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Abstract: The Normalized Difference Vegetation Index (NDVI) is a crucial remote-sensing metric for
assessing land surface vegetation greenness, essential for various studies encompassing phenology,
ecology, hydrology, etc. However, effective applications of NDVI data are hindered by data noise
due to factors such as cloud contamination, posing challenges for accurate observation. In this
study, we proposed a novel approach for employing a Temporal-Difference Graph (TDG) method to
reconstruct low-quality pixels in NDVI data. Regarding spatio-temporal NDVI data as a time-varying
graph signal, the developed method utilized an optimization algorithm to maximize the spatial
smoothness of temporal differences while preserving the spatial NDVI pattern. This approach was
further evaluated by reconstructing MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m Grid
(MOD13Q1) products over Northwest China. Through quantitative comparison with a previous
state-of-the-art method, the Savitzky–Golay (SG) filter method, the obtained results demonstrated
the superior performance of the TDG method, and highly accurate results were achieved in both
the temporal and spatial domains irrespective of noise types (positively-biased, negatively-biased,
or linearly-interpolated noise). In addition, the TDG-based optimization approach shows great
robustness to noise intensity within spatio-temporal NDVI data, suggesting promising prospects for
its application to similar datasets.

Keywords: data reconstruction; graph signal processing; NDVI; noise reduction; optimization

1. Introduction

The Normalized Difference Vegetation Index (NDVI) is a fundamental remote-sensing
measure of land surface greenness that is widely used to assess ecosystem properties such
as vegetation phenology, biomass production, soil moisture, and carbon sequestration [1–3].
NDVI also supports the further analyses like classification and regionalization [4], evalu-
ating temporal dynamics and trends [5], and change detection [6]. However, the quality
of NDVI products is often compromised by factors such as atmospheric conditions (e.g.,
clouds, dust, etc.), snow cover, varying sun-sensor-surface viewing geometries, and sensor
faults. Noise from these factors must be carefully processed to avoid unreliable analyses [7].
Thus, employing data reconstruction (or noise reduction/restoration) techniques is crucial
to enhance NDVI quality and ensure the reliability of its applications.

Over the past several decades, numerous techniques have been developed to re-
construct NDVI data. For instance, the resulting NDVI products must account for the
bidirectional reflectance distribution function (BRDF) effect, and BRDF normalization is
commonly used to mitigate noise introduced by observation and illumination angular
effects [8]. Based on the use of temporal and spatial information, NDVI reconstruction
methods can be generally categorized into (1) time-series-based methods, which recon-
struct NDVI time series at each pixel individually without considering spatial associations
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between NDVI values at different locations, and (2) spatio-temporal methods, which simul-
taneously leverage temporal and spatial interrelations for reconstruction. Time-series-based
methods have been well developed and widely applied in NDVI reconstruction, remaining
prevalent in the field. These methods typically apply a mathematical filter to NDVI time
series, either in the temporal domain or the frequency domain, to reduce noise. Specifically,
methods in the temporal domain include the 4253H twice filter [9]; the best index slope
extraction algorithm (BISE) [10,11]; asymmetric Gaussian (AG) function fitting [12]; the
Savitzky–Golay (SG) filter [13]; the Mean-Value Iteration (MVI) filter [7]; double logistic
function (DL) fitting [14]; the Whittaker smoother (WS) [15]; the changing-weight filter
method [16]; and the RMMEH filter [17]. Methods in the frequency domain include Fourier
analysis [18]; harmonic analysis (HA) [19]; and wavelet transformation [20]. Despite their
widespread use, time-series-based methods have significant limitations due to their de-
pendence on incomplete information. If an NDVI time series is dominated by data noise
(imprecise information) or data gaps (missing information), particularly continuous noisy
entries, reconstruction becomes challenging due to the lack of essential information. Unfor-
tunately, low-quality NDVI time-series data are common in NDVI products. To enhance
the effectiveness of time-series-based methods, researchers have recently explored addi-
tional information from the spatial domain of NDVI data for reconstruction. These are
spatio-temporal NDVI-reconstruction methods. For example, Poggio et al. [21] proposed a
hybrid Generalized Additive Model (GAM)–geostatistical space-time model (denoted as
GAM-Geo) that combines a multidimensional GAM fitting the spatio-temporal trends of
NDVI with a geostatistical approach interpolating the residual components of NDVI over
space. Oliveira et al. [22] developed a window regression (WR) method, which replaces
noisy NDVI values with new values regressed from the relationship between the NDVI time
series at the target pixel and one selected from the nearest eight neighbors. Other methods,
such as the correction based on spatial and temporal continuity (CSaTC) method [23] and
the temporal-spatial iteration (TSI) method [24], iteratively restore some noisy NDVI values
using data from high-quality pixels selected either temporally or spatially close to the
noisy pixel.

In theory, spatio-temporal methods are expected to outperform time-series-based
methods due to the additional information they utilize; however, these emerging methods
are still immature, and each has its own drawbacks. For instance, the GAM-Geo method
utilizes a multidimensional GAM model to incorporate spatio-temporal information, but
fitting this model could be subjective due to the tradeoff between function smoothness
and fitting accuracy. Moreover, neither the smooth function used in the GAM model nor
the geostatistical approach (specifically, simple kriging interpolation) can precisely model
non-continuous patterns of NDVI variability across space. Both the TSI method and the
CSaTC method require supplementary data (such as land cover types or ecological zone
maps) in addition to NDVI data. They also use spatial and temporal information separately,
meaning that for each noisy pixel, the reconstructed NDVI values are determined using
either spatial or temporal information alone. This approach can lead to an imbalance in the
ratio between the pixel counts of the two aspects. Additionally, the WR method has been
shown to perform even worse than time-series-based methods and is practically incapable
of reconstructing all noisy pixels [24].

