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Abstract: Although the maximum carboxylation rate (Vcmax) is an important parameter to calculate
the photosynthesis rate for the terrestrial biosphere models (TBMs), current models could not satisfac-
torily estimate the Vcmax of a crop because the Vcmax is always changing during crop growth period.
In this study, the Breathing Earth System Simulator (BESS) and light response curve (LRC) were
combined to invert the time-continuous Vm25 (Vcmax normalized to 25 ◦C) using eddy covariance
measurements and remote sensing data in five maize sites. Based on the inversion results, we propose
a Two-stage linear model using leaf age to estimate crop Vm25. The leaf age can be readily calculated
from the date of emergence, which is usually recorded or can be readily calculated from the leaf
area index (LAI), which can be readily obtained from high spatiotemporal resolution remote sensing
images. The Vm25 used to calibrate and validate our model was inversely solved by combining the
BESS and LRC and using eddy covariance measurements and remote sensing data in five maize
sites. Our Two-stage linear model (R2 = 0.71–0.88, RMSE = 5.40–7.54 µmol m−2 s−1) performed better
than the original BESS (R2 = 0.01–0.67, RMSE = 13.25–18.93 µmol m−2 s−1) at capturing the seasonal
variation in the Vm25 of all of the five maize sites. Our Two-stage linear model can also significantly
improve the accuracy of maize gross primary productivity (GPP) at all of the five sites. The GPP
estimated using our Two-stage linear model (underestimated by 0.85% on average) is significantly
better than that estimated by the original BESS model (underestimated by 12.60% on average). Over-
all, our main contributions are as follows: (1) by using the BESS model instead of the BEPS model
coupled with the LRC, the inversion of Vm25 took into account the photosynthesis process of C4
plants; (2) the maximum value of Vm25 (i.e., PeakVm25) during the growth and development of maize
was calibrated; and (3) by using leaf age as a predictor of Vm25, we proposed a Two-stage linear
model to calculate Vm25, which improved the estimation accuracy of GPP.

Keywords: maximum carboxylation rate (Vcmax); gross primary productivity (GPP); breathing earth
system simulator (BESS); light response curve (LRC); leaf age

1. Introduction

Gross primary productivity (GPP) refers to the carbon dioxide fixed by plants through
photosynthesis, constituting the largest carbon exchange between terrestrial ecosystems
and the atmosphere [1]. GPP plays a crucial role in regulating the terrestrial carbon
budget, thus exerting a significant impact on climate change [2–5]. Croplands exhibit
high primary productivity during the growing season, underscoring the importance of
accurately characterizing crop physiology throughout the growing seasons to predict
carbon exchange in agricultural systems [6,7]. Process-based models, such as terrestrial
biosphere models (TBMs), are widely employed for estimating GPP at both regional and
global scales [8–10]. These models typically incorporate photosynthesis modules based on
photosynthesis models [11,12]. Central to these photosynthesis models is the parameter
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known as the maximum carboxylation rate (Vcmax), which characterizes the potential
photosynthetic capacity of leaves [11,13]. Consequently, the accurate estimation of the
Vcmax is paramount for enhancing the accuracy and performance of TBMs [14].

Vcmax fluctuates abruptly during the crop growth period; thus, taking the variation in
Vcmax into account is crucial for accurately calculating GPP in models [15–17]. However,
Vcmax cannot be directly measured, and it must be inferred from leaf gas exchange mea-
surement, which is time-consuming, resulting in limited data availability across a wide
range of conditions [18]. In most TBMs, Vcmax is assumed to be a fixed value (normalized to
25 ◦C, Vm25) based on plant functional type, disregarding temporal and spatial variations in
Vm25 [7,19–22]. This assumption inevitably introduces significant bias in simulated photo-
synthesis, particularly in regions characterized by substantial seasonal fluctuations [15,23].
To minimize the bias, temporal variations in Vm25 are modeled by establishing relationships
between Vm25 and more readily available plant traits [18,24]. Some studies have inverted
Vm25 using eddy covariance measurements and remote sensing data [25–30]. Yuan used the
ensemble Kalman filter (EnKF) to obtain the temporal variation in the Vm25 of maize [17].
Zheng and Xie inverted the time series of Vm25 by coupling Boreal Ecosystem Productivity
Simulator (BEPS) and light response curve (LRC) based on eddy covariance observations
in flux sites [31,32]. The results indicated that this approach can effectively optimize Vm25,
but it has only been applied to C3 plants, and its applicability to C4 plants has not been
studied yet [31–33].

