE Loss + 0.5×Dice Loss
3×CE Loss + 0.5×Dice Loss
2×CE Loss + 0.25×Dice Loss
2×CE Loss + 0.75×Dice Loss

Figure 13. The training loss based on different composite loss functions. To ensure clarity, we
uniformly aligned the origin despite the disparate scales. Our purpose was to observe the changes in
the value range and convergence speed across different configurations.

6. Discussion

Our work serves as foundational research and opens up various possibilities for fu-
ture endeavors in the field of cable defect detection such as precise defect localization
and measurement. However, it is important to acknowledge the limitations of our work.
For instance, the presence of extremely small cracks lacking proper annotation may com-
promise the network’s detection capabilities in this regard. Additionally, imbalance in
bridge cable defect categories within our dataset poses a challenge for multi-class semantic
segmentation. To address these challenges, our future endeavors will concentrate on few-
shot semantic segmentation models capable of efficiently detecting relevant defects with
minimal reliance on a large number of samples for specific classes. Furthermore, we are
committed to expanding our dataset to encompass a broader range of bridge cable defect
scenarios, thereby providing a robust benchmark for training and evaluating our models.
We are interested in determining whether the proposed network can maintain its excellent
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extraction capabilities when applied to defect domains beyond bridge cables. In future
work, we will evaluate our method with more diverse data resources to test its robustness.
Furthermore, we will investigate the network’s adaptability to other data input sources
(e.g., infrared sensors), exploring its versatility and potential for broader applications.

7. Conclusions

This paper presents an efficient and practical bridge cable defect segmentation net-
work, Trans-DCN, which fully integrates Transformers and convolutions, achieving state-
of-the-art defect segmentation performance within the encoder–decoder framework. The
proposed model employs an efficient Transformer as the backbone, effectively leveraging
features extracted by self-attention, which contains both local fine-grained and global
contextual information. Furthermore, multiple-layer features are judiciously reused in
the encoder. In the decoder, SPP-DCN is designed to dynamically adjust the perception
range, concentrating the attention based on the distribution characteristics of the defects.
Additionally, the model incorporated several shortcuts between the encoder and decoder,
and adaptive fusion of multi-layer features was used in the decoder. Moreover, the intro-
duction of Depthwise Separable Convolutions and enhancements to the loss function serve
to improve the efficiency and convergence speed of the model.

For the detection of bridge cable defects, we collected actual captured images dataset
for conducting experiments. The experimental results emphasize that in comparison to
DeeplabV3+, SegFormer, Swin-Unet, and other baseline models, our model achieved state-
of-the-art performance in detecting bridge cable defects. Specifically, our model achieves an
Acc of 97.49%, an mIoU of 82.63%, and an F1 score of 85%. Simultaneously, we conducted
multiple experiments to demonstrate the effectiveness of each module within our model.

Our designed network imposes no specific requirements on the characteristics of the
data, needing only RGB images, and no preprocessing is required to remove irrelevant
background parts. This flexibility means the data source can be from cable-climbing robots,
UAVs, or manual collection. Our proposed method is well suited for offline, fast, and
automated analysis of bridge cable surface defects, providing a cost-effective solution.
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Appendix A

In Appendix A, we introduce the optimal training parameters determined through
cross-validation experiments. Specifically, we validated three parameters of the optimizer
mentioned in Section 4.3, including momentum, initial learning rate, and weight decay.
Since the backbone has been pre-trained, we primarily used the SGD optimizer to fine-tune
the entire network. The results of the optimizer experiments are presented in Table A1.

We can clearly see that setting the momentum to 0.9, the initial learning rate to 0.007,
and the weight decay to 0.005 achieves the best training results. Increasing the momentum
excessively results in large gradient calculation inertia, making it difficult for the network



Remote Sens. 2024, 16, 2711 24 of 29

to converge. Similarly, increasing the weight decay too much leads to under-fitting of the
model, negatively affecting the training process. The optimal initial learning rate should be
around 0.005–0.007. Additionally, we conducted experiments using the Adam optimizer.
The results indicated that for our transfer learning task, the SGD optimizer with momentum
and the polynomial learning rate strategy achieves better network convergence.

We also plotted the changes in the loss function value during training, as shown in
Figures A1–A3.

Table A1. Training parameter experiments. ↑ represents a better segmentation performance.

Optimizer Momentum Learning Rate Weight Decay Acc (%) ↑ F1-Score ↑ mIoU ↑

SGD

0.8

0.007 0.005

97.43 79.96 81.96
0.85 97.44 80.16 82.10
0.9 97.49 80.89 82.63

0.95 97.41 79.53 81.68
0.99 96.44 72.35 76.47

SGD 0.9 0.007

0.005 96.25 71.01 75.56
0.001 97.03 77.88 80.33

0.0005 97.49 80.89 82.63
0.0001 97.48 80.51 82.36

SGD 0.009

0.001

0.005

96.77 77.62 80.01
0.003 97.43 80.08 82.05
0.005 97.45 80.11 82.25
0.007 97.49 80.89 82.63
0.01 96.12 68.95 74.28

Adam 0.9 0.007 0.0005 96.52 73.20 76.76
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Figure A1. The line chart compares the changes in loss values with increasing epochs under different
momentum conditions.
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Figure A2. The line chart compares the changes in loss values with increasing epochs under different
weight decay conditions.
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Figure A3. The line chart compares the changes in loss values with increasing epochs under different
initial value of learning rate conditions.

Appendix B

In Appendix B, we determine the best segmentation performance of the state-of-the-
art models we compared through cross-validation experiments, and we list their training
parameter settings. The size of the input images is standardized to ensure segmentation at
the same scale, and all models are transfer-learned based on the backbone network. We
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retain the parameter settings that achieve the highest segmentation performance in terms
of mIoU, as shown in Table A2.

Table A2. Optimal training parameters for state-of-the-art models

Model
Architecture Params. (M) Input Size Optimizer Momentum Learning Rate

U-Net [53] 13.39 512 SGD 0.9 0.005
FCN [33] 35.31 512 SGD 0.9 0.001

SegNet [54] 29.44 512 SGD 0.9 0.007
DeepLabv3 [49] 41.99 512 SGD 0.9 0.001

DeepLabv3+ [56] 74.87 512 SGD 0.9 0.007
DenseASPP [50] 9.20 512 SGD 0.9 0.001

DANet [57] 66.56 512 SGD 0.9 0.001
LR-ASPP [58] 30.22 512 SGD 0.9 0.001
SegNeXt [59] 29.91 512 SGD 0.9 0.007

SegFormer [60] 47.22 512 SGD 0.9 0.007
Swin-Unet [61] 27.17 512 SGD 0.9 0.007
Bi-Former [62] 56.81 512 SGD 0.9 0.007
ViT-CoMer [63] 60.50 512 SGD 0.9 0.007
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