Despite previous efforts, two major obstacles hinder the effective use of spatial infor-
mation in NDVI data reconstruction. First, distinct from the temporal dimension, NDVI’s
spatial information lies in a two-dimensional space, adding complexity to its exploitation.
To address this, some methods (e.g., WR, CsaTC, and TSI) extract spatial information from
a very limited number of pixels, typically just one, selected within a small sliding window.
Second, NDVI variability often exhibits unsmooth patterns over space, especially in high-
resolution NDVI products. Abrupt transitions in land cover types or topographical features
lead to uneven textures and irregular structures in NDVI spatial profiles. It is also worth
mentioning that the introduction of spatial information into time-series reconstruction
depends on the ground sampling distance and the related spatial resolution of the input
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data. Consequently, many common spatial data-processing techniques, such as smoothing,
filtering, and interpolation, may fail in NDVI reconstruction. Due to the lack of effective
solutions for such issues, methods like WR, CsaTC, and TSI must carefully select the most
suitable pixel that is homogeneous to the noisy pixel based on land cover type, phenological
pattern, or other criteria.

Thus, the objective of this study is to develop a novel NDVI reconstruction method
that can take full advantage of the spatio-temporal interrelations in NDVI data. Inspired by
recent advancements in graph signal processing, we applied a temporal-difference graph
(TDG) method [25] to NDVI reconstruction. Originally designed to reconstruct partially-
sampled time-varying graph signals, the TDG method is particularly well suited for NDVI
reconstruction because it addresses the two major obstacles identified in previous efforts.
First, rather than relying on local spatial windows, this method models spatial interrelations
among data pixels using a graph structure, where every two pixels are directly or indirectly
connected by edges. Second, the TDG method does not rely on the spatial smoothness of the
data. Instead, it operates on the assumption that the temporal differences of the data (the
first-order derivative of data versus time) should be smooth across space. This assumption
is more realistic for NDVI data while NDVI values may not be smooth over space; the
changes in NDVI over short periods tend to correlate strongly at adjacent locations. Based
on these two principles, the TDG method effectively utilizes both temporal and spatial
information in an asymmetric and rational manner.

2. Methodology

This section provides a clear description of the method used for reconstructing NDVI
data, and Figure 1 illustrates a flowchart of the research methodology.
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2.1. Graph Theory and Graph Signal Processing

Graph theory is a fundamental branch of mathematics that investigates structures
consisting of vertices and edges, collectively known as graphs. A graph conceptualizes
pairwise relations between objects; each vertex represents an object, and each edge repre-
sents the relationship between two linked objects. This generalized structure is versatile
and has been used to model various types of relations and processes across a wide range of
domains, including computer science, physics, biology, and engineering [26,27].
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For clarity, we introduce some formal notation. An undirected and weighted graph
is denoted as G(V, E, W), where V denotes the vertex set V = {v1, v2, . . . , vN}, E denotes
the edge set E = {e1, e2, . . . , eM}, and W denotes the adjacency matrix of the graph. Each
individual vertex and edge are denoted as vi(1 ≤ i ≤ N) and ej(1 ≤ j ≤ M), respectively,
with N and M representing the total number of vertices and edges, respectively. Each edge
links two vertices, and we may alternatively denote an edge as e(i1,i2), indicating the edge
that links vertices vi1 and vi2 . These vertices are called the end vertices of edge e(i1,i2). The
adjacency matrix W is an N × N matrix defined as follows. If there exists an edge e(i,j) that
connects two vertices vi and vj, the corresponding entry Wij (the entry in the ith and the jth

row) equals the weight associated with edge e(i,j); otherwise, Wij equals zero. The setting of
edge weights is flexible and depends on the problem at hand. A common strategy involves
assigning edge weights based on the similarity between the two vertices connected by the
edge, and this approach is prevalent in studies focusing on large-scale graph modeling of
real-world systems, such as social networks, computer networks, and biological networks.
In addition to the adjacency matrix, another common matrix representation for a graph
is the Laplacian matrix L, defined as L = D − W, where D is a diagonal matrix with the
ith diagonal element equal to the degree of vertex vi, i.e., the sum of the weights of all the
edges directly linked with vertex vi. Note that L is positive-semidefinite, which follows
from its symmetry and diagonal dominance.

Graph theory has been developed for centuries, and even nowadays, with the ex-
pansion of its applications, new methods and techniques that merge graph theory with
other domains are continuously emerging. Among these subdomains, an emerging field
known as graph signal processing (GSP), or signal processing on graphs, has received great
attention in recent years [28]. Graph signal processing combines graph theory and signal
processing to deal with signal-processing problems such as filtering, compression, and re-
construction, specifically for data whose inherent associations or structures are represented
by a graph. These data are collectively referred to as a graph signal, with each data sample
attached to a vertex of the graph. Intuitively, the vertices in the graph act as signal sources,
while the edges depict the relationships of these signal sources. We used the vector x ∈ RN

to denote a graph signal built on a graph G(V, E, W). The ith component of x, denoted by
xi, is the data sample at the ith vertex vi in the graph. If the data sample at each vertex is
not a single value but a time series, this signal is referred to as a time-varying graph signal.
In these cases, the signal is represented as the matrix X ∈ RN×T, where T is the number
of time instances. Each column of this matrix denotes the samples at all vertices in the
graph at a single time instance, and each row represents the time-series samples at a single
vertex throughout time. It is worth mentioning that we only consider graph signals with
synchronous time instances for the time series at each vertex.

2.2. Time-Varying Graph Signal Reconstruction: The Temporal-Difference Graph Method

The realm that inspires our solution to the NDVI reconstruction problem is graph
signal reconstruction, one of the core research topics in graph signal processing. A graph
signal x is considered partially sampled when some of its entries are not observed, prompt-
ing the need for methods to recover the missing entries based on the known entries. A
fundamental approach to reconstructing graph signals involves assuming that the signal
is smooth on the graph [29], meaning the missing entries are assigned to the values that
maximize the overall smoothness of the signal. In most of the literature [25,28,30], the
smoothness of a graph signal is typically measured as follows:

S(x) =
1
2

xTLx (1)

where L is the Laplacian matrix of the related graph. The smaller S(x) is, the better the
smoothness that the graph signal exhibits. If we unfold the equation, we obtain a more
intuitive form, as follows:
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S(x) =
1
2 ∑

1≤i,j≤n
Wi,j

(
xi − xj

)2

=
1
2 ∑

e(i,j)∈E
Wi,j

(
xi − xj

)2
(2)

which means the smoothness of a graph signal is measured as the weighted squared sum
of the signal difference between every vertex pair linked by an edge. For a time-varying
graph signal X, its smoothness can be calculated as the sum of the smoothness values at
every time instance, as follows:

(X) =
1
2 ∑

1≤t≤T
xT

t Lxt =
1
2

tr
(

XTLX
)

(3)

where tr(·) calculates the trace of a given matrix, and xt denotes the tth column of X, i.e.,
the graph signal at time instance t.

