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Abstract: Harmful algal blooms (HABs) threaten lake ecosystems and public health. Early HAB
detection is possible by monitoring chlorophyll-a (Chl-a) concentration. Ground-based Chl-a data
have limited spatial and temporal coverage but can be geo-registered with temporally coincident
satellite imagery to calibrate a remote sensing-based predictive model for regional mapping over time.
When matching ground and satellite data, positional and temporal discrepancies are unavoidable
due particularly to dynamic lake surfaces, thereby biasing the model calibration. This limitation
has long been recognized but so far has not been addressed explicitly. To mitigate such effects of
data mismatching, we proposed an Akaike Information Criterion (AIC)-like weighted regression
algorithm that relies on an error-based heuristic to automatically favor “good” data points and
downplay “bad” points. We evaluated the algorithm for estimating Chl-a over inland lakes in
Ohio using Harmonized Landsat Sentinel-2. The AIC-like weighted regression estimates showed
superior performance with an R2 of 0.91 and an error variance (σ2

E) of 0.29 µg/L, outperforming linear
regression (R2 = 0.34, σ2

E = 2.34 µg/L) and random forest (R2 = 0.82, σ2
E = 0.92 µg/L). We also noticed

the poorest performance occurred in the spring due to low reflectance variation in clear water and low
Chl-a concentration. Our weighted regression scheme is adaptive and generically applicable. Future
studies may adopt our scheme to tackle other remote sensing estimation problems (e.g., terrestrial
applications) for alleviating the adverse effects of geolocation errors and temporal discrepancies.

Keywords: AIC-like weighted regression; Harmonized Landsat Sentinel-2; chlorophyll-a; HAB

1. Introduction

Aquatic ecosystems have undergone significant transitions due to climate change,
intensifying extreme climate conditions and exacerbating overall water quality [1]. One
of the major water quality issues worldwide is the occurrence of harmful algal blooms
(HABs), which produce toxins and worsen both aquatic ecosystems and human public
health [2]. HABs are classified into various types (e.g., cyanobacteria, dinoflagellates,
diatoms, and prymnesiophytes) depending on the relevant organism and the produced
toxins [3]. Among these, cyanobacterial HABs are known as major HABs over inland lakes,
occurring mainly due to land use/land cover as well as nutrient and sediment loadings [4].
They produce cyanotoxins (e.g., microcystin, cylindrospermopsin, and anatoxins), and in
turn threaten aquatic life and human health. To monitor HABs, many researchers have
used chlorophyll-a (Chl-a) as a proxy, as it is one of the primary pigments found in all
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different types of algae. Additionally, many researchers have revealed a strong association
between Chl-a and microcystin, major toxins created by cyanobacterial HABs [5,6].

Numerous ground-based networks and sampling campaigns have been carried out
across the U.S. to assess water quality conditions. These initiatives have involved govern-
ment agencies and research institutes, which have utilized buoys and cruises to collect
and analyze the physical, chemical, and biological properties of water bodies [7]. How-
ever, despite the abundance of in situ measurements across the U.S., two limitations need
to be addressed. Firstly, there are constraints on the spatial coverage extent and spatial
representativeness of these measurements. The spatial footprint of in situ measurements
generally ranges from a few meters to tens of meters depending on the sampling location
and instruments used, thus requiring more comprehensive coverage to monitor large-scale
water bodies. Secondly, obtaining temporally continuous water quality parameters (WQPs)
is challenging due to coarse sampling intervals and adverse weather conditions.