Despite technological advances in deriving Vm25, modeling Vm25 through plant traits
remains challenging. Advances in remote sensing and hyperspectral imaging technology
have proven useful for estimating photosynthetic capacity across large spatial and temporal
scales [18,34–38]. The strong correlation between the leaf nitrogen content (NLeaf) and Vm25
has garnered significant attention [39–41]. However, obtaining accurate NLeaf through
remote sensing data remains a challenge, which impedes the use of leaf nitrogen to parame-
terize Vm25 [8,24]. Chlorophyll plays a crucial role in photosynthesis by capturing photons
and providing the biochemical energy necessary for carbon fixation reactions [42]. Since
NLeaf includes both photosynthetic and non-photosynthetic components, some researchers
argue that leaf chlorophyll content (Chll) is a more accurate indicator of Vm25 than NLeaf
content [24,43]. Houborg summarized the semi-empirical relationship between Chll and
Vm25 [19]. By parameterizing this relationship, it has been successfully applied to a variety
of crops [18,44,45]. The practical limitation of using Chll to parameterize Vm25 at large spa-
tial scales has been the lack of accurate remote sensing Chll products at regional or global
scales. The Sentinel-2A satellite, launched in 2015, and the Sentinel-2B satellite, launched in
2017, carry multispectral imagers (MSIs) with red-edge bands sensitive to Chll and offer
high temporal and spatial resolution. However, estimating Chll relies on complex models
that typically require ground validation data for calibration [24,46]. The availability of the
satellite observations of sun-induced fluorescence (SIF) offers a new perspective for moni-
toring crop Vm25 [19,20]. Chlorophyll fluorescence is widely regarded as a direct proxy for
electron transport and, consequently, photosynthesis [47,48]. Studies have demonstrated a
strong connection between SIF and Vm25, indicating that SIF could be helpful for improving
the accuracy of Vm25 estimations at large spatial scales [42,49,50]. However, although SIF is
effective and remote sensing products with 500–5000 m resolution are available, such as
CSIF and GOSIF, the resolution of current SIF products is still relatively low compared to
other vegetation parameter products, which can achieve a resolution of 30 m or higher [51].
The vegetation canopy structure directly influences various physical and biological pro-
cesses, such as radiative transfer and photosynthesis [52]. Thus, in recent years, vegetation
indices (VIs) have been employed to empirically estimate Vm25 [53]. Muraoka, et al. [54]
divided the growth period into two stages and established distinct relationships between
VIs and canopy-level Vm25 for each stage. However, Zhou highlighted that the relationship
between traditional VIs and Vm25 was not universal across different sites [55]. LAI is a VI
commonly used to characterize seasonal changes in Vm25 [56]. However, it is commonly
observed that photosynthesis peaks earlier than the canopy structure indices [57].
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Leaf age has been found to be well correlated with Vm25 and substantial evidence indi-
cates biochemical differences between young and old leaves [58,59]. Recent studies have
demonstrated that leaf age plays a crucial role in determining photosynthetic rates [60–62],
with Vm25 exhibiting notable changes with the aging of leaves [8,16,63–65]. Generally, it
is observed that the Vm25 of newly mature leaves tends to be higher compared to that of
younger and older leaves [66]. As leaves undergo senescence, Rubisco gradually becomes
inactivated, the electron transport rate decreases, and enzymes are deactivated. Conse-
quently, both the rates of photosynthesis and respiration decline with leaf aging [58,59,67].
It is worth noting that most of the research on the relationship between Vm25 and leaf age
has focused on trees [24,66], and there has been limited investigation into this relationship
in crops [58,59,68]. Miner and Bauerle analyzed the seasonal changes in Vm25 for maize
and sunflower through gas exchange experiments [6]. The study revealed that the Vm25 of
maize decreases in a nearly linear trend from the mid-vegetative stage to the late senescence
stage. For sunflowers, Vm25 remained relatively stable from the late vegetative stage to
the early reproductive stage, then significantly decreased in the late reproductive stage.
Li found that rice Vm25 exhibited a trend similar to leaf age under different experimental
conditions and emphasized that a general formula for Vm25 changes with leaf age has not
yet been established [65].

Despite the well-known, strong correlation between leaf age and Vm25 in crops, to
our knowledge, this relationship has not yet been quantified. Therefore, the objectives of
our study are (1) to derive time-continuous Vm25 for maize at five sites by considering
the photosynthesis process of C4 plants; (2) to calibrate the maximum value of Vm25 (i.e.,
PeakVm25) during the growing season of maize based on the inverted Vm25; and (3) to
propose a Two-stage linear model that leverages leaf age to improve the accuracy of Vm25
and GPP estimation.

2. Data Availability
2.1. Eddy Covariance Data

Hourly or half-hourly GPP data obtained by eddy covariance (EC) observations were
used to estimate Vm25 in five flux sites located in maize fields in United States and in
China (Table 1). The hourly GPP data for the US-Ne1, US-Ne2, and US-Ne3 were obtained
from the FLUXNET2015 database [69]. The US-Ne1 site was always planted with maize,
whereas the US-Ne2 and US-Ne3 sites were rotating, planted with maize and soybeans. The
half-hourly GPP data for the Daman were acquired from the National Tibetan Plateau Data
Center [70,71]. We obtained the half-hourly GPP data for the Fenzidi ourselves, from our
own flux site in the Hetao Irrigation District, Inner Mongolia Autonomous Region, China.
The air temperature (T), relative humidity (RH), wind speed (WS), atmosphere pressure
(Pa), carbon dioxide concentration (Ca) and the incoming solar radiation (SR) were also
provided by the five flux sites.

Table 1. Summary of flux sites information.

Site Latitude Longitude Crop Type Year LAI

US-Ne1 41.165◦N 96.477◦W Maize 2001–2012 —
US-Ne2 41.165◦N 96.470◦W Maize–Soybean 2001–2012 Literature *
US-Ne3 41.180◦N 96.440◦W Maize–Soybean 2001–2012 Literature *
Daman 38.853◦N 100.376◦E Maize 2018, 2019, 2021 measured
Fenzidi 41.153◦N 107.653◦E Maize 2017, 2018, 2020 measured

* the LAI data for the site were partially obtained from the literature [72].