One way to reconstruct time-varying graph signals is to directly minimize S(X).
However, this method essentially reconstructs the graph signal at each time instance
separately, disregarding the relationship between temporally-adjacent signals. Moreover,
some signals in nature, including NDVI, exhibit non-smooth behavior over space and,
therefore, reconstructing signals based solely on spatial smoothness may lead to significant
deviations from reality. Due to the influence of geographic conditions on vegetation growth,
NDVI signals would inherit spatial patterns from various factors such as topography, land
cover, and soil and water variability, resulting in uneven textures and irregular structures
in NDVI spatial profiles. To reconstruct such non-smooth time-varying graph signals, Qiu
et al. [25] proposed a new method based on the fact that for many time-varying graph
signals in nature, the temporal differences of the signal often exhibit better smoothness
than the original signals. We refer to this method as the TDG method, and the follow-up
Equations (4) and (5) can also be found in Qiu et al. [25].

The temporal differences of a time-varying graph signal X are expressed as:

∆X = [x2 − x1, x3 − x2, . . . , xT − xT−1]

= X



−1
1 −1

1
. . .
. . . −1

1

 = XD
(4)

where D is a T × (T − 1) matrix used for compact notation. The TDG method recovers
missing entries in X by maximizing the smoothness of the temporal difference signal S(XD)
rather than the smoothness of the original signal S(X). Mathematically, the reconstruction
problem can be interpreted as a constrained optimization problem; determining the optimal
X that minimizes S(XD) (maximize smoothness) while keeping the sampled entries in X
unchanged. This can be formulated as follows:

min
X

f (X)= S(XD) =
1
2

tr
(
(XD)TL(XD)

)
s.t. Y= J ◦ X

(5)

where f (X) is the objective function, X is the decision variable, and J, Y, D, and L are given
constant matrices. The constraint Y = J ◦ X represents the sampling of X, where J is a
sampling operator of the same size as X, and ◦ denotes the entry-wise product. Entries
of J are equal to 1 if the corresponding entries in X are observed, and equal to 0 if the
corresponding entries in X are missing. In other words, Y represents the observed or reliable
part of X, which is determined to be fixed. Since L is positive-semidefinite and f (X) is in a
variant quadratic form, it can be inferred that f (X) is a convex (downward) function. Qiu
et al. [25] solved this optimization problem using a gradient projection method, employing
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a backtracking line search approach to determine the step size. According to convex
optimization theory, this algorithm theoretically converges to the global optimal solution
after sufficient iterations.

The TDG method has great potential for reconstructing NDVI data because it aligns
with a key characteristic of NDVI data—the short-term changes in NDVI between ad-
jacent regions tend to be highly consistent. Even in heterogeneous areas, the temporal
differences in NDVI often show greater smoothness than the original data. This phe-
nomenon likely arises because weather conditions—the primary factor influencing vege-
tation growth—tend to exhibit spatial smoothness and act as a “soft” filter applied to the
original NDVI data.

2.3. Applying the TDG Model to NDVI Reconstruction
2.3.1. Grid-to-Graph Conversion

To apply the TDG method to NDVI reconstruction, the NDVI data must first be
interpreted as a time-varying graph signal. As the most widely used NDVI products,
MODIS data are commonly applied in global evaluations of reconstruction methods [31].
MODIS NDVI data are typically gridded, with each pixel positioned at the cells of a regular
grid. Hence, we propose a method to establish graph structures on the grid. In this method,
each pixel of the original grid serves as a vertex of the target graph directly. To determine
the edges, we used a k-nearest-neighbor rule, linking each vertex only to its k nearest
neighboring vertices. Figure 2 shows two examples (with four and eight nearest neighbors).
The weights of edges are determined by the distances between connected vertices. When
two connected vertices are close, they tend to exhibit high similarity in NDVI variability,
so we assign a larger weight to their connecting edge. By default, we set the weight of
each edge to be inversely proportional to the distance between the two connected vertices.
Particularly, when using the four-nearest-neighbor rule, all edges have the same weight.
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in (b)). For each vertex (black circle), only the top k nearest neighboring vertices (gray filled circles)
are connected by an edge.

Accordingly, a weighted graph G = (V, E, W) is established on the original grid, and
the NDVI data can be viewed as a time-varying graph signal represented by a matrix
X ∈ RN×T. Each column of X, denoted by xt, represents the spatial profile of NDVI over
the region of interest at a specific time instance t (1 ≤ t ≤ T).

2.3.2. Sampling of the NDVI Signal

The NDVI time-varying graph signal is partially sampled due to the presence of
noise and data gaps, which we treat as missing entries in a graph signal. Thus, the NDVI
reconstruction problem is framed as a time-varying graph signal reconstruction problem.
This is further formulated as a constrained optimization problem in Equation (5) using the
TDG method. The optimal solution to this problem yields the final reconstructed NDVI
data. In this approach, spatial correlations within NDVI data are modeled by the graph

RETRACTED



Remote Sens. 2024, 16, 2713 7 of 20

structure, while temporal correlations are captured by the temporal difference signals.
The utilization of spatial and temporal information for NDVI reconstruction is global,
asymmetric, and reasonable.

The identification of noise in NDVI data is not within the scope of this study. Nowa-
days, many NDVI products provide pixel-level quality assessment information along with
the NDVI data. It is straightforward to distinguish between reliable observations and noise
based on such information.

