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Abstract: A cropping system practice is the sequential cultivation of crops in different crop seasons of
a year. Cropping system practices determine the land productivity and sustainability of agriculture in
regions and, therefore, information on cropping systems of different regions in the form of maps and
statistics form critical inputs in crop planning for optimal use of resources. Although satellite-based
crop mapping is widely practiced, deriving cropping systems maps using satellites is less reported.
Here, we developed moderate-resolution maps of the major cropping systems of South Asia for the
year 2014–2015 using multi-temporal satellite data together with a spectral matching technique (SMT)
developed with an extensive set of field observation data supplemented with expert-identified crops
in high-resolution satellite images. We identified and mapped 27 major cropping systems of South
Asia at 250 m spatial resolution. The rice-wheat cropping system is the dominant system, followed
by millet-wheat and soybean-wheat. The map showing the cropping system practices of regions
opens up many use cases related to the agriculture performance of the regions. Comparison of such
maps of different time periods offers insights on sensitive regions and analysis of such maps in
conjunction with resources maps such as climate, soil, etc., enables optimization of resources vis-à-vis
enhancing land productivity. Thus, the current study offers new opportunities to revisit the cropping
system practices and redesign the same to meet the challenges of food security and climate resilient
agriculture.

Keywords: cropping systems; South Asia; crop type mapping; time-series analysis; crop phenology
detection

1. Introduction

A cropping system indicates the crop types and sequences practiced in a region over the
crop seasons of a year. Generally, a crop year consists of multiple crop seasons of roughly
defined duration. The crops grown during these seasons comprise the cropping system of that
region, characterizing the agricultural practices followed in that area as a whole rather than in
an individual parcel of land. In India, there are three crop seasons: kharif (June to November),
rabi (November to March) and zaid (March to June). Crops are grown in one, two or all three
of these seasons, with variations from region to region. For instance, if rice is grown in the
initial season followed by wheat in the second season and no crop in the third, then it is called
a rice-wheat cropping system. The agroecological and agrometeorological conditions of a
region have a bearing on the cropping system practiced there.

Cropping systems play a role in determining the land productivity of a region by
facilitating optimal utilization of resources to maximize crop yields [1]. However, resource-
intensive cropping systems tend to impact soil health, ground and surface-water hydrology,
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environmental sustainability, climate resilience of agriculture and income security of farm-
ers. Sustainable agriculture is closely linked to cropping system practices [2,3]. Therefore,
monitoring cropping systems is of critical importance to sustainable agriculture and food
production. In particular, cropping system maps can provide important information on
crop types, the number of crops grown and the management practices followed in irrigated
or rainfed systems during a crop year at a particular location. Given the growing popula-
tion and rapid climate change, there is increasingly a need to monitor and reduce emissions
in the quest for sustainable agriculture development.

Cereals and legumes, especially short-duration crops, are crucial for food and nu-
trition security in Asia and Africa. They have the potential to improve livelihoods by
enhancing incomes and providing stable employment. However, increasing cropping
intensity through better irrigation technology, fertilizer use and mechanization has led to
growing pressure on croplands and other environmental concerns. The need to allocate
water to other competing sectors (urban and industrial development) and reduced water
availability in a highly varying climate inhibit the expansion of irrigated cropland area [4,5].
Additionally, the adverse impacts of accelerated irrigation development and fertilizer use
have been manifest in increasing salinity in croplands, leading to loss of soil fertility.

Given that context, mapping cropping systems can provide a crucial input into
decision-making to improve cropping systems, explore opportunities to increase produc-
tion and raise farmers’ incomes under conditions where there can be no further expansion
of agricultural area. Additionally, accurate crop information from the lowest administrative
level is necessary to estimate country-level crop-wise acreage [6–8], which is a basic input
that feeds into agricultural policies. Since dryland cropping systems are highly mutable
and are influenced by biophysical, social and economic factors [9–12], accurate estimation
of cropping patterns is essential for planning. In such a scenario, geospatial products
can provide input parameters for food security studies, and also for developing seasonal
cropping patterns of cereals followed by short-duration legumes [13,14].

There is a need to revisit the cropping system practices of different regions in view of
the growing importance of sustainable agriculture and food systems. With climate change
leading to increased exposure of agriculture to various risks, and fast-changing food habits
altering the demand and supply scenario of food, there is increasing recognition of the
importance of carbon-neutral economies and also reassessment of the global trade practices.
Mapping and inventory taking of croplands following different cropping systems are basic
information products that can aid in the development of more suitable cropping systems in
different regions. Spatial information on current cropping systems integrated with layers of
information on resources such as soil, weather and water will enable a holistic assessment
of the sustainability of current agricultural systems.

There have been numerous studies on mapping cropping patterns using satellite data,
but they are limited to the subdistrict and plot levels [15–17] and single or major crops at
large scale such as rice, wheat and sugarcane [18–22]. Currently, the various data sources
available for use include regional and subnational statistical data on cultivated areas,
coarse/medium-scale land-use/land-cover (LULC) maps and paddy maps from the 1980s
to the 2010s [23–25], maps of rice areas using medium spatial resolution data [19,26–28]
and a combination of various other sources [29,30].

Modern remote sensing is characterized by frequent imaging of the earth’s surface to
produce large streams of spectral data in high to moderate resolutions and making available
analysis-ready data and biophysical products in the public domain to map agriculture
systems. These developments in remote sensing offer numerous opportunities to produce
more accurate and customized information on crop cover and its changes.

Information on spatial distribution of different cropping systems is important for spatial
analysis to identify areas appropriate for sustainable food production, for a better understand-
ing of where croplands are available to introduce/grow short-duration legumes across winter
fallows, and to overcome current farmers’ income uncertainties. Analysis of near-real-time
satellite imagery can be a substitute for ground surveys to estimate the acreage of major crop
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types; moreover, it is relatively quick, cheap and independent [31–35]. Some studies have used
satellite data to map agricultural areas at various temporal and spatial resolutions [36–41];
moderate resolution imaging spectrometer (MODIS) normalized difference vegetation index
(MODIS NDVI) time-series data to map croplands, cropping intensity at lower administrative
levels and for river basins [42–44]; and land surface water index (LSWI) data to monitor
natural vegetation- and soil-related wetness at a regional scale [26,45–48].