2.2. Remote Sensing Data

The moderate-resolution imaging spectroradiometer (MODIS) surface reflectance data
were obtained from MCD43A4.061. The reflectance values across all bands served as the
input for the BESS model and for the calculation of LAI. It is worth noting that MODIS LAI
tends to significantly underestimate crop LAI [73]. Measured LAI values were provided
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for the Fenzidi and Daman sites, while LAI values for certain years at US-Ne2 and US-Ne3
were extracted from the literature [72]. To estimate LAI values for other years, a machine
learning model (ExtraTreesRegressor) was employed, demonstrating strong simulation
performance (R2 = 0.94) (Figure A1).

The clumping index (Ω) is another vegetation canopy structure index, quantifying the
degree of deviation in leaf spatial distribution from a random pattern in BESS [74,75]. The
Ω values were estimated using the MODIS BRDF product at a resolution of 500 m [76,77].
Ω values range from 0 to 1, where 1 indicates a randomly distributed canopy. Smaller Ω
values indicate a more clustered canopy structure.

3. Method

Our approach is depicted in Figure 1. Firstly, the BESS model and LRC were combined
to derive the time-continuous Vm25. The BESS model distinguishes the PAR absorbed by
the sunlit leaves and shaded leaves. By integrating the BESS model and LRC, canopy GPP
is separated into contributions from sunlit and shaded leaves. Vcmax is inverted utilizing
Collatz’s model based on the GPP from sunlit leaves, and then normalized to Vm25 using
a temperature function (Section 3.1). Next, the Two-stage linear model was employed
to simulate Vm25 based on leaf age (Section 3.2). Finally, Vm25 was simulated using our
Two-stage model and validated against the inverted Vm25, with further verification through
GPP simulation results (Section 3.3).
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model [12].

3.1. Inversely Solving Vm25 by Coupling the BESS and LRC

Zheng and Xie inverted the time series of Vm25 by coupling Boreal Ecosystem Produc-
tivity Simulator (BEPS) with light response curve (LRC), utilizing EC observations data
and remote sensing data from flux sites [31,32]. This method effectively optimizes Vm25 by
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separating the contributions of sunlit leaves and shade leaves. However, the BEPS model
does not account for the physiological process for C4 plants, such as maize [33]. What is
more, BEPS employs a fixed Vm25 value. The Breathing Earth System Simulator (BESS)
model not only differentiates between sunlit and shaded leaves [56], but also distinguishes
between C3 and C4 plants. Additionally, BESS incorporates LAI to account for seasonal
variation in Vm25. Therefore, we substituted the BEPS model with the BESS model.

3.1.1. The Separation of Sunlit and Shaded GPP by BESS

In the BESS model, the photosynthesis rate at leaf-level is calculated by Farquhar’s
and Collatz’s model [11,12], while a “two-leaf” canopy model is employed to upscale the
leaf-level photosynthesis rate to canopy GPP. The total GPP of the canopy is determined by
summing the contributions from sunlit leaves and shaded leaves as follows:

GPP = GPPsun + GPPshade (1)

where GPPsun and GPPshade are the GPP of sunlit and shaded leaves, respectively. GPP can
be calculated from photosynthesis rate and the corresponding LAI; therefore, Equation (1)
can be expressed as:

GPP = AsunLAIsun + AshadeLAIshade (2)

where Asun and Ashade are the photosynthesis rates per units of sunlit and shaded leaves,
respectively; LAIsun and LAIshade are the LAI of sunlit and shaded leaves, which can be
calculated by:

LAIsun = 2cos θ
(

1 − exp
(
−0.5ΩLAI

cos θ

))
(3)

LAIshade = LAI − LAIsun (4)

where θ is solar zenith angle, Ω is the clumping index, and LAI is the leaf area index of the
whole canopy.

3.1.2. Photosynthesis Rates of Sunlit and Shaded Leaves Estimated by LRC

Light response curve is a commonly utilized tool to depict the correlation between
the photosynthetic rate and photosynthetically active radiation (PAR). The rectangular
hyperbola is employed to characterize the shape of the light response curve [78]:

A = αIP
αI+P (5)

where A is the gross photosynthesis rate; α is the maximum light use efficiency (LUE) ob-
tained by the initial slope of the curve; I is the absorbed photosynthetically active radiation
(APAR) of the leaf per unit; P is the gross photosynthetic rate under saturated radiation.

The light response curves are employed to estimate Asun and Ashade, respectively [31,33].
Then, the total canopy GPP of Equation (2) can be expressed as:

GPP = LAIsun
αIsunPsun

αIsun + Psun
+ LAIshade

αIshadePshade
αIshade + Pshade

(6)

where Isun and Ishade are PAR absorbed by sunlit leaves and shade leaves (APARSun and
APARSh), respectively, and are calculated using the two-leaf canopy radiative transfer
model in BESS (Appendix B); and Psun and Pshade are given by:

Psun =
P0k

(
1 − e−kLAI−knLAI)

(k + kn)×
(
1 − ekLAI

) (7)

Pshade =
P0

((
2cosθknk − (kn + k)ekLAI)e−kLAI−kkLAI − ((2cosθkn − 1)k − kn)

)(
k2

n + knk
)(

LAI − 2cosθ
(
1 − e−kLAI

)) (8)
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where P0 is P on the top of the canopy; kn describes the rate at which leaf nitrogen content
decreases with increasing depth into the canopy, and is taken as 0.3 following the previous
study [21].

k =
0.5Ω
cosθ

(9)

Here, α and Po represent the two unknown parameters, both of which are contingent
on the biological conditions of the leaves. During periods of low incoming radiation,
such as in the morning or afternoon, the photosynthetic rate is presumed to be primarily
influenced by radiation, leading to the maximum LUE at these times. To determine α for
the day, GPP data are selected with incoming PAR less than 350 µmol m−2s−1 for regression
analysis against APAR. The resulting slope of this regression is considered as α for the given
day. The daily value of P0 is then obtained through the optimization of eddy covariance
GPP data after determining α.