2.3.3. Algorithm to Solve the Problem

We employed the gradient-projection algorithm with backtracking line search, as
described by Qiu et al. [25], to solve the problem. Given J, Y, L, and an initial signal X0, the
algorithm updates the signal along the negative gradient direction step by step, gradually
approaching the optimal solution after sufficient iterations. For a detailed description of
the procedures of this algorithm, readers can refer to Qiu et al. [25]. There is one slight
difference in our approach; instead of initializing all noisy entries in the NDVI signal to
zero, as this algorithm normally does, we used the preprocessed NDVI values (described
in Section 3) as the initial signal X0. This benefits solving the optimization problem by
providing prior estimations of the true NDVI values.

The graph involved in this study is generally large in scale because graphs built
on a NDVI grid are very dense. Specifically, we are dealing with graphs consisting of
128 × 128 vertices and even more edges, which is much larger in scale than the application
examples demonstrated by Qiu et al. [25], by about two orders of magnitude. Therefore,
solving the problem could be time consuming. To accelerate the computation, we adopted
two strategies in practice: First, we utilized vector/matrix operations instead of entry-wise
operations as much as possible in our implementation of the solving algorithm. Such
operations can be significantly accelerated using Basic Linear Algebra Subprograms (BLAS,
see Blackford et al. [32]). Second, we simplified the formula for calculating the smoothness
of temporal difference signals. The counterpart of Equation (2) for temporal difference
signals is as follows:

S(x) =
1
2 ∑

1≤t<T
∑

e(i,j)∈E

Wi,j
(
(xt+1,i − xt,i)− (xt+1,j − xt,j)

)2 (6)

where xt,i denotes the signal sample on vertex vi at time instance t. Note that the smoothness
related to reliable entries is always constant during optimizing iterations, whereas what
really matters is only the smoothness related to noise. Thus, we only need to calculate the
noise-related portion of smoothness, that is

S(x) =
1
2 ∑

1≤t<T
∑

e(i,j)∈E∗
t

Wi,j
(
(xt+1,i − xt,i)− (xt+1,j − xt,j)

)2 (7)

where E∗
t is a subset of the entire edge set E. Each of the edges in E∗

t has at least one end
vertex that is diagnosed as noise at time instance t or t + 1. By doing so, the quantity of
computation is reduced substantially.

2.4. Savitzky–Golay Filter Method

For comparison purposes, we implemented a time-series-based NDVI reconstruction
method known as the SG filter method [13]. While the basic idea of the SG filter method
is to smooth NDVI time series, Chen et al. [13] designed an iterative procedure to replace
incompatible depressed values in the NDVI time series with corresponding larger values
generated by SG filtering. Since its proposal, the SG filter method has been widely used to
preprocess NDVI data in numerous studies [33–35].

Recent studies comparing various NDVI reconstruction methods suggest that the
SG filter method represents the current state-of-the-art. Michishita et al. [36] compared
seven NDVI reconstruction methods and identified the SG filter method and the RMMEH
method [17] as the top choices for the Poyang Lake area in China. Zhou et al. [37] revealed
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that the SG filter outperformed four other methods in tropical and subtropical regions,
while the AG method [12] excelled in high latitude boreal regions. Overall, although no
single method consistently emerges as superior, the SG filter method is widely recognized
as a state-of-art approach. In this study, the SG filter method serves as the baseline model for
NDVI reconstruction. We aimed to interpret the performance comparison between the TDG
method and the SG filter method as a comparison between an advanced spatio-temporal
method and the prevailing time-series-based methods.

2.5. Model Evaluation

To assess the performance of the NDVI reconstruction methods, particularly to com-
pare the TDG method and the SG method, we designed a straightforward evaluation frame-
work. First, some artificial noise was introduced into the original NDVI data. Subsequently,
each NDVI reconstruction method was separately used to recover the noise-introduced
NDVI data. The results were then evaluated by comparing the recovered NDVI values with
their original values, considered as ground-truthing. The greater the proximity between
the recovered values and the original ones, the better the method’s performance.

In the noise introduction phase, random entries from the reliable data were selected to
be contaminated by artificial noise. These chosen entries were then assigned new random
values following a uniform distribution within the valid range. Moreover, these entries
were labeled as noise (by changing the Pixel Reliability Index (PRI) value as shown in
Table 1), ensuring they are targeted for recovery by the NDVI reconstruction methods. To
evaluate the accuracy of the reconstructed results, we employed the root-mean-square error
(RMSE) metric. The RMSE between the reconstructed NDVI data matrix Xr and the original
NDVI X is defined as

RMSE =
1√
s
∥S ◦ (X r − X)∥

F
(8)

where the noise-introduction operator S is a matrix whose entries equal 1 if the correspond-
ing NDVI entries are contaminated with artificial noise, or, otherwise, equal to 0. The scalar
s is the number of non-zero entries in S, namely, the number of noise-introduced entries.
The notation ∥·∥F denotes the Frobenius norm of a given matrix.

Table 1. PRI values for MODIS NDVI Data.

Rank Key Summary Quality Assurance
(QA) Description

−1 Fill/No Data Not processed
0 Good Data Use with confidence
1 Marginal Data Useful, but check detailed QA for more information
2 Snow/Ice Target covered with snow/ice
3 Cloudy Target not visible, covered with cloud

This table is extracted from the MODIS Vegetation Index User’s Guide [38].

3. Experiment
3.1. Dataset

We utilized the MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m Grid
(MOD13Q1) products (version 006) [38], acquired from NASA’s Land Processes Distributed
Active Archive Center (LP DAAC). The MOD13Q1 dataset includes two vegetation index
products—the standard NDVI and the Enhanced Vegetation Index (EVI). For our study,
we only used the NDVI product. The MOD13Q1 products are globally generated (terres-
trial area only) at a spatial resolution of 250 m with 16-day intervals. In this study, the
downloaded dataset spans from 18 February 2000, to 17 January 2017, comprising a total of
390 time-series images. These images were mapped in the Sinusoidal Grid projection, an
equal-area map projection. We maintained the original projection throughout the whole
processing to avoid introducing new distortions into the original data.
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The MOD13Q1 products include QA information along with the NDVI data, which
assesses the quality of the NDVI data at the pixel level (Table 1). This QA information
provides details about various factors affecting data quality, such as aerosol quantity and
cloud conditions, enabling users to evaluate the reliability of the data they are using. A
summary QA layer, known as PRI (see [39]), is attached to each NDVI data file. Note that
the PRI information was used to distinguish between reliable NDVI data and noise. We
supposed that data with a PRI value of 0 (indicating “good data”) were reliable, while data
labeled as “fill/no data”, “marginal data”, “snow/ice”, and “cloudy” were all regarded
as unreliable. This approach allowed us to quickly infer the sampling operator J and the
observed matrix Y in Equation (5) based on the PRI.