However, to our knowledge, none of these studies have dealt with entire cropping
systems, i.e., crops grown in a sequence over the entire year. This study maps major cropping
systems across South Asia with the help of MODIS time-series data and spectral matching
techniques (SMTs) to provide precise information on cropping sequences with the objective of
enabling improvement of crop water productivity and proper natural resource management.

2. Materials and Methods
2.1. Study Area

South Asia is located between 5◦38′ and 36◦54′N latitudes and 61◦05′ and 97◦14′E
longitudes, covering nearly 477 million ha. The region comprises Bangladesh, Bhutan,
India, Nepal, Pakistan and Sri Lanka (Figure 1), and is divided, based on similar climatic
conditions, into six agroecological zones (AEZs) [49] in which agriculture is strongly
influenced by rainfall and seasonal winds. South Asia is home to 65% of the underprivileged
people who live in rural and remote areas and depend on agriculture for their livelihood [50].
People living in 70% of the countryside depend on coastal fisheries and land. South Asia
has nine major river basins: Brahmaputra, Godavari, Indus, Ganges, Tapti, Krishna, Kaveri,
Narmada and Mahanadi. Irrigation projects in this region serve a command area of nearly
133 million ha [51]. Rice and wheat are the staple foods in the region; the former crop is
grown throughout the year in some areas.
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The major cropping systems in South Asia vary by country (Table 1). India has
diversified cropping systems, but rice-wheat is dominant in northern India and rice-rice in
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southern India. In Sri Lanka, rice-rice, rice-fallow and other crops-fallow are the dominant
cropping systems. In Bangladesh, rice-rice, rice-pulses-rice, rice-fallow-rice and jute-pulses-
rice are popular; Bhutan favors rice-fallow and mixed crops. The dominant cropping
systems in Nepal are rice-wheat, maize-wheat and maize-rice, whereas in Pakistan they are
rice-wheat, rice-rice, rice-pulses and cotton. Thus, rice-rice and rice-wheat are the common
major cropping systems across the region.

Table 1. Country-wise major cropping systems in South Asia.

Country Total Geographical Area (‘000 ha) Total Gross Planted Area (‘000 ha) Major Cropping Systems

Bangladesh 14,804 15,002 Rice-rice, rice-pulses-rice, rice-fallow-rice,
jute-pulses-rice

Bhutan 4365 121 Rice-fallow, mixed crops
India 345,623 184,443 Diversified cropping systems (Table 2)
Nepal 16,210 4208 Rice-wheat, maize-wheat, maize-rice

Pakistan 89,167 22,817 Rice-wheat, rice-rice, rice-pulses, cotton
Sri Lanka 6453 2076 Rice-rice, rice-fallow, other crops-fallow

Total 476,622 228,668

Note: The gross planted area indicates the total sown area within a crop year, including multiple cropping cycles
where applicable.

Table 2. Field samples used for training and validation, and national statistics on cropping systems in India.

Classified Data Training Samples Validation
Samples

Cropping Systems in
India (M ha)

01. Rice-wheat 42 46 14.8
02. Rice-rice 15 88 2.4

03. Rice-pulses 18 51 4
04. Pulses/rice-rice 13 107 4.5
05. Soybean-wheat 18 33 8.3
06. Pulses-wheat 17 22 9.2
07. Maize-wheat 35 24 NA
08. Millet-wheat 53 38 10.1
09. Maize-wheat 3 13 2.5

10. Maize-chickpea 16 14 4
11. Millet-mustard 10 20 3.8
12. Pulses-maize 9 10 2

13. Sugarcane 22 17 5.1
14. Groundnut-pulses 7 15 4
15. Sorghum-fallow 9 18 1.3

16. Rice-fallow 23 58 12.6
17. Pigeonpea-fallow 28 27 5.5

18. Groundnut/cotton 9 15 NA
19. Cotton-fallow 77 43 15.3
20. Millet-fallow 18 13 3.8

21. Sorghum-fallow 19 16 3.2
22. Pulses-fallow 9 11 1.3

23. Fallow-chickpea 4 16 1.4
24. Groundnut-fallow 18 14 9.7

25. Mixed crops 94 55 NA
26. Other LULC 773 61 NA

27. Rice-fallow/mixed crops 57 38 NA

Total samples 1416 883

2.2. Ground Reference Data

Ground survey information with geographical coordinates (Table 2) was collected
broadly throughout South Asia for the crop year 2014–2015 for identification of classes of
cropping systems together with an accuracy assessment exercise (Figure 1). Ground data
collection was conducted using two distinct approaches. For the training data, homoge-
neous patches were selected, and comprehensive crop-related information was collected
to generate ideal spectra signatures. In contrast, the validation data were gathered from
various random locations, focusing primarily on land use, land cover, crop name rather
than detailed information. A total of 2203 field samples were collected, of which 1416 points
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were used for training to develop an ideal spectral data bank (ISDB) and 883 for class valida-
tion (Table 2). Land-use land-cover information was collected for each sample (at least 250
m × 250 m) along with data on crop type, cropping intensity and irrigation water source.
During collection of ground data, the area around the sample was categorized into one
of three classes: small (≤10 ha); medium (10–15 ha); and large (≥15 ha) to enable acreage
estimation. In some areas, farmers were interviewed to glean information on sowing dates,
irrigation practices and cropping patterns to aid class identification. For areas that could not
be visited due to lack of proper roads, information was obtained from secondary sources,
including local agriculture experts and records. Class names were allotted in the field using
a labeling protocol [31,52]. Data limitations in some areas led to classes being identified on
the basis of prior experience with crop signatures.