3.1.3. The Inversion of Vcmax from Sunlit GPP

According to Collatz’s model:

A = min
(
Aj, Ac

)
− Rd (10)

where A is the gross photosynthesis; Aj represents the rate of photosynthesis limited by
radiation and Ac represents the rate of photosynthesis restricted by Rubisco; Rd is the rate
of dark respiration.

When estimating Vcmax through the reversal of Collatz’s method, it is essential that
the photosynthetic rate is limited by Vcmax, rather than radiation. In shaded leaves, the
photosynthetic rate is primarily regulated by radiation. Conversely, sunlit leaves receive
more radiation than shaded leaves; thus, their photosynthetic rate is not controlled by
radiation but by Vcmax when incident radiation levels are high. The separation of sunlit and
shaded leaves enables the inversion of Vcmax from the GPP of sunlit leaves. For sunlit leaves,
when incident radiation levels are low, such as in the early morning, the photosynthetic rate
is dependent on radiation. However, as incident radiation increases, it gradually becomes
limited by Rubisco. A threshold of 900 µmol m−2s−1 is utilized for radiation levels. When
APAR exceeds this threshold, the photosynthetic rate is predominantly limited by Vcmax.
Consequently, Vcmax is derived from the GPP of sunlit leaves under such conditions [31].

Once the GPP of sunlit leaves has been separated, the photosynthesis rate of sunlit
leaves can be calculated as:

Ac =
GPPsun

LAIsun
(11)

For C4 plants, according to Collatz’s model [12], when the CO2 fixation is controlled
only by Rubisco, Vcmax is calculated as:

Vcmax = Ac (12)

3.1.4. Normalizing Vcmax to 25 ◦C

The inverted Vcmax can be normalized to 25 ◦C (Vm25) using the temperature func-
tion [79]:

Vm25 =
Vcmax

f(T)
(13)

f(T) =
(

1 + exp
(
(−220, 000 + 710(T + 273))

(R(T + 273))

))−1
(14)

where T is the leaf temperature; and R is the gas constant.

3.2. Two-Stage Linear Model

Crops typically experience rapid growth in the early stages, reaching a peak before
gradually aging. Thus, we divided the crop growth period into an ascending phase and a
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descending phase (Figure 2). According to FAO56 guidelines [80], the rapid growth period
of maize typically spans from 35 to 50 days, counting from the date of emergence. Therefore,
within this date range, we identified the day with the smallest change in LAI as the cut-off
point between the ascending phase and descending phase, denoted as DPeak. We discovered
that Vm25 exhibits a stronger correlation with leaf age than with LAI, particularly during
the descending phase (Figure 2).
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Building upon this discovery, we proposed a Two-stage linear model that utilizes leaf
age to simulate Vm25 (Figure 3). In this model, Vm25 is linearly fitted separately for the
ascending and descending phases (Equations (16) and (17)). Our Two-stage linear model is
as follow:

Vm25 =

{
k1 × D + Vm25,ini , Dini < D < DPeak
k2 × (D − DPeak) , Dpeak ≤ D < Dend

(15)

where Dini represents the leaf age when the crop initiates rapid growth, recorded as 0; DPeak
represents the leaf age when the Vm25 reaches maximum; Dend denotes the ending leaf
age of the crop growth period, typically when the GPP value observed by the flux sites
approaches 0; and D represents the current leaf age. k1 and k2 denote the slopes of the
ascending and descending stages of crop development, respectively.

k1 =
PeakVm25 − Vm,ini

DPeak
(16)

k2 =
PeakVm25

Dend − DPeak
(17)

Leaf age is commonly used to describe the growth status and developmental stage of
plants. Its specific definition and calculation methods can vary depending on the research
objectives and plant species. In our study, leaf age refers to the physical age of the plant,
meaning the actual time from emergence to the current leaf development stage, measured
in days. The emergence dates for US-Ne1, US- Ne2, and US-Ne3 can be obtained from
the literature. For the Daman and Fenzidi, the emergence dates can be inferred from the
changing trends in LAI values.
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3.3. Model Validation
3.3.1. Calibration and Validation of Vm25

Data from one-third of the years were utilized for calibrating the PeakVm25 (Section 3.2),
while data from the remaining two-thirds of years were employed to validate the accuracy
of the Two-stage linear model. It is worth mentioning that the estimation of Vm25 for leaves
operating under low radiation conditions is typically less accurate. The cumulative effect
of errors in various underlying assumptions can lead to a relatively low signal-to-noise
ratio [81]. Thus, Vm25 values corresponding to low radiation were excluded.

The PeakVm25 was calculated for the three US sites (US-Ne1, US-Ne2, US-Ne3) and
the two Chinese sites (Daman, Fenzidi) separately, to account for the difference in maize
species. To determine the value of the PeakVm25, data from the first third of each year at
each site were selected. Linear regression between Vm25 inverted by LRC and leaf age was
performed for both the ascending phase and descending phase, respectively. The average
PeakVm25 value for the first third years of the three US sites and the two Chinese sites are
65 and 38 µmol m−2s−1 (rounded to an integer), respectively. Note that Vm25,ini is difficult
to estimate when the GPP is close to zero or negative at the beginning of the growth period.
Thus, the Vm25 at the beginning of the growth period is set as 10 µmol m−2s−1, the median
of the LRC inverted Vm25 during this period (5–15 µmol m−2s−1).