3.2. Study Area

As depicted in Figure 3, the study area is located in the Three-River Headwaters Re-
gion, Northwest China, encompassing latitudes ranging from 30◦N to 39◦N and longitudes
ranging from 87◦E to 105◦E. The land cover information shown in this figure is derived
from the GlobeLand30-2010 dataset, a global land cover (GLC) product with a resolution
of 30 m [40]. This region exhibits a spatial transition of land cover types from forests in
the southeast to bare land in the northwest. Between these two distinct regions, grass
dominates the vegetation cover across the vast area. The spatial variation of vegetation in
this region accords well with the distribution of precipitation. Annual average precipitation
decreases from approximately 600 mm to 100 mm northwestwards. Consequently, the
region has an arid or semi-arid climate. Moreover, the region serves as the source of three
major rivers in China—the Yangtze River, the Yellow River, and the Mekong River (known
as the Lantsang River in China), which highlights the significance of vegetation monitoring
and ecological assessment in this region [40].
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We selected ten sample patches distributed across the study area for testing the NDVI
reconstruction methods. Each NDVI patch, extracted from the MOD13Q1 NDVI product,
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has a size of 128 × 128 pixels. Given that each pixel corresponds to an actual length of
231.66 m in a 250 m Sinusoidal Grid, each sample patch has an area of about 880 km2.
Along with the NDVI data, the PRI data for these sample patches were also extracted.
These 10 sample patches were chosen to cover the best variability in land cover, geography,
and NDVI data quality across the study area. Table 2 provides statistics on the patches with
regard to properties including average elevation, annual average NDVI, and the percentage
of NDVI entries marked as “good data” among all entries in a patch. From these statistics,
the region of interest was situated in a highland characterized by poor vegetation, with
the NDVI data in this region suffering from severe noise problems. Geographically, the
Qinghai-Tibet Plateau lies southwest of this region, resulting in mostly high altitudes for
the selected sample patches, with some exceeding 4000 m. The annual average NDVI
values for these patches are predominantly below 0.5, with some extreme cases around 0.1,
indicating sparse vegetation cover. Moreover, the quality of NDVI data varies spatially,
with an average “good data” rate of 48.46%, which means less than half of the entire NDVI
data can be used with full confidence. Some patches, such as Patch 1, exhibit an extremely
low “good data” rate, falling below 20%. Such an unfavorable condition amplifies the
difficulty of NDVI reconstruction.

Table 2. Basic Information for 10 Selected Sample Patches.

Patch
Number

Central
Longitude

Central
Latitude

Average
Elevation (m)

Annual
Average NDVI

Good-Data
Rate

1 92◦23′E 37◦42′N 2897 0.05 15.53%
2 94◦42′E 36◦21′N 3185 0.06 33.15%
3 101◦46′E 32◦25′N 3784 0.45 49.92%
4 95◦30′E 32◦17′N 4638 0.31 47.46%
5 87◦36′E 30◦31′N 5223 0.16 57.56%
6 102◦21′E 34◦47′N 3531 0.40 64.77%
7 95◦52′E 34◦16′N 4611 0.22 47.26%
8 100◦31′E 38◦12′N 3389 0.19 67.80%
9 103◦29′E 31◦35′N 2885 0.53 41.37%

10 105◦03′E 36◦54′N 1764 0.15 61.55%
Mean 3591 0.25 48.46%

Note: The average elevations were calculated using the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2) dataset [41]. Annual average NDVI
was calculated based on the MOD13Q1 NDVI product for the period 2001–2016 without the impact of “Fill/No
Data” entries.

3.3. Data Preprocessing

Before executing the NDVI reconstruction using either the TDG or SG filter method, we
preprocessed the data to eliminate illogical noisy values through linear interpolation along
the time dimension. The PRIs accompanying the NDVI data serve as a confidence criterion
for determining which part of the data needs interpolation. While all data excluding
“good data” are uniformly considered as noise, some noisy data still contain valuable
information for reconstruction, especially those marked as “marginal data”. Therefore, we
only interpolated extremely noisy entries marked as “snow/ice”, “cloudy”, or “fill/no
data” based on NDVI values at other high-confidence entries marked as “good data” or
“marginal data”.

It is worth noting that the first step of the SG filter method typically involves linearly
interpolating cloudy NDVI values [13], which is very similar to the aforementioned in-
terpolation procedure. Consequently, in our implementation of the SG filter method, we
omitted the first step to avoid redundant operations. Thus, the SG filter method used in
this study differs slightly from the original version. Specifically, we interpolated NDVI
values marked as “snow/ice”, “cloudy”, and “fill/no data” following the replacement
method employed by Chen et al. [13]. Another important difference is that the original
SG filter method also interpolates NDVI points that increase greater than 0.4 over 20 days,
even though they are not identified as noise. However, we chose to discard this rule in our
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implementation, opting for simplicity in identifying NDVI noise based solely on provided
information (the PRI data) without this additional rule. This approach ensures consistency
in data preprocessing between the TDG method and the implemented SG filter method in
this study, maintaining fairness in the comparison between them.

3.4. Model Configuration

We applied the TDG and SG filter method to reconstruct the preprocessed NDVI data
on the selected 10 sample patches over the study area. For the TDG method, we used the
four-nearest-neighbor rule to build edges in the graph. The initial learning rate was set
to 0.1, and the iterations were stopped after a maximum of 300 steps or when no further
perceptible improvement was observed. This configuration was found to produce good
reconstruction results in practice. For the SG filter method, we used the same parameters
as recommended by Chen et al. [13].