Data on India’s agriculture were obtained from the official websites of the Department
of Agriculture of the Government of India; other countries’ data were obtained from the
respective national agricultural/statistics departments.

As per Indian national statistics, the dominant rainfed cropping systems are cotton-
fallow (15.3 M ha) followed by rice-fallow (12.6 M ha) and groundnut-fallow (9.7 M ha).
The major irrigated cropping systems are rice-wheat (14.8 M ha) followed by millet-wheat
(10.1 M ha). The other major cropping systems are pulses-wheat (9.2 M ha) and soybean-
wheat (8.3 M ha) (Table 2).

3. Methodology

The workflow of this study consisted of three major steps: (1) preparation of satellite
data including mosaicking and stacking; (2) running the machine learning algorithm, i.e.,
unsupervised classification (K-means) on Google Earth Engine (GEE) and identification of
classes and labeling with the help of SMTs; and (3) accuracy assessment using validation
data and national statistics (Figure 2).
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3.1. Preparation of Satellite Data and Running Machine Learning Algorithm

In GEE, the readily available MOD13Q1 V6.1 product provides preprocessed NDVI
data for every 16 days on a per-pixel basis, masked for water, clouds, heavy aerosols
and cloud shadows. Twelve MODIS tiles covering the study area for the study year June
2014–May 2015 were considered for our analysis.

The monthly maximum NDVI imagery was calculated using Equation (1).

NDVIMVCi = Max(NDVIi1, NDVIi2) (1)

where, MVCi = Month maximum composite of ith month (e.g., “i” is June–May) and i1,
i2 = 16-day images in a month.

The images were first stacked as monthly maximum-value composites, which means
that the maximum NDVI values for every month were stacked for the study year 2014–
15, making an analysis-ready data (ARD) cube of 12 months, one for each month, thus
providing the NDVI variation in a crop year and overall coverage of the whole study area.
MODIS data has temporal resolution of one day. Since this study considered monthly
maximum images, there was less chance of missing pixel values; in an exceptional case,
linear regression interpolation was done to fill the gap.

The final ARD cube was set into a K-means unsupervised machine learning algorithm
with 100 clusters for every agroecological zone. The machine learning algorithm classifies
the ARD cube into 100 clusters with 100 class spectral signatures.

3.2. Spectral Matching Techniques for Class Identification and Labeling
3.2.1. Ideal Spectral Signatures (ISS)

Ideal spectral signatures for cropping systems were generated based on independent
training data drawn from extensive field survey information using time-series data. The
ground samples were grouped based on their distinctive characteristics and later classified
into classes of unique cropping systems. Figure 3 shows the ISS of various classes.
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The spectral signature curves explain cropping systems behavior over time. Regularly,
NDVI values are low during initial crop development, high through peak growth and low
again at harvesting stage, due to low to high reflectance value of near infrared region band
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during the crop development. In Figure 3a,b, double crop (rice-rice, rice-wheat systems,
etc.) classes exhibit two peaks in a single curve, signifying that the first peak is in the start
season and the second peak is in the later season. Figure 3c,d shows only a single crowning,
which means that there was only a single crop (e.g., groundnut-fallow, sorghum-fallow,
etc.) in a crop year. Depending on the NDVI values and ground data, we labeled classes as
a combination of crop intensity and crop names.

3.2.2. Class Spectra Signatures (CSS)

Class spectra signatures (Figure 4a) were generated for the 100 classes (clusters) from
unsupervised classification (K-means) of the 16-day NDVI temporal data. The signatures
were generated for every individual class by taking the NDVI mean of all classified pixels
of each cluster for every month.
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3.2.3. Matching CSS with ISS to Group Classes Using SMTs

The initial 100 CSS signatures were grouped using quantitative spectral matching
techniques (QSMTs), i.e., based on similar spectral signatures [53,54] (Figure 4a). The CSS
(Figure 4c) signatures are then matched with the ISS (Figure 4b) and a match is determined
by QSMTs with spectral correlation similarity (SCS) R-square value of 0.70 or higher are
grouped and labeled as a class (Figure 4d). Classes with good visual matches both in terms
of magnitude and shape of the spectral signatures are considered for class labeling.

The preliminary labeling of classes was validated, mainly by using field data, Google
Earth and other secondary sources. The process was repeated to classify and label all
100 classes, leading to a finalization of classes. Wherever there was limited ground data,
high-resolution data from Google Earth was used for reference. In the event of any ambigu-
ity in the labeling of classes—e.g., some classes may not correlate with spectral signatures—
such classes were reclassified using the process above [52,54].

3.3. Accuracy Assessment

Accuracy assessment was then carried out with 883 independent field points that
were not used in the classification process using an error matrix. The overall classification
accuracy of cropping systems and users’ and producers’ accuracies were calculated for
each cropping system.
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3.4. Sub-Pixel Areas

Highly precise area estimates from the coarse resolution imagery are only possible
through sub-pixel areas (SPAs) [13,52]. This study used MOD13Q1 in which every pixel
covers 250 m × 250 m, i.e., an area of about 6.25 ha. Full pixel areas (FPAs) are not an
accurate representation of actual areas, as they may include areas falling under other LULC
classes or mixed classes. On the other hand, sub-pixel areas (SPAs) involving actual area
calculation, include the percentage of crop area. Therefore, areas based on SPA provide a
near approximation of the cropped area.