3.3.2. Comparison with the Vm25 Obtained by BESS

In the BESS model, seasonal variation in Vm25 is taken into account [56,82]. It is
assumed that the seasonal pattern of Vm25 followed the seasonal pattern of LAI [83].
Vm25 experiences a rapid increase during leaf development, reaching its peak in early
leaf maturity, followed by a decline during senescence, irrespective of species. The date
corresponding to the peak LAI value is identified, and the Vm25 for that date was quantified
(PeakVm25). Subsequently, Vm25 over the season is calculated as:

Vm25 = Vm25,min +
LAI

LAImax
× (PeakVm25 − Vm25,min) (18)

where LAImax and LAI represent the maximum and current leaf area index, respectively,
throughout the growing period. In the original BESS model, the PeakVm25 value of
C4 crops was uniformly set as 33 µmol m−2s−1, without distinction among crop types.
Vm25,min = 0.3 × PeakVm25.
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In the original BESS model (Equation (18)), the PeakVm25 value of C4 crops was
uniformly set at 33 µmol m−2s−1, without differentiation among crop species. In our
model, the calibrated PeakVm25 value was substituted into the original BESS model to
calculate Vm25 (hereafter referred to as “BESS_P”), and then the performances of the original
BESS, BESS_P and our Two-stage linear model in simulating Vm25 were compared against
the Vm25 inversely solved by coupling the BESS and LRC using EC data.

3.3.3. Comparison with the GPP Obtained by BESS

Then, the original BESS model, BESS_P model, and the BESS model coupled with the
Two-stage linear model (hereinafter referred to as “BESS_TL”) were used to calculate GPP.
These simulated GPP values were then compared with the GPP values measured at the
flux sites to evaluate the performance of each model. This comparison helps in assessing
the accuracy and reliability of each method in simulating GPP.

4. Results
4.1. Calibration and Validation of Vm25

To assess the performance of the Two-stage linear model (Equation (15)), the simulated
Vm25 was compared with the Vm25 inversely solved by coupling the BESS and LRC using
EC data (Figure 4, Table 2). Notably, the simulated Vm25 aligns closely with that from
LRC for both the calibration and validation samples at each site (Figure 4, Table 2). The
performance of the Two-stage linear model was exceptional for the US-Ne2 and US-Ne3
sites, yielding R2 values of 0.88 and 0.87, RMSE values of 6.82 µmol m−2s−1 for both,
whereas the performance was not as good for Daman (R2 = 0.71; RMSE = 6.44 µmol
m−2s−1), due to the pronounced fluctuation in Vm25 during the early stages of the growth
period at Daman (Figure 5y, z).
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Table 2. The performance of the original BESS, BESS_P and our Two-stage linear model at simulating
the Vm25 inversely solved by coupling the BESS and LRC using EC data at the five flux sites.

Site
BESS BESS_P BESS_TL

RMSE R2 RMSE R2 RMSE R2

US-Ne1 18.93 0.23 25.07 0.23 7.54 0.85
US-Ne2 16.58 0.52 22.67 0.52 6.82 0.88
US-Ne3 14.70 0.67 19.46 0.67 6.82 0.87
Daman 14.55 0.02 16.99 0.02 6.44 0.71
Fenzidi 13.25 0.01 15.30 0.01 5.40 0.82
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Figure 5. Comparison of Vm25 calculated by BESS (blue lines), BESS_P (green lines) and our Two-stage
linear model (red lines) in simulating the time series of Vm25 inversely solved by coupling the BESS
and LRC using EC data at the five flux sites: (a–l) show the verification results for US-Ne1; (m–r)
show the verification results for US-Ne2; (s–x) show the verification results for US-Ne3; (y–aa) show
the verification results for Daman; (ab–ad) show the verification results for Fenzidi.

4.2. Comparison with the Vm25 Obtained by BESS

The Vm25 calculated by BESS, BESS_P and our Two-stage linear model were compared
in simulating the time series of Vm25 inversely solved by coupling the BESS and LRC using
EC data at the five flux sites (Figure 5). Unfortunately, the flux data for Daman in 2020
and Fenzidi in 2017 are incomplete; and due to the partial lack of remote sensing and
meteorological data, the Vm25 inverted by LRC for US-Ne1 and US-Ne2 sites in 2001 is
also incomplete. The BESS model consistently underestimates Vm25 throughout the growth
period due to the fixed low PeakVm25 value, with the discrepancy becoming particularly no-
ticeable during the middle stages of the growth period. Conversely, towards the end of the
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growth period when Vm25 values are low, BESS tends to overestimate Vm25. BESS_P, which
employs the same modeling approach as BESS but adjusts the PeakVm25 parameter, exhibit-
ing a somewhat improved performance in estimating the trend of Vm25 during the early
growth phase. However, during the declining stage of Vm25, BESS_P tends to significantly
overestimate the values. Due to the same formula structure, the R2 between the calculated
Vm25 of both methods and the verified values remains consistent, ranging from 0.01 to 0.67
(Table 2). The RMSE of the BESS model ranges from 13.25 to 18.93 µmol m−2s−1 and the
RMSE of the BESS_P ranges from 15.30 to 25.07 µmol m−2s−1. Despite the adjustment in
PeakVm25, both BESS and BESS_P demonstrate poor performance in fitting the trend in
Vm25 across all sites. The observations reveal a distinct pattern of Vm25 initially rising before
declining, and our Two-stage linear model effectively captures this seasonal variation in
Vm25, with R2 ranges from 0.71 to 0.88 and RMSE ranges from 5.40 to 7.54 µmol m−2s−1.
During the early stages of crop growth, Vm25 generally exhibits an upward trajectory, albeit
with significant diurnal fluctuations. Conversely, in the descending phase, Vm25 tends to
display a more linear decline with reduced fluctuation.