3.5. Details of Model Evaluation

To evaluate the performance of the two methods, NDVI reconstruction was con-
ducted within the evaluation framework described in Section 2.5. On each sample patch,
100,000 artificial noisy entries were randomly introduced into the original NDVI dataset
(approximately 1.57% of the total data). For a fair comparison, both the TDG method and
the SG filter model shared an identical selection of noise-introduced entries and identical
new values as well. Note that the noise introduction was accomplished before data pre-
processing. In addition, considering that NDVI reconstruction methods might respond
differently to various types of noise, we explored three different ways to introduce artificial
noise, as follows: (1) Positive-Marginal (PM) artificial noise, introduced by replacing the
values of selected NDVI entries with random values greater than the original ones and
identifying their PRIs as “marginal data”, (2) Negative-Marginal (NM) artificial noise, in-
troduced by replacing the values of selected NDVI entries with random values lower than
the original ones and also identifying their PRIs as “marginal data”, and (3) No-Data (ND)
artificial noise, introduced by identifying the PRIs of selected NDVI entries as “fill/no data”.
The NDVI values do not need to be changed when introducing ND noise because during
data preprocessing, the values of these entries will eventually be linearly interpolated. The
introduced PM and NM noise tested the performance of the NDVI reconstruction methods
in handling positive and negative deviations in NDVI, respectively. The introduced ND
noise tested the performance of recovering linearly interpolated NDVI values, which is
relatively simpler. Each of the three types of artificial noise was introduced independently,
meaning that we carried out three separate rounds of performance evaluation for the NDVI
reconstruction methods. In each round, the noise-introduced NDVI data were obtained
by contaminating 100,000 randomly selected entries with a single type of artificial noise.
As such, this approach allowed us to examine the sensitivity of the NDVI reconstruction
methods to different characteristics of noise.

4. Results and Discussion
4.1. Comparison of the TDG Method and the SG Method

The RMSEs of the reconstructed NDVI for each sample patch using the TDG method or
the SG filter method are listed in Table 3, arranged by different types of artificial noise. The
results reveal the substantial superiority of the TDG method over the SG filter method. The
TDG method not only achieves much lower RMSEs than the SG filter method, in most cases,
but also exhibits a remarkable stability in performance when processing various types of
noise. However, the SG filter method is highly sensitive to the type of noise introduced.
The average RMSE of reconstructed NDVI across the 10 patches using the TDG method is
approximately 0.026, regardless of the type of artificial noise introduced. Meanwhile, the
average RMSEs for the SG filter method are 0.387, 0.074, and 0.038 for PM, NM, and ND
noise, respectively. For a more comprehensive assessment, we also calculated the R2 and
Mean Absolute Error (MAE), both of which indicated the superiority of the TDG method.
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Table 3. RMSEs of Reconstructed NDVI for Each Sample Patch.

Patch
SG Filter TDG

PM NM ND PM NM ND

1 0.501 0.035 0.006 0.007 0.004 0.004
2 0.483 0.038 0.021 0.021 0.020 0.020
3 0.279 0.111 0.051 0.029 0.030 0.029
4 0.352 0.089 0.050 0.032 0.032 0.032
5 0.448 0.052 0.026 0.019 0.019 0.018
6 0.320 0.085 0.044 0.027 0.027 0.027
7 0.388 0.079 0.047 0.033 0.033 0.033
8 0.422 0.060 0.038 0.026 0.026 0.027
9 0.232 0.148 0.070 0.047 0.047 0.047

10 0.449 0.045 0.027 0.021 0.021 0.021
Average 0.387 0.074 0.038 0.026 0.026 0.026

For the three types of artificial noise, Figure 4 sequentially presents one example per
type of reconstructed NDVI time series using the two methods. The varying background
colors in the set of figures indicate the PRI categories of the corresponding entries. As
illustrated in Figure 4a, the SG filter method fails to reconstruct PM noise entirely. The
reconstructed NDVI time series based on the SG filter method (green line) retains false
spikes at noise-introduced entries, leading to an unacceptable high RMSE (0.387) compared
to the original true values (red dotted line). Note that if we use the standard version of the
SG filter method that forcibly interpolates unnatural spikes in the first step, the extreme
spike occurring in 2014 can be wrapped out, but the two mild spikes in 2013 remain the
same because they are below the criterion to interpolate (increasing by more than 0.4 over
20 days). In contrast, the TDG method effectively eliminates these false spikes, and the
reconstructed values (blue line) are very close to the true values. Since those sudden spikes
seriously disrupt the NDVI smoothness both in time and space, the TDG method forces
them to flatten out. We would like to mention that the failure of the SG filter method
regarding PM noise is expected because this method is designed based on the assumption
that noisy NDVI values are usually lower than true values. This assumption would
generally hold because the overwhelming noise introducers like cloud, snow, and low sun
zenith angles usually cause negative deviations from true values; however, we cannot reject
the existence of positive deviations in NDVI arising from unusual reasons. Indeed, we
commonly observed spurious rises in the original NDVI (see Figure 5). Therefore, there is
practical meaning in inspecting the behavior of NDVI reconstruction methods when facing
positively biased noise.
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original NDVI data are contaminated using (a) PM, (b) NM, and (c) ND artificial noise. Background
colors indicate the PRI categories of the corresponding entries where white indicates “good data”;
light gray indicates “marginal data”; dark gray indicates “snow/ice”, “cloudy”, or “fill/no data”;
and orange indicates noise-introduced entries that were “good data” originally but were modified to
(a,b) “marginal data” or (c) “fill/no data”.
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The noise in real NDVI data is mostly negatively biased, so the NM artificial noise can
better simulate the real situation of noise contamination in NDVI than the other two types.
From the example shown in Figure 4b, both the TDG method and the SG filter method can
recover NM noise, producing reconstructed NDVI time series that have well eliminated
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artificially introduced sudden drops. However, it is noticeable that the reconstructed time
series based on the SG filter method (green line) shows a slight but systematic negative
bias with respect to the true values (red dotted line) at noise-introduced entries. In contrast,
reconstructed NDVI values based on the TDG method (blue line) are generally closer to the
true values. The RMSEs of the two reconstructed time series quantify the performance gap
between the two methods. The 10-patch average RMSE for the SG filter method is 0.074
but drops to 0.026 for the TDG method, indicating a dramatic improvement.