Within the cropland class, there is a high possibility of discrepancies in the form of
other LULC results. However, some classes have >50% area cropped and the proportions
can vary widely. The percentage of various classes (water, cropland, etc.) is decided based
on observation of ground data, photographs from ground data collection and by visualizing
the field in Google Earth imagery. For example, in a rice-rice cropping system, a rice area
sub pixel area (SPA), i.e., actual area is calculated based on the crop land area fraction
(CAF), i.e., percent of the rice area in 250 m × 250 m area of random rice field observation
samples in that class. This process was carried out for each cropping system obtained. To
get the actual areas, the FPA was multiplied by the CAF [55]. Since major cropping systems
were mapped, the areas obtained are nearly equivalent to SPAs, with a few exceptions.
Each class is evaluated for its actual area as follows:

SPAs = FPAs × CAFs (2)

4. Results
4.1. Cropping Systems

We find there are 27 major cropping systems in South Asia (Figure 5 and Table 3).
Non-croplands are found in the extreme northern and western parts of South Asia and the
Himalayas in the north, and are ~55% of the land cover of South Asia. The non-croplands
consist mainly of deserts, mountains, glaciers and hills. The croplands are in the river
valleys and vegetated plains. Around 45 percent of South Asia comprises croplands.
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Table 3. The area covered under major cropping systems of South Asia.

Cropping Systems
Sub-Pixel Area (SPA) Fractions Full Pixel Area

FPA (‘000 ha)

Trees Shrubs Water Grasses Orchards Other
LULC Crop Area

01. Rice-wheat 1.9 6.2 3.9 0.3 0.5 3.9 83.4 23,884
02. Rice-rice 1.7 2.5 1.5 0.4 0.0 2.9 91.1 5608

03. Rice-pulses 2.1 2.2 1.7 0.1 0.0 5.6 88.4 5967
04. Pulses/rice-rice 0.7 2.1 2.4 0.0 0.7 4.0 90.0 8537
05. Soybean-wheat 2.0 3.1 0.2 0.0 0.0 3.1 91.7 7378
06. Pulses-wheat 1.6 2.3 0.0 0.0 0.3 4.7 91.2 5007
07. Maize-wheat 1.6 2.8 0.6 0.0 1.1 4.4 89.4 6877
08. Millet-wheat 1.4 0.8 0.3 0.0 0.5 3.9 93.3 13,469
09. Maize-wheat 1.6 0.8 0.9 0.0 1.9 3.9 91.0 3193

10. Maize-chickpea 1.1 8.3 0.8 0.0 0.6 3.0 86.2 6342
11. Millet-mustard 1.7 0.6 0.0 0.0 0.4 3.8 93.4 4259
12. Pulses-maize 3.0 9.3 1.7 0.0 5.0 2.3 78.7 2740

13. Sugarcane 1.6 0.0 0.1 0.0 0.3 2.4 95.6 5509
14. Groundnut-pulses 2.1 2.7 0.9 0.0 0.0 4.4 89.9 4699
15. Sorghum-fallow 3.0 5.8 0.7 0.0 0.8 4.7 85.0 1667

16. Rice-fallow 4.8 1.6 0.4 0.0 0.0 1.8 91.4 13,414
17. Pigeon pea-fallow 3.9 10.2 0.4 0.2 4.5 11.7 69.2 10,035
18. Groundnut/cotton 1.4 1.0 0.4 0.2 0.6 2.4 94.0 4241

19. Cotton-fallow 1.9 3.9 1.3 0.5 0.0 5.0 87.3 19,045
20. Millet-fallow 2.9 2.4 0.1 0.0 0.0 2.9 91.7 4284

21. Sorghum-fallow 2.6 5.7 1.3 0.4 0.0 7.1 82.9 4991
22. Pulses-fallows 1.8 13.4 1.1 0.1 2.0 7.2 74.5 2538

23. Fallow-chickpea 0.7 22.3 0.1 0.0 4.0 1.7 71.3 1999
24. Groundnut-fallow 1.2 1.9 1.0 0.0 4.0 2.3 89.6 6251

25. Mixed crops 4.0 10.8 3.4 0.5 0.0 1.3 80.0 31,596
26. Other LULC 0.5 52.4 0.5 0.0 0.0 31.0 15.6 214,625

27. Rice-fallows/mixed crops 0.9 22.9 2.7 0.1 3.8 9.4 60.2 24,360

There are 14 double cropped cropping systems and 11 single crops cropping systems,
1 mixed crop cropping system, and 1 other land use class, i.e., non-croplands in South
Asia. Each cropping system has unique crop or crop-combinations. For example, there are
several cropping systems with rice as one of the crops such as rice-rice double crop (i.e.,
kharif season rice followed by rabi season rice), or rice-fallow system in which there is only
a single rice crop (i.e., kharif season rice followed by fallow winter season rice). Some other
major classes were rice-wheat, rice-pulses, sorghum-fallow, millet-fallow and mixed crops.

4.2. Spatial Distribution of Each Cropping System

There is, in general, a dominating major crop of the rainy (kharif) season such as rice
together with a secondary crop in the rabi and/or zaid summer season (not common).
Below, we describe our findings of fifteen major cropping systems of South Asia in greater
details (Figure 6):

Rice-wheat: This is the dominant cropping system in the South Asia covering nearly
19.9 Mha stretching from Pakistan (along the Indus River basin) across into northern India
(Indo-Gangetic plains) covering the states of Punjab in the west to Bihar in the east. In
this system, rice crop is planted at the start of the rainy season (kharif) in June (analysis
of spectral signature—Figure 3) and harvested at the end of summer monsoon season
starting in August and lasting through September. As harvest progresses, NDVI reduces
more gradually till it reaches a minimum and then around November wheat crop starts
to emerge starting first with Bihar and ending last with those in Pakistan. Finally, wheat
harvests start in March–April and they proceed much faster than rice harvests.

Rice-rice: Rice followed by a second rice crop can be observed in eastern India down
to the south of India, Pakistan and in entire Bangladesh covering nearly 5.1 Mha of area.
This cropping system is prevalent in irrigated lands and coastal areas. Unfortunately, the
practice of mono-cropping in these regions has led to soil degradation and a deficiency in
essential micronutrients. The first rice crop is in the kharif season, and sown during the
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monsoon months, typically between June and July, and is ready for harvest from September
to October. After harvesting the first rice crop, the same fields are used for the second rice
crop, which is planted during the dry winter months of the rabi season, usually between
November and December. The second rice crop harvest starts from February to March as
seen in their spectral signature.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 21 
 

 

rice crop, which is planted during the dry winter months of the rabi season, usually be-
tween November and December. The second rice crop harvest starts from February to 
March as seen in their spectral signature. 