4.3. Comparison with the GPP Obtained by BESS

To evaluate the role of the Two-stage linear model in improving GPP simulation, we
compared the GPP simulation results using BESS, BESS_P and our Two-stage linear model for
calculating Vm25, and validated them with flux site GPP data (Figure 6, Table 3). The results
indicate that the original BESS model consistently underestimates GPP across all five sites.
On average, GPP is underestimated by 12.60%, with the most significant underestimation
observed at US-Ne2 (16.29%). Similarly, BESS_P generally overestimates GPP, averaging
20.73% across all sites, with the most significant overestimation recorded at US-Ne1 (24.05%).
In contrast, the GPP simulated by BESS incorporating our Two-stage linear model exhibits a
strong correlation with the flux site’s observed GPP data, with RMSE ranging from 2.03 to
2.32 gC m−2d−1 and R2 ranging from 0.82 to 0.90. On average, GPP is only underestimated by
0.85% across all sites. The most substantial underestimation occurs at Daman (16.38%), while
the most significant overestimation is at Fenzidi (4.60%). The simulation result of BESS_TL
significantly outperform the BESS and BESS_P in GPP estimation.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 6. The GPP calculated by BESS (blue dots and trend lines), BESS_P (green dots and trend 
lines), and BESS_TL (red dots and trend lines) vs. flux site observed GPP (GPP_EC) at (a) US-Ne1, 
(b) US-Ne2, (c) US-Ne3, (d) Daman, (e) Fenzidi. 

Table 3. The performance of the original BESS, BESS_P and BESS_TL in estimating observed GPP at 
the five flux sites. 

Site 
BESS BESS_P BESS_TL 

RMSE R2 RMSE R2 RMSE R2 
US-Ne1 3.69 0.66 4.07 0.70 2.29 0.86 
US-Ne2 3.48 0.80 3.53 0.83 2.03 0.90 
US-Ne3 2.99 0.83 3.32 0.85 2.04 0.89 
Daman 2.96 0.53 3.02 0.53 2.32 0.82 
Fenzidi 3.35 0.63 3.64 0.63 2.06 0.87 

To better reveal the role of the Two-stage linear model in improving GPP simulation, 
the discrepancy of the annual GPP estimation by BESS, BESS_P and BESS_TL were com-
pared (Figures 7 and 8). The mean GPP estimation discrepancy by BESS, BESS_P and 
BESS_TL are −1.56, 2.39 and 0.12 gC m−2d−1 in US-Ne1, respectively, with the correspond-
ing standard deviations of 3.35, 3.30 and 2.29 gC m−2d−1 (Table 4). Except for the Daman 
site, the means and standard deviations of GPP discrepancy of BESS_TL estimation are 
closer to 0 for most years compared to the BESS and BESS_P estimation (Table 4). At the 
Daman site, although the absolute value of the mean GPP estimation discrepancy of 
BESS_TL is greater than that of BESS, the standard deviation of BESS_TL GPP estimation 
discrepancy remains the smallest. Thus, it can be concluded that BESS_TL effectively en-
hances the simulation accuracy of GPP. 

Figure 6. The GPP calculated by BESS (blue dots and trend lines), BESS_P (green dots and trend
lines), and BESS_TL (red dots and trend lines) vs. flux site observed GPP (GPP_EC) at (a) US-Ne1,
(b) US-Ne2, (c) US-Ne3, (d) Daman, (e) Fenzidi.



Remote Sens. 2024, 16, 2747 12 of 22

Table 3. The performance of the original BESS, BESS_P and BESS_TL in estimating observed GPP at
the five flux sites.

Site
BESS BESS_P BESS_TL

RMSE R2 RMSE R2 RMSE R2

US-Ne1 3.69 0.66 4.07 0.70 2.29 0.86
US-Ne2 3.48 0.80 3.53 0.83 2.03 0.90
US-Ne3 2.99 0.83 3.32 0.85 2.04 0.89
Daman 2.96 0.53 3.02 0.53 2.32 0.82
Fenzidi 3.35 0.63 3.64 0.63 2.06 0.87

To better reveal the role of the Two-stage linear model in improving GPP simula-
tion, the discrepancy of the annual GPP estimation by BESS, BESS_P and BESS_TL were
compared (Figures 7 and 8). The mean GPP estimation discrepancy by BESS, BESS_P
and BESS_TL are −1.56, 2.39 and 0.12 gC m−2d−1 in US-Ne1, respectively, with the corre-
sponding standard deviations of 3.35, 3.30 and 2.29 gC m−2d−1 (Table 4). Except for the
Daman site, the means and standard deviations of GPP discrepancy of BESS_TL estimation
are closer to 0 for most years compared to the BESS and BESS_P estimation (Table 4). At
the Daman site, although the absolute value of the mean GPP estimation discrepancy of
BESS_TL is greater than that of BESS, the standard deviation of BESS_TL GPP estimation
discrepancy remains the smallest. Thus, it can be concluded that BESS_TL effectively
enhances the simulation accuracy of GPP.
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Table 4. Mean and standard deviation of the GPP results by the three methods in each site
(gC m−2d−1).