Regarding ND noise, Figure 4c shows that the reconstructed NDVI values at noise-
introduced entries are very close to the true values for both methods. From the RMSE
perspective, the TDG method still performs better than the SG method in recovering ND
noise, with much smaller RMSEs at all sample patches except Patch 2.

To assess how well the two methods work in real NDVI reconstruction practice,
we executed another round of NDVI reconstruction which was free from the evaluation
framework, i.e., using the two methods to reconstruct the original NDVI directly with-
out introducing artificial noise. Figure 5 demonstrates four sets of reconstructed results
concerning NDVI time series with various good-data rates (i.e., the rate of “good data”
entries along the whole time series). When the NDVI is of good quality, such as the time
series in Figure 5a (the good-data rate is 76.9%), both methods effectively eliminate sudden
drops in NDVI. As data quality degrades, the superiority of the TDG method becomes
evident in the following aspects: (1) The TDG model can fix positively biased noise, as
previously discussed. A perfect example is the NDVI entry spiking during the spring of
2015 in Figure 5b. (2) The TDG method better recovers the periodic intra-annual variability
of NDVI, as demonstrated in Figure 5c,d. Notably, the TDG model successfully recovers
the summer peak of NDVI in 2014 in Figure 5d, where the SG filter method fails because
several low-value pixels during this period are categorized as “marginal data” but not
“cloudy” and, thus, are not interpolated. (3) If the NDVI time series experiences long-term
continuous contamination with bad noise, the TDG model can recover the underlying
variability of the NDVI, while the SG model tends to inherit the straight slopes from the
linear interpolation in the data preprocessing. Typical cases of this can be found in early
2003 and 2012 in Figure 5b. These advantages of the TDG method are attributed to the
utilization of both temporal and spatial interrelations within NDVI data. Note that the TDG
model only modifies noisy NDVI entries, so the reconstructed NDVI values at “good data”
entries are strictly identical to the original values. Accordingly, this explains why RMSE is
lower and constant when introducing more noise-affected observations to be corrected.

Figure 6 also demonstrates the reconstructed NDVI results but from the spatial per-
spective. Four sets of NDVI spatial profiles with varying good-data rates (i.e., the rate
of “good data” entries over the spatial profile) are shown. In Figure 6a, where the case
is mostly covered by “good data” entries, the NDVI spatial profiles remain the same af-
ter reconstruction. In the other three cases, the quality of NDVI significantly improves
after reconstruction. The NDVI reconstruction methods can remove noisy spots that are
pervasively scattered over the original NDVI spatial profiles, producing new profiles that
are much “cleaner”. Particularly, in Figure 6d, the original NDVI profile has no “good
data” entries and presents a very flat and uninformative appearance. Nevertheless, the
spatial details and fine textures of this profile can be successfully rebuilt after reconstruction.
Comparing the reconstructed NDVI profiles based on the TDG method and those based
on the SG filter method highlights the superiority of the TDG method; while the SG filter
method significantly improves the quality of NDVI data, it still leaves some coarse spots
over the reconstructed profiles. This method reconstructs NDVI time series individually
per pixel, which may not guarantee a coherent spatial pattern in the reconstructed NDVI
profiles. In contrast, TDG-based reconstruction successfully eliminates these coarse spots
and restores the unsmooth structures of the NDVI spatial profile. This is because adjacent
NDVI pixels are connected via graph structures, enabling the TDG model to obliterate
noisy entries where temporal difference signals conflict with nearby pixels.
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Figure 6. Four sets of NDVI spatial profiles showing the PRI of the corresponding profiles and
comparing between the original NDVI, the reconstructed NDVI using the SG filter method, and
the reconstructed NDVI using the TDG filter method. No artificial noise is introduced. The spatial
profiles are (a) Patch 6 on 28 July 2009, (b) Patch 3 on 21 March 2004, (c) Patch 7 on 26 June 2010, and
(d) Patch 7 on 15 October 2004. The good-data rate of the profile is (a) 96.22%, (b) 45.43%, (c) 0%, or
(d) 0%. Some zoomed-in profiles over small regions (30 × 30 pixels) are illustrated in (e) to provide
clearer comparison of the reconstruction results using the two methods.

4.2. Robustness and Further Applications of the TDG Method

The robustness of the TDG method was further examined by focusing on its perfor-
mance when noise is extremely prevalent in NDVI data. To achieve this, we incrementally
increased the level of introduced noise and checked the RMSE of reconstructed NDVI
based on the aforementioned evaluation framework. This process was applied to Patch 6,
which had the highest good-data rate (64.77%) among the sample patches. For this test, we
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only introduced NM artificial noise to generate NDVI data with varying good-data rates,
defined as the proportion of “good data” entries within the overall spatio-temporal NDVI
data block. Figure 7 illustrates the relationship between the RMSE of reconstructed NDVI
and the good-data rate after noise introduction, tested on Patch 6. The results demonstrate
that the TDG method is highly robust to noise density. The RMSE of reconstructed NDVI
remains largely constant if the good-data rate is no less than 20%. Even when the good-data
rate drops to 10%, the TDG method still achieves a relatively low RMSE (0.041). In contrast,
the SG filter method’s RMSE increases linearly as the good-data rate decreases, failing at an
early stage when the good-data rate becomes too low.
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We also explored the impact of different edge-establishment strategies on the perfor-
mance of the TDG method’s reconstruction. While previous analysis consistently used the 
default four-nearest-neighbors rule, we tested several other rules (8-, 12-, and 20-nearest-
neighbor) to evaluate their effect on NDVI reconstruction. The results indicated that while 
denser edge-establishment rules enhance the connectivity of the graph, the RMSE of re-
constructed NDVI remains almost constant. Specifically, the 10-patch average RMSE de-
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We also explored the impact of different edge-establishment strategies on the perfor-
mance of the TDG method’s reconstruction. While previous analysis consistently used the
default four-nearest-neighbors rule, we tested several other rules (8-, 12-, and 20-nearest-
neighbor) to evaluate their effect on NDVI reconstruction. The results indicated that
while denser edge-establishment rules enhance the connectivity of the graph, the RMSE
of reconstructed NDVI remains almost constant. Specifically, the 10-patch average RMSE
decreases only marginally from 0.026 using the four-nearest-neighbor rule to 0.025 when
using eight or more nearest neighbors. This marginal improvement is because the four-
nearest-neighbor graphs are already fully connected, meaning each pair of vertices in the
graph are associated via one or more edges. Adding more edges has a minimal effect since
the influence of one vertex on another diminishes with increasing distance between them.
Therefore, the simplest four-nearest-neighbor rule is considered the optimal choice for
edge establishment in the TDG method, which not only produces good results but also
reduces computation.