Rice-pulses: Rice cultivation in rainy season and followed by pulses cultivation is ob-
served in east to south India covering about 5.2 Mha of area. This cropping system is prac-
ticed in parts of Chhattisgarh, Odisha, Tamil Nadu and Bihar states in India. It has led to 
high yields of both rice and pulses. However, the challenge lies in the irregular availability 
of irrigation in these regions. Rice cultivation takes place during the kharif season, where 
the sowing of rice seeds begins from June to July and harvesting between the months of 
September and October. Our spectral signature shows that subsequently, pulses are sown 
between November and December in this cropping system regions with the matured 
pulses harvested between February and March. Nearly 0.3 Mha is observed in Nepal and 
Bangladesh and no significant area of this cropping system is present in Pakistan, Bhutan 
and Sri Lanka. 

 
Figure 6. Maps of spatial distribution of individual major cropping systems. 

Rice-pulses-rice: This is the cropping system of three crops in a single crop year in 
which rice is followed by pulses and then by another rice crop. This cropping system is 
observed mostly in Bangladesh, but also in a few parts of Sri Lanka and India where irri-
gation coverage is excellent. The first rice crop is sown between June and July and is typ-
ically harvested from September to October. Subsequently, pulses are sown between No-
vember and December and then harvested from February to March. After the pulse har-
vest, preparations are made for the second rice crop to be sown in April to May, followed 
by the harvesting of the second rice crop from June to July. It is this latter zaid season crop 
that is irrigated. 

Soybean-wheat: The cultivation of soybean followed by wheat is seen majorly in 
Madhya Pradesh state of India covering nearly 6.6 Mha of area. This system is also found 
in Rajasthan, and certain regions of southern Maharashtra. Soybean cultivation in India 
primarily occurs during the kharif season, with our spectral signature showing the sowing 
of soybean seeds between June and July and harvest taking place from September to Oc-
tober. In the subsequent rabi season, after the soybean harvest, typically occurring in Oc-

Figure 6. Maps of spatial distribution of individual major cropping systems.

Rice-pulses: Rice cultivation in rainy season and followed by pulses cultivation is ob-
served in east to south India covering about 5.2 Mha of area. This cropping system is practiced
in parts of Chhattisgarh, Odisha, Tamil Nadu and Bihar states in India. It has led to high yields
of both rice and pulses. However, the challenge lies in the irregular availability of irrigation
in these regions. Rice cultivation takes place during the kharif season, where the sowing of
rice seeds begins from June to July and harvesting between the months of September and
October. Our spectral signature shows that subsequently, pulses are sown between November
and December in this cropping system regions with the matured pulses harvested between
February and March. Nearly 0.3 Mha is observed in Nepal and Bangladesh and no significant
area of this cropping system is present in Pakistan, Bhutan and Sri Lanka.

Rice-pulses-rice: This is the cropping system of three crops in a single crop year in which
rice is followed by pulses and then by another rice crop. This cropping system is observed
mostly in Bangladesh, but also in a few parts of Sri Lanka and India where irrigation coverage
is excellent. The first rice crop is sown between June and July and is typically harvested from
September to October. Subsequently, pulses are sown between November and December and
then harvested from February to March. After the pulse harvest, preparations are made for
the second rice crop to be sown in April to May, followed by the harvesting of the second rice
crop from June to July. It is this latter zaid season crop that is irrigated.

Soybean-wheat: The cultivation of soybean followed by wheat is seen majorly in
Madhya Pradesh state of India covering nearly 6.6 Mha of area. This system is also found
in Rajasthan, and certain regions of southern Maharashtra. Soybean cultivation in India
primarily occurs during the kharif season, with our spectral signature showing the sowing
of soybean seeds between June and July and harvest taking place from September to
October. In the subsequent rabi season, after the soybean harvest, typically occurring
in October to November, fields are prepared for wheat cultivation. Wheat is sown from
November to December, and the mature wheat crop is harvested between March and April.
Approximately 0.1 Mha of this cropping system is observed in Pakistan, whereas there is
no significant area in other countries.
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Pulses–wheat: Unlike the rice-pulse-rice system, this system is concentrated in north-
ern India and into neighboring Pakistan, spanning an area of approximately 4.5 million
hectares (Table 1). It is prevalent in several states, especially northern Indian regions,
including Uttar Pradesh, Madhya Pradesh, Rajasthan, Haryana and Punjab states. The
usual pattern involves planting kharif pulses like chickpeas, pigeon peas and lentils during
the monsoon season, followed by the rabi wheat crop. Pulses cultivation follows a specific
timeline, with pulses being sown from June to August and harvested between October and
November. Wheat is sown from November to December, and the mature wheat crop is
ready for harvesting between March and April.

Maize-wheat: Maize followed by wheat cultivation is observed in western parts of
India and Pakistan, covering nearly 6.1 Mha of area. In this cropping system, maize is the
primary crop during the kharif season, while wheat takes center stage in the rabi season.
This system is widely practiced in states like Uttar Pradesh, Rajasthan, Madhya Pradesh,
Bihar and Punjab. A significant portion of the maize-wheat system is rainfed, which means
it heavily relies on rainfall, posing a major challenge due to its unpredictability. In the
kharif season of India, maize sowing is carried out between June and July, and the maize
harvest occurs during September to October. Subsequently, in the rabi season that follows,
wheat is sown between November and December, and the mature wheat crop is usually
ready for harvesting between March and April. Approximately 0.1 Mha of this cropping
system is observed in Pakistan, whereas there is no significant area in other countries.

Millet-wheat: The cultivation of millet followed by wheat is observed in northern parts of
India and also in Pakistan, covering 12.5 Mha of area. These are significant cropping systems in
the western part of India, particularly in the semi-arid regions of Gujarat, Rajasthan and Haryana.
Wheat is cultivated as a rabi crop, while Millet is grown during the kharif season. Millet
cultivation is carried out between June and July, with millet ready for harvesting in September to
October. Subsequently, in the following rabi season, wheat is sown from November to December,
and the mature wheat crop is typically harvested between March and April.

Soybean-chickpea: This type of cropping system is observed in the central parts of
India covering nearly 5.4 Mha of area, especially in the areas of Madhya Pradesh and some
areas of Uttar Pradesh states. During the kharif season in India, soybean sowing starts
between June and July, with the soybean harvest typically taking place from September to
October. In the subsequent rabi season, chickpeas are sown from November to December
and are ready for harvesting between February and March.

Sesame-mustard: The cultivation of sesame followed by mustard is observed in Uttar
Pradesh state of India covering nearly 3.9 Mha of area. The sesame-mustard cropping system
is adopted in various states across India, including Rajasthan, Gujarat, Madhya Pradesh, Uttar
Pradesh, Bihar and portions of Haryana and Punjab. In the kharif season, sesame cultivation
starts with sowing between June and July, and the sesame crop is typically harvested from
September to October. In the subsequent rabi season, Mustard is sown from November to
December and is usually ready for harvesting between February and March.

Sugarcane: Sugarcane is a whole-year crop, i.e., cultivated throughout the crop year
mostly in Uttar Pradesh and Maharashtra states. Sugarcane is grown in several states
across India, with Uttar Pradesh, Maharashtra, Karnataka, Tamil Nadu, Andhra Pradesh
and Bihar being the major sugarcane-producing states. Sugarcane is usually planted in the
pre-monsoon or early monsoon season. In northern India, it is planted from March to June,
while in southern India, planting can even extend into July.

Rice-fallows: Rice fallows are predominantly found in both rainfed and irrigated areas of
the south Asia. The significant rainfed rice-fallows area found in India of about 11.4 Mha and
mixed irrigated rice-fallows of nearly 13.3 Mha, whereas Bangladesh and Pakistan have nearly
0.5 Mha.

Pigeon pea-fallows: The pigeon pea-fallow cropping system is mainly practiced in the
semi-arid and arid regions of India, including areas in Rajasthan, Gujarat, Maharashtra,
Karnataka and Madhya Pradesh, covering about 6.7 Mha. Generally, depending upon the
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rainfall, the sowing of pigeon pea will be done and cultivation period ranges from 6 months
to more than one year in some areas.

Cotton-fallow: Cotton-fallows areas are also significantly found in India, which is
about 16.2 Mha of area. This cropping systems is predominantly in states of Karnataka, Ma-
harashtra and some parts of Gujarat. Cotton sowing happens in June-July, and harvesting
takes place from October to January.

The remote sensing-based data on full-pixel crop areas of major cropping systems
(Table 3) was further refined as the actual area statistics which were calculated using SPA
by taking random samples of each class and identified the percentage of crop found in
respective class pixels. The SPA was calculated given the possibility of non-crop pixels in
crop pixels due to coarser resolution.

Sub-pixel areas in each cropping system were calculated. It was observed that on an
average, 10 to 20 percent of each class contains other LULC. We calculated the sub-pixel
areas for each class to get the actual area by eliminating 10–20 percent accordingly.

4.3. Country-Wise Cropping Systems

Country-wise cropping systems and their respective sub-pixel areas shows the dom-
inant cropping sequence followed in each country (Table 4). In Pakistan, the dominant
cropping systems are rice-wheat (4.3 M ha) followed by millet-wheat (3.4 M ha) and rice-rice
(1.4 M ha). In Nepal, the major cropping systems are rice-wheat (0.4 M ha) and rice-pulses
(0.36 M ha). In Bhutan, the cropping systems are rice-fallow (0.012 M ha) and pulses-
rice-rice (0.007 M ha). In Bangladesh, the dominant cropping systems are pulses-rice-rice
(3.8 M ha) followed by rice-rice (1.1 M ha), whereas in Sri Lanka, the dominant cropping
system is pulses-rice-rice (0.49 M ha). In India, there are highly diversified cropping sys-
tems such as rice-wheat (15.1 M ha), rice-fallow (11.4 M ha), cotton-fallow (16.2 M ha) and
rice-fallow/mixed crops (13.3 M ha), followed by a significant shared area with different
cropping systems. The dominance of rice-fallow cropping systems provides opportunities
for intensification with short-duration pulse crops.

Table 4. Country-wise net crop area under different cropping systems.

Cropping Systems
Net Area (‘000 ha)

Pakistan Nepal Bhutan Bangladesh Sri Lanka India

01. Rice-wheat 4328 420 0 2 0 15,170
02. Rice-rice 1412 4 0 1126 3 2564

03. Rice-pulses 50 365 1 399 4 4456
04. Pulses-rice-rice 30 39 7 3816 497 3293
05. Soybean-wheat 145 0 0 0 0 6620
06. Pulses-wheat 610 1 0 0 0 3955
07. Maize-wheat 826 0 0 0 0 5324
08. Millet-wheat 3406 7 0 0 53 9094
09. Potato-wheat 0 100 0 0 0 2806

10. Soybean-chickpea 123 1 0 0 0 5341
11. Sesamum-mustard 112 10 0 0 2 3854

12. Pulses-maize 0 0 0 0 0 2156
13. Sugarcane 0 76 0 0 0 5189

14. Groundnut-pulses 0 19 0 0 0 4204
15. Sorghum-fallow 0 0 0 0 0 1417

16. Rice-fallow 95 125 2 633 1 11,403
17. Pigeonpea-fallow 181 0 0 0 4 6758

18. Groundnut/cotton 13 0 0 1 1 3971
19. Cotton-fallow 393 5 1 1 2 16,231
20. Millet-fallow 740 6 1 2 6 3175

21. Sorghum-fallow 472 2 1 0 0 3661
22. Pulses-fallows 264 0 0 0 1 1625

23. Fallow-chickpea 39 0 0 0 7 1379
24. Groundnut-fallow 0 0 0 0 0 5601

25. Mixed crops 1619 403 28 864 739 21,623
26. Other LULC 9605 1940 611 843 681 19,800

27. Rice-fallows/mixed crops 406 258 12 407 239 13,349

Net cropped area 24,871 3781 664 8096 2240 184,020



Remote Sens. 2024, 16, 2733 13 of 18

4.4. Comparison of Remote Sensing-Derived Crop Area Statistics to Survey Based National
Statistics

Data on area by cropping system was extracted from a remote sensing-derived crop-
ping systems map and compared with National Agriculture Statistics (NAS) for the year
2014–15 obtained from the Department of Agriculture. The analysis reveals significant dis-
crepancies between the reported areas in NAS and those derived from the remote sensing
map for various crop combinations. Crop combinations like pigeon pea-fallow (77.56%),
maize-chickpea (54.95%) and pulses-fallow (67.82%) show substantial positive differences.
Conversely, soybean-wheat (−13.02%), millets-fallow (−8.91%) and millets-wheat (−3.44%)
exhibit negative differences. Some combinations, such as rice-fallow (−0.99%) and sugar-
cane (6.46%), show minimal differences, indicating a varying level of alignment between
reporting and mapping methods (Figure 7).

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 21 
 

 

14. Groundnut-pulses 0 19 0 0 0 4204 
15. Sorghum-fallow 0 0 0 0 0 1417 

16. Rice-fallow 95 125 2 633 1 11,403 
17. Pigeonpea-fallow 181 0 0 0 4 6758 
18. Groundnut/cotton 13 0 0 1 1 3971 

19. Cotton-fallow 393 5 1 1 2 16,231 
20. Millet-fallow 740 6 1 2 6 3175 

21. Sorghum-fallow 472 2 1 0 0 3661 
22. Pulses-fallows 264 0 0 0 1 1625 

23. Fallow-chickpea 39 0 0 0 7 1379 
24. Groundnut-fallow 0 0 0 0 0 5601 

25. Mixed crops 1619 403 28 864 739 21,623 
26. Other LULC 9605 1940 611 843 681 19,800 

27. Rice-fallows/mixed crops 406 258 12 407 239 13,349 
Net cropped area 24,871 3781 664 8096 2240 184,020 

4.4. Comparison of Remote Sensing-Derived Crop Area Statistics to Survey Based National Sta-
tistics 

Data on area by cropping system was extracted from a remote sensing-derived crop-
ping systems map and compared with National Agriculture Statistics (NAS) for the year 
2014–15 obtained from the Department of Agriculture. The analysis reveals significant 
discrepancies between the reported areas in NAS and those derived from the remote sens-
ing map for various crop combinations. Crop combinations like pigeon pea-fallow 
(77.56%), maize-chickpea (54.95%) and pulses-fallow (67.82%) show substantial positive 
differences. Conversely, soybean-wheat (−13.02%), millets-fallow (−8.91%) and millets-
wheat (−3.44%) exhibit negative differences. Some combinations, such as rice-fallow 
(−0.99%) and sugarcane (6.46%), show minimal differences, indicating a varying level of 
alignment between reporting and mapping methods (Figure 7). 

 
Figure 7. Comparison of remote sensing-derived crop areas with that from national statistics. 
Figure 7. Comparison of remote sensing-derived crop areas with that from national statistics.

The accuracy assessment was calculated for identified cropping systems with 883 in-
dependent ground points. Overall classification accuracy was observed to be 76.59 percent,
with kappa coefficient of 0.75. User and producer accuracies of major cropping systems
ranged from 70 per cent to 90 percent, whereas mixed cropping system showed less accu-
racy ranging from 50 percent to 70 percent.

The major rice-wheat cropping system showed a user accuracy of 89 percent and
producer accuracy of 72 percent, and pulses-wheat systems revealed a user accuracy of
92 percent and producer accuracy of 100 percent. Likewise, each cropping system was
validated using validation points, their individual class accuracies and kappa coefficient
determined (Table 5). Due to domination of small-holding farms and mixed crops in major
areas of south Asia, the accuracy of some of the minor cropping systems was lower. The
mapping accuracy of such cropping systems can be increased by utilizing high resolution
satellite data along with more extensive ground data collection to build better models.



Remote Sens. 2024, 16, 2733 14 of 18

Table 5. Accuracy assessment of the croplands product by error matrix method.

Classified Data Row
Total

Reference
Total

Classified
Total

Number
Correct

Producer
Accuracy (%)

User
Accuracy

(%)
Kappa

01. Rice-wheat 46 46 37 33 72 89 0.89
02. Rice-rice 88 88 57 50 57 88 0.86

03. Rice-pulses 51 51 52 35 69 67 0.65
04. Pulses/rice-rice 107 107 106 95 89 90 0.88
05. Soybean-wheat 33 33 35 29 88 83 0.82
06. Pulses-wheat 22 22 24 22 100 92 0.91
07. Maize-wheat 24 24 24 22 92 92 0.91
08. Millet-wheat 38 38 39 36 95 92 0.92
09. Potato-wheat 13 13 14 11 85 79 0.75

10. Maize-chickpea 14 14 15 13 93 87 0.86
11. Millet-mustard 20 20 11 11 55 100 1.00
12. Pulses-maize 10 10 12 10 100 83 0.67

13. Sugarcane 17 17 12 11 65 92 0.92
14. Groundnut-pulses 15 15 20 12 80 60 0.59
15. Sorghum-fallow 18 18 15 14 78 93 0.93

16. Rice-fallow 58 58 41 26 45 63% 0.61
17. Pigeonpea-fallow 27 27 38 22 81 58 0.57

18. Groundnut/cotton 15 15 15 8 53 53 0.53
19. Cotton-fallow 43 43 48 33 77 69 0.67
20. Millet-fallow 13 13 13 13 100 100 1.00

21. Sorghum-fallow 16 16 14 11 69 79 0.78
22. Pulses-fallows 11 11 10 10 91 100 1.00

23. Fallow-chickpea 16 16 17 16 100 94 0.94
24. Groundnut-fallow 14 14 18 12 86 67 0.66

25. Mixed crops 55 55 50 41 75 82 0.81
26. Other LULC 61 61 91 52 85 57 0.54

27. Rice-fallow/mixed
crops 38 38 55 38 100 69 0.68

Total 883 883 883 686
Overall

accuracy =
76.59%;

Kappa
= 0.7545

5. Discussion

While the classification of irrigated, homogenous crops such as rice and wheat were
relatively easy throughout South Asia, identification of rainfed crops like groundnut
and pulses was difficult. Further, cropping patterns in most regions of south Asia vary
widely, with a high possibility of mixed crops. In India and Bangladesh, rice is the major
irrigated crop and cultivated in large homogenous extent, whereas in Pakistan, wheat is
the major irrigated crop, comprising more than 25 percent of all crops. Rice and wheat
cropping system areas could be identified and classified more correctly. The identification
of other crops mainly depends upon extensive ground data, their ideal signatures and crop
phenology. Western South Asia comprising Afghanistan and Pakistan has large tracts of
uncultivated area, whereas eastern South Asia, i.e., northeastern India, contains hill areas
and the north part of south Asia contains ice glaciers. Crop identification in hilly regions
was affected by shadows and different cropping patterns. Nearly 26 percent of South Asian
cropland consists of double crops (i.e., rainy and winter season crops). Double crops in
irrigated areas were identified using spectral curves and ground data. Only 45 percent of
the total area in south Asia was under cultivation, with other LULC comprising mainly
deserts, glaciers and hilly areas.

Knowledge of regional cropping systems is essential to maximize land productivity
and improve crop production towards the objective of sustainable agriculture. Of late,
high-intensity cropping practices and overexploitation of resources have resulted in un-
sustainable agriculture. The 27 cropping systems identified in this study cover all major
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and dominant agricultural practices in the region. These novel information products can
serve as baseline data for developing sustainable agriculture solutions. When integrated
with thematic layers such as weather, soil, groundwater availability and land degradation
in GIS environments, they can unlock opportunities to develop action-oriented solutions
to improve the performance of agriculture systems. It is also possible to produce maps
with finer granularity using Sentinel data of 10 m resolution once more ground level data
are collected. Sustainable agriculture and food system solutions need such innovative
information products, which are potentially the low-hanging benefits from modern remote
sensing technology.

Policy Implications: Cropping system maps and statistics form basic inputs for formu-
lating sustainable agriculture plans to optimize land productivity. The major challenges of
agriculture in South Asia are food security, income security and climate resilience, which
can be addressed only through systematic efforts to optimize crop patterns and resource
consumption in producing crops. The maps of cropping systems can now be superimposed
on resources and climatology data layers to offer deeper insights to decision-makers on the
efficiency of the current agricultural systems and to prioritize critical areas for immediate
interventions. The design and implementation of such interventions needs a strong base
of data and information on cropping systems and related analytics that our maps will
now provide. These interventions will involve both management and structural measures
at the grass root level, and may involve certain incentives and investments, but cannot
proceed without understanding the entire cropping system of the local area. Specifically,
the government of India’s flagship projects on water use efficiency in agriculture, the Na-
tional Food Security Mission (NFSM) and Agroforestry development mission will become
more effective when cropping systems information is integrated within their design and
implementation plans. The cropping system determines multiple ecosystem services, pest
predation and water quality. For example, the development of agroforestry plans in a region
should take into account the existing cropping system. Carbon sequestration and carbon
emission potentials of croplands are directly related to the cropping systems followed
in a region. Therefore, any effort towards achieving carbon neutral agroecosystems will
fundamentally get guided by cropping system practices.

Policymakers across South Asia will find our cropping system maps to be quite useful,
since they provide a thorough understanding of the geographical distribution of various
crops within an area. These maps will help with all governmental planning of resource
allocation, making investments in pest management, irrigation and crop-specific subsidies
more effective. Furthermore, they are crucial in guaranteeing food security since they
enable policymakers to evaluate the yield of vital food crops and create plans for agricul-
tural output diversification. By highlighting regions with significant production potential
for particular crops, cropping sequence type maps will also aid in market growth and
strengthen local and regional economies. They also aid in the identification of vulnerable
regions that require protection, the evaluation of the effects of farming on natural resources
and the development of sustainable agricultural policy. All things considered, these maps
are invaluable resources that support the development of evidence-based policies and
well-informed decisions about a variety of aspects of land use and agriculture.

6. Conclusions

Knowledge of regional cropping systems is essential to maximize land productiv-
ity and improve crop production towards the objective of sustainable agriculture. Of
late, high-intensity cropping practices and overexploitation of resources have resulted in
unsustainable agriculture.

This study has developed a new geospatial application in the agriculture sector to
address crop planning and sustainable agriculture practices.

Remote sensing imagery from MODIS 250 m was used to generate maps and statistics
on different cropping systems practiced in South Asia. The 27 cropping systems identified
in this study cover all major and dominant agricultural practices in the region. These novel
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information products can serve as baseline data for developing sustainable agriculture solu-
tions. When integrated with thematic layers such as weather, soil, groundwater availability
and land degradation in GIS environments, they can unlock numerous opportunities to
develop action-oriented solutions to improve the performance of agriculture systems. It is
also possible to produce maps with finer granularity using Sentinel data of 10 m resolu-
tion. Sustainable agriculture and food system solutions need such innovative information
products, which are low-hanging benefits from modern remote sensing technology.
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