Site
BESS BESS_P BESS_TL

Mean Std Mean Std Mean Std

US-Ne1 −1.56 3.35 2.39 3.30 0.12 2.29
US-Ne2 −1.69 3.03 2.40 2.59 −0.02 2.03
US-Ne3 −1.56 2.56 2.31 3.32 0.29 2.02
Daman −0.43 2.92 0.22 3.01 −1.42 1.82
Fenzidi −0.06 3.29 −0.13 3.49 0.05 2.00

To provide a clearer view of the simulation results of the three methods, the seasonal
variation in the GPP difference between the simulated GPP and EC observations is rep-
resented in Figures 9 and 10. Figure 9 displays the annual simulation results for each
site, while Figure 10 presents the multi-year average simulation outcomes across all sites.
Significant seasonal differences are evident in the simulation outputs of all three methods.
The original BESS model tends to slightly overestimate GPP towards the end of the growth
period and underestimates during other times, particularly in the mid-growth period,
where the underestimation is pronounced. Conversely, BESS_P demonstrates satisfactory
simulations only during the early growth period, followed by a gradual overestimation
of GPP. BESS_TL outperforms the other two methods in capturing seasonal shifts in GPP.
The discrepancy between the simulated GPP and EC values remains relatively close to zero.
GPP is slightly underestimated during the early and late growth stages and slightly overes-
timated during the mid-growth stage. Overall, BESS_TL demonstrates a more balanced
performance across different growth stages compared to BESS and BESS_P.
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5. Discussion
5.1. Foundation of Vm25 Estimation

This study highlights the importance of considering seasonal changes in the photo-
synthetic capacity of crops. However, estimating the temporal changes in Vm25 remains
challenging. The method to inverting the time series of Vm25 by coupling the BEPS model
and LRC has already been proposed. However, the BEPS model does not account for C4
plants [31,32]. In our research, we addressed this challenge by inverting Vm25 for five
maize sites through the coupling of the BESS model with LRC. This approach enabled us to
estimate Vm25 without relying on extensive gas exchange experiments. To achieve this, we
utilized field measurements of EC data and remote sensing data. The BESS model, which
replaces the original BEPS model, incorporates specific considerations for the photosyn-
thesis of C4 plants like maize [56]. After removing the data from periods of low radiation,
Vm25 exhibited a significant trend of initially increasing and then decreasing (Figure 5).
Furthermore, Vm25 showed a strong correlation with leaf age when the growing period was
divided into two phases (Figure 2). This relationship provides the basis for our research.

5.2. The Advantages of Leaf Age as a Vm25 Predictor

Annual plants complete their entire life cycle within one growing season. Starting
from seeds, they progress through stages of germination, growth, flowering, fruiting,
and ultimately die, all within a single year. In contrast, perennials continue to grow and
reproduce for several years or more. Compared to perennial plants, using annual plants
as research subjects eliminates the need to consider interannual influences and allows
for easier identification of their developmental stages. This simplification makes it more
straightforward to study the relationship between leaf age and Vm25.

Our Two-stage linear model takes the advantage of leaf age and effectively captures
the Vm25 seasonal variation with the crop growth processes. Maize, being annual plants,
undergo significant changes in photosynthetic capacity throughout their growth cycle due
to various physiological characteristics. Typically, Vm25 exhibits only one peak value during
the entire crop growth period [33]. This uniqueness of the crop is the basis for our proposed
model. In our model, the basic assumption is that the photosynthetic capacity increases
during leaf development, reaching a maximum in spring or early summer, stabilizing or
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gradually decreasing in summer, and further decreasing during senescence [6,84]. Compa-
rably, our model, in which Vm25 is quantified with leaf age, can perform well due to the
strong correlation between Vm25 and leaf age (Figure 2). Now, it is understandable that the
performance of the existing empirical relationships established between Vm25 and other
variables, such as NLeaf, Chll, and photoperiod, is basically determined by the similarity of
that variable to the leaf age [7,8,40,85]. Also, the photosynthetic capacity and environmental
factors are often mismatched [57].

For the estimation of Vm25, our Two-stage linear model outperforms both the original
BESS model and BESS_P. The main difference between the original BESS model and BESS_P
is the PeakVm25: PeakVm25 in the original BESS model is fixed, whereas the PeakVm25
in the BESS_P is the same as the PeakVm25 in our Two-stage linear model. Thus, solely
improving the PeakVm25 cannot solve the problem. In the original BESS model and BESS_P,
LAI is used to seasonalize Vm25 [56]. However, it is proven that the correlation between
Vm25 and LAI is not as strong as leaf age in the later half stage of crop growth (Figure 2)
because the leaves turn yellow and senesce with the senescence of crops, but the change
in LAI is not significant. Furthermore, the BESS model coupled with the Two-stage linear
model (BESS_TL) has significantly improved the simulation of GPP. Across the five maize
sites, BESS_TL only underestimated GPP by an average of 0.85%. In contrast, the original
BESS model underestimated GPP by an average of 12.60%, and the BESS_P model overesti-
mated GPP by an average of 20.73%. The superior performance of our Two-stage linear
model underscores the importance of considering PeakVm25 and leaf age in accurately
modeling Vm25.

5.3. Readily Available Leaf Age

Leaf age, an important indicator of crop physiological characteristics, is usually rela-
tively easy to obtain. The emergence date can be directly observed in the field, allowing
for straightforward counting to determine leaf age [62]. Additionally, remote sensing tech-
nologies offer a powerful tool for estimating leaf age across large areas of farmland [86,87].
By calculating vegetation indices from remote sensing images, we can indirectly assess
the growth stage of leaves. These indices exhibit specific patterns of change as the leaves
progress from young to mature and eventually to senescent stages. By analyzing these
patterns, we can accurately infer leaf age.