To overcome these limitations, satellite imagery plays a crucial role in monitoring
WQPs across various temporal and spatial scales. The fundamental principle of retrieving
Chl-a from satellite imagery relies on the spectral signature of the band reflectance (i.e.,
absorption and reflection), which varies depending on the Chl-a concentration [8]. More
specifically, Chl-a tends to reflect green bands and absorb blue and red bands. For the
near-infrared range, Chl-a absorbs at 680 nm and reflects at 700 nm. Accordingly, band
reflectance from various satellites, including the Landsat series [9–11], Sentinel-2/3 [12–15],
and MODerate Resolution Imaging Spectroradiometer (MODIS)/Visible Infrared Imaging
Radiometer Suite (VIIRS) [16–19], has been utilized. For example, Manum et al. [11]
developed empirical models to estimate Chl-a over Paldang Reservoir, Korea by using
Landsat 5 Thematic Mapper (TM) band reflectance. The results indicated that estimated
Chl-a yielded a high coefficient of determination (R2; 0.72), while a relatively high root
mean square error (RMSE; 4.9 mg/L) and mean absolute error (MAE; 1.41 mg/L) were
observed. Germán et al. [12] utilized Sentinel-2 images (from 2016 to 2019) to quantify
spatio-temporal variation in Chl-a in San Roque Reservoir, Argentina by using empirical
regression and data mining analysis. Statistical analysis confirmed that the estimated Chl-a
showed a high R2 of 0.77. Cao et al. [19] utilized a deep neural network (DNN) to retrieve
Chl-a using VIIRS Rayleigh-corrected reflectance over 61 inland lakes located in China.
The results indicated that DNN-based Chl-a estimates yielded a relatively low median
symmetric accuracy of 28% with an RMSE of 13.8 mg/L. At the same time, however, DNN
yielded a high uncertainty in low and high Chl-a concentrations.

An extensive literature review of satellite-based Chl-a retrieval reveals that a general
source of uncertainty originates from either geo-registration errors or temporal discrep-
ancies. Geolocation errors are generally caused by spatial mismatch between satellite
observations and in situ measurements. The spatial footprint of in situ measurements is a
few meters, while the spatial resolution of the optical satellite varies from 30 m (Landsat) to
300 m (Sentinel-3). The evaluation of Chl-a estimates from a sea-viewing wide field-of-view
sensor indicated a high uncertainty of Chl-a estimates due to the spatial mismatch between
ground- and satellite-based observation [20]. Salama and Su [21] quantified the influence
of spatial discrepancy between the Medium Resolution Imaging Spectrometer (MERIS) and
field measurement on open-water reflectance. The results indicated that spatial mismatches
of 300 and 1000 m cause the uncertainty of reflectance up to 0.02 sr−1 at the red band
(665 nm). Accordingly, many researchers have used Landsat-8 and Sentinel-2 with the
advantage of relatively high spatial resolution, although temporal mismatch often occurs
due to the relatively coarse temporal resolution (Landsat: 16 days, Sentinel-2: 5 days). In
addition, the limitations of obtaining satellite-based observation under cloud cover and
insufficient sampling activities over an inland lake enhances the temporal discrepancy
between satellite- and ground-based measurements.

Here, we aimed to improve remote sensing-based monitoring of water quality by
addressing potential geo-registration errors and temporal discrepancies in the matched
satellite and ground data. Specifically, we proposed an Akaike Information Criterion
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(AIC)-like weighted linear regression to estimate Chl-a over inland lakes in Ohio by using
HLS band reflectance as an input. The AIC-like weighted linear regression implements
an iterative multivariate linear regression (MLR) technique along with a leave-one-out
regression process, as well as the Akaike Information Criterion (AIC) for the weighting
scheme. For the evaluation, we compared Chl-a estimates from AIC-like weighted regres-
sion with those from multivariate linear regression and random forest (RF). Afterward, we
additionally analyzed the overall influence of spatial and temporal windows, which have
been employed in multiple studies to acquire more matching datasets between ground-
based measurements and satellite observations. The rationale behind implementing our
proposed method rather than machine learning or deep learning is that it explicitly shows
the influence of spatial and temporal windows through the weighting factor to accurately
estimate Chl-a.

2. Study Area and Datasets
2.1. Study Area

This study selected inland lakes located within Ohio, with geographical coverage rang-
ing from latitude 38.4◦N to 41.98◦N and longitude from 80.52◦W to 84.82◦W (see Figure 1).
Ohio’s climate is classified as a humid continental climate according to the Koppen–Geiger
classification, characterized by humid and hot summers and cold winters [22,23]. There are
relatively large temperature differences between summer and winter, while precipitation
shows an even distribution, with 60% of the annual precipitation occurring in the spring
and summer seasons [24].
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stations utilized in this study, and the dotted line delineates the boundary of the Hydrologic Unit
Code (HUC)-4.

According to the Ohio Environmental Protection Agency (EPA) and Ohio Department
of Natural Resources, there are over 50,000 identifiable inland lakes in or partially within the
state of Ohio, with 110 natural lakes (with surface area larger than 5 acres) and 113 artificial
inland lakes (with surface area larger than 100 acres). Most of the large natural lakes
are located in northeastern Ohio, such as Summit, Portage, Stark, and Medina Counties,
while artificial lakes are spread throughout the state of Ohio. Among them, some of the
major lakes, including the Buckeye Lake and Grand Lake St. Marys (GLSM), suffer from



Remote Sens. 2024, 16, 2761 4 of 16

cyanobacterial harmful algal bloom (CyanoHAB) [25,26]. For example, GLSM, one of the
largest inland lakes in Ohio, suffered a significant amount of microcystin in July 2010 with
the concentration reaching up to 500 µg/L, mainly due to eutrophication originating from
agricultural runoff [27].

In addition to the inland lakes in Ohio, a portion of Lake Erie, one of the Laurentian
Great Lakes, is included in the study domain. Specifically, this study focuses on the western
basin of Lake Erie, which extends from the city of Toledo to Sandusky. The Western
Lake Erie region consistently suffers from cyanobacterial HAB due to nutrient loadings
from agricultural runoff from the Maumee River watershed [28,29]. This has led local
governments to spend about $3 million per year to address the cyanotoxins in drinking
water [30,31].

2.2. Datasets
2.2.1. Ground-Based Chlorophyll-a Measurements

This study collected ground-based chlorophyll-a (Chl-a) observations via fluorometer
from various sources, including the following: (1) National Water Information System
(NWIS) from the United States Geophysical Survey (USGS), (2) Sustaining the Earth’s
Watersheds, Agricultural Research Data System (STEWARDS) from the United States
Department of Agriculture (USDA) Agricultural Research Services (ARS), (3) STOrage
and RETrieval Water Quality (STORET) from the United States Environmental Protection
Agency (EPA), (4) AquaSat [32], (5) Ohio Sea Grant and Stone Laboratory, and (6) Great
Lake Environmental Research Laboratory (GLERL) of the National Oceanic and Atmo-
spheric Administration (NOAA). Among these sources, Chl-a measurements from NWIS,
STEWARDS, and STORET over inland lakes in Ohio were accessible from the National
Water Quality Council (https://waterqualitydata.us, accessed on 28 May 2022).

Ohio Sea Grant and Stone Laboratory have been collecting water quality samples via
charter boat captains and science cruises since 2013 to efficiently monitor water quality
and algal blooms in Lake Erie [33]. They use a surface-to-2-m intergraded tube sampler
to obtain various water quality parameters (WQPs), including chlorophyll, microcystin,
and Secchi depth, along with ancillary information (e.g., water depth, water temperature,
and geographic location). The dataset can be obtained through the Stone Lab Algal and
Water Quality Laboratory (https://ohioseagrant.osu.edu/research/live/water, accessed
on 7 April 2022).

NOAA GLERL has also initiated the HAB monitoring field campaign over the western
part of Lake Erie since 2012 [34]. NOAA GLERL provides biological, chemical, and physical
properties of water quality through weekly sampling (from May to October), as well
as seven buoys deployed over the western part of Lake Erie that provide temporally
continuous observations. Note that sampling density may vary at each station due to
environmental conditions such as weather constraints [35]. The NOAA GLERL dataset
can be obtained from the NOAA-GLERL website (https://www.glerl.noaa.gov/data/
#biological, accessed on 10 May 2022).

2.2.2. Harmonized Landsat and Sentinel-2 (HLS)

Harmonized Landsat and Sentinel-2 is a project initiated by the National Aeronautics
and Space Administration to combine the surface reflectances from Landsat 8 Operational
Land Imager (OLI) and Sentinel-2 Multi-spectral Instrument (MSI) [36]. The original
surface reflectances from Sentinel-2 MSI and Landsat-8 OLI have slight differences in
revisit frequency (MSI: ~5 days near equator; OLI: 16 days), spectral resolution, and spatial
resolution (MSI: 10–60 m; OLI: 30 m [visible, near, and shortwave infrared] and 100 m
[thermal]). Accordingly, the HLS datasets underwent several processing steps to harmonize
the two datasets. First, atmospheric correction (Landsat Surface Reflectance Code) and
cloud mask were applied to both Landsat-8 and Sentinel-2 imagery. Then, a geometric co-
registration and resampling, bi-directional reflectance distribution function was applied to
normalize based on viewing and illumination angles. Then, the bandpass of Sentinel-2 was

https://waterqualitydata.us
https://ohioseagrant.osu.edu/research/live/water
https://www.glerl.noaa.gov/data/#biological
https://www.glerl.noaa.gov/data/#biological
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adjusted based on the Landsat-8 bandpass, which was based on the algorithm developed
based on the Hyperion sensor [37]. After the harmonization process, the HLS datasets
provided the global surface reflectance every 2–3 days with a spatial resolution of 30 m
on the Universal Transverse Mercator (UTM) projection. The temporal coverage of the
HLS was April 2013 and October 2015 for Landsat 8 and Sentinel-2, respectively. The
evaluation of surface reflectance from HLS by comparing against the Moderate Resolution
Imaging Spectroradiometer (MODIS) product revealed good consistency between the two,
with a relative uncertainty of less than 11% [36]. Considering the spectral signature of
Chl-a, as well as the overlapping spectral bands of Landsat-8 and Sentinel-2, this study
implemented eight spectral bands (Table 1) from April 2013 to December 2021 to estimate
the chlorophyll-a over inland lakes in Ohio.

Table 1. Spectral characteristics of the Harmonized Landsat and Sentinel-2 (HLS) datasets.

Band Name Wavelength (µm) Landsat 8 Sentinel-2

Costal Aerosol 0.43–0.45 Band 01 B01
Blue 0.45–0.51 Band 02 B02

Green 0.53–0.59 Band 03 B03
Red 0.64–0.67 Band 04 B04

NIR narrow 0.85–0.88 Band 05 B8A
SWIR 1 1 1.57–1.65 Band 06 B11
SWIR 2 2.11–2.29 Band 07 B12
Cirrus 1.36–1.38 Band 09 B10

1 Shortwave infrared.

3. Methodology
3.1. Data Processing and Quality Control

One of the major challenges encountered in water quality monitoring via satellite-
based observation is acquiring enough matched datasets between ground- and satellite-
based measurements. For instance, the lack of ground-based water quality datasets, along
with the relatively coarse temporal resolution of optical imagery, reduces the number of
available datasets for the estimation. In addition, if locally developed clouds contaminate
only a small portion of the study domain, we can acquire more datasets by obtaining
surface reflectance from nearby pixels. Accordingly, two aspects are generally considered:
(1) spatial window and (2) temporal window. The major assumption in using various
spatio-temporal windows is that water quality conditions remain relatively homogeneous
over the extended spatio-temporal windows if there are no significant climate conditions
causing any types of mixing [38]. Accordingly, many researchers have explored to find
optimized spatial [39–41] and temporal windows [37,42,43], but a consensus has not been
reached. Thus, this study utilized a spatial window of up to 8 neighboring pixels (~500 m)
and a temporal window of ±5 days to collect satellite observations and further analyze the
influence of different spatio-temporal windows.

Before conducting the AIC-like weighted linear regression to estimate Chl-a, all
datasets collected from different sources underwent quality control (QC) processes. Firstly,
we only considered ground-based measurements collected near the water surface, as more
than 90% of the reflected signals from a water body originate from the water surface [44].
Additionally, ground-based measurements located within 30 m of the shoreline were dis-
carded to avoid the inclusion of bottom reflectance in shallow waters along the shoreline.
Furthermore, negative values and outliers from ground-based Chl-a (e.g., those outside
the range of three standard deviations) were not considered. Finally, if specific pixels
from either Sentinel-2 or Landsat 8 were cloud-contaminated (indicated by QC flags from
HLS), the corresponding ground-based measurements were discarded to minimize the
uncertainty triggered by clouds. As a result, only 42% of the datasets were available for
model development and validation. Accordingly, we divided them into 6:4 for model
development and validation.
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