4.3. Limitations of the TDG Method and Future Directions

To reconstruct high-quality NDVI time series derived from satellites, plenty of algo-
rithms have been proposed to smooth spatio-temporal NDVI data. Hybrid methods, i.e.,
the temporal spatial filter (TSF), the search-and-fill algorithm with moving offset method
(SFA-MOM), the spatio-temporal Savitzky–Golay (STSG) method, and the spatio-temporal
tensor completion (ST-Tensor) method, are considered to overcome the limitation of a
single-feature-dependent approach by incorporating the information of spatial correlation
and temporal continuity [1]. Spatial-based methods and temporal-based methods may
have good performance under specific circumstances but not in others [42]. Although
hybrid methods can tackle long-term data gaps and preserve valid low values, they may
also have poor performance in the case of high-spatial-resolution data compared to low-
temporal-resolution data, and uncertainties may be introduced due to the low accuracy
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of reference data [1,43,44]. Distinct from previous NDVI reconstruction methods, the pro-
posed TDG method benefits from its formalized mathematical approach, which eliminates
the need for manually overdesigned procedures that rely on prior knowledge or additional
assumptions. While the present results are encouraging, this study’s evaluation of NDVI
reconstruction methods is somewhat simplified. The TDG method was tested on a region
with relatively uniform vegetation types and environmental conditions, was compared
with only one time-series-based method, and was evaluated using a single metric (RMSE).
As the number of grids and the length of the time series increase, computational require-
ments will grow despite efficient optimization strategies. This raises concerns about the
operational applicability and the optimal spatial scale for this method. Therefore, a more
detailed and systematic evaluation is needed to comprehensively investigate the TDG
method’s performance.

There are a few promising directions for further improving the TDG method for
NDVI reconstruction: (1) Incorporating measurement noise. A variant of the TDG method
considers measurement noise [25], which not only reconstructs the low-quality NDVI
values explicitly identified as noise but also rectifies some suspect values, though they
are marked as reliable data. This variant provides a flexible and promising alternative for
NDVI reconstruction but has not been well studied. (2) Optimizing edge weights. In this
study, edge weights were completely determined by the distance of two connected vertices,
following the simple assumption that vertices close to each other share high similarity in
NDVI variability. In fact, the similarity between vertices can be quantitatively measured
using historical data, e.g., by calculating the correlation coefficient between NDVI time
series at two vertices. Incorporating this information to determine edge weights would
enhance the precision of spatial intercorrelation modeling within NDVI data. (3) Fus-
ing multi-source datasets of different resolutions. Utilization of multiple satellite-based
datasets would provide additional information to offset the deficiency of spatial or tem-
poral information. Recent studies have developed several spatio-temporal fusion models
to produce improved NDVI reconstructed datasets with both high spatial and temporal
resolutions [4,45], but various types of noise associated with distinct datasets still need
to be clearly addressed, and large uncertainties may remain. It is worth mentioning that
machine learning techniques will gain increasing advantages in the reconstruction of NDVI
time series, which are being accumulated, such as deep convolutional neural networks
(DCNNs), long short-term memory (LSTM) network, and spatial-temporal-spectral deep
convolutional neural network (STSCNN).

5. Conclusions

This study proposed a TDG method for NDVI reconstruction and demonstrated its
usefulness in the Three-River Headwaters Region of Northwest China. By converting
NDVI data into a time-varying graph signal, the TDG method leverages an optimization
algorithm to maximize the spatial smoothness of temporal differences in the original
signal. A comparative performance analysis between the TDG method and the SG filter
method was conducted, which involved introducing artificial noise into the data and
evaluating the RMSE between the recovered NDVI values and the actual values. The
results revealed a substantial superiority in the TDG method over the SG filter method for
NDVI reconstruction. The average RMSE of reconstructed NDVI using the TDG method
was 0.026, regardless of whether the noise was positively biased, negatively biased, or
linearly interpolated. In contrast, the SG filter method’s average RMSEs were 0.387, 0.074,
and 0.038 for the three types of noise, respectively. Moreover, the TDG method exhibited
remarkable robustness to noise intensity, requiring only 10% to 20% of the data to achieve
high-accuracy reconstruction. Thus, the TDG method shows excellent performance with
no preference for noise types and yields good results from both a time-series perspective
and spatial-profile perspective.

The TDG method is a very useful tool for reconstructing noisy NDVI products, pri-
marily due to its comprehensive utilization of both the temporal and spatial information
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in NDVI data. This is achieved through two key aspects—modeling spatial interrelations
between data pixels using a graph structure, and exploiting temporal associations of NDVI
values through temporal differences, based on the assumption that the temporal-difference
signal tends to be spatially smooth. Moreover, the TDG method exhibits universal applica-
bility in its performance for NDVI reconstruction, regardless of noise characteristics, land
cover types, vegetation phenology patterns, and other factors. Thus, the proposed method’s
potential for extended application to datasets beyond NDVI is highly prospective, and we
hope our efforts could provide new insights into remote-sensing data processing. Note that
the principle of the TDG method is also applicable to a wide range of remote-sensing-based
products. Nevertheless, many issues still need to be addressed. Considering the spatial
smoothness in the TDG method, edge effects due to both the temporal and spatial borders
would introduce additional uncertainty. Although the computation efficiency in this study
is relatively high due to the use of a high-performance server, more tests and simulations
are necessary to demonstrate the operational applicability of the TDG method. Further-
more, various combinations of different types of noise should be investigated, including
measurement noise, and, also, the principle, configuration, and algorithm of the proposed
approach need to be further improved and validated based on various datasets and ground
observations in the future.
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