5.4. Model Limitations

Due to data availability, our Two-stage linear model was only validated with maize
data from five flux sites. Its applicability to other sites relies on the quality of their own flux
data. Also, our Two-stage linear model is derived from maize sites, and its applicability to
other vegetation types requires further validation. While other vegetation types have also
demonstrated a close correlation between Vm25 and leaf age [8,58,63,64], extending this
method to other vegetation types, such as perennial plants, presents additional challenges.
Perennials often have canopies that consist of leaves at various stages of development,
ranging from young and fully functional to older and senescent leaves [63]. This variation
necessitates a more nuanced approach to modeling Vm25 in perennials, one that can account
for the complex age structure of their canopies [58].

6. Conclusions

As numerous studies have highlighted, Vm25 is a crucial parameter for calculating
the photosynthesis rate. The accurate estimation of Vm25 is essential for the regional and
global modeling of ecological systems. Although various indicators have been developed
to characterize Vm25, accurately quantifying its dynamic changes remains challenging.

(1) Vm25 inversion: Considering the special photosynthetic process of C4 plants, we
replaced the BEPS model with the BESS model coupled with the LRC to invert Vm25 at
five maize sites. This method allowed us to obtain continuous Vm25 values throughout
the growth period, enabling a detailed study of Vm25 variation trends.
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(2) Two-Stage Linear Model Development: We developed a new Two-stage linear model
to determine the dynamics changes in maize Vm25. This method divides Vm25 into
two stages during the growth process and uses leaf age as the key variable in the
simulation, effectively capturing the seasonal variation characteristics of Vm25. Addi-
tionally, compared to using a fixed value, this method allows for the calibration of the
PeakVm25 value, thereby enhancing model accuracy.

(3) Model Performance and Comparison: The Two-stage linear method more accurately
simulated the variation trend of Vm25 compared to the Vm25 of the original BESS model.
Furthermore, implementing this method significantly improved the simulation results
of GPP. BESS_TL outperforms the other two methods in this study, showing higher R2

and lower RMSE at each site. The GPP simulated by BESS_TL at both interannual and
seasonal levels deviated less from the EC GPP. Overall, the developed Vm25 estimation
method enhances the accuracy of farmland GPP simulation.
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Appendix B. Two-Leaf Canopy Radiative Transfer Model in BESS

A two-leaf canopy radiative transfer model is used to calculate PAR absorbed by sunlit
leaves and shade leaves [56]. This method modified the PAR penetration model [88] by
incorporating foliar clumping and reflected PAR from the soil.

The total absorbed incoming PAR by the canopy is

QP↓ = (1 − ρcbP)IPb(0)
[
1 − exp

(
−k′

PbLcΩ
)]

+ (1 − ρcdP)IPd(0)
[
1 − exp

(
−k′

PdLcΩ
)]

(A1)

where IPb(0) and IPd(0) are direct beam and diffuse PAR at the top of the canopy, respec-
tively. Lc indicates the leaf area index. ρcbP and ρcdP are canopy reflectance for beam and
diffuse PAR, respectively. k′

Pb and k′
Pd are the extinction coefficient for beam and scattered

beam PAR, and for diffuse and scattered diffuse PAR, respectively.
The absorbed incoming beam PAR by sunlit leaves is

QPbSun↓ = IPb(0)(1 − σPAR)[1 − exp(−kbLcΩ)] (A2)

where σPAR is the leaf scattering coefficient for PAR. kb is the extinction coefficient for
black leaves.

The absorbed incoming diffuse PAR by sunlit leaves is

QPdSun↓ =
IPd(0)(1 − ρcdP)

[
1 − exp

(
−
(
k′

Pd+kb
)
LcΩ

)]
k′

Pd(
k′

Pd + kb
) (A3)

The absorbed incoming scattered PAR by sunlit leaves is

QPsSun↓ = IPb(0)

 (1−ρcbP)(1−exp(−(k′Pb+kb)LcΩ))k′Pb

(k′Pb+kb)

− (1−σPAR)(1−exp(−2kbLcΩ))
2

 (A4)

The total absorbed incoming PAR by sunlit leaves is

QPSun↓ = QPbSun↓ + QPdSun↓ + QPsSun↓ (A5)

The total absorbed incoming PAR by shade leaves is

QPSh↓ = QP↓ − QPSun↓ (A6)

A portion of the incoming PAR passes through the canopy to the soil surface and is
reflected upward into the canopy, which may be important in an open canopy with bright
background. The PAR absorbed by sunlit leaves due to soil reflection is

QPSun↑ =
[
(1 − ρcbP)IPb(0) + (1 − ρcdP)IPd(0)−

(
QPSun↓ + QPSh↓

)]
×ρsP × exp

(
−k′

PdLcΩ
) (A7)

where ρsP is the soil reflectance for PAR.
The PAR absorbed by shade leaves due to soil reflection is

QPSh↑ =
[
(1 − ρcbP)IPb(0) + (1 − ρcdP)IPd(0)−

(
QPSun↓ + QPSh↓

)]
×ρsP ×

[
1 − exp

(
−k′

PdLcΩ
)] (A8)

The total PAR absorbed by sunlit and shade leaves is

APARSun = QPSun↓ + QPSun↑ (A9)

APARSh = QPSh↓ + QPSh↑ (A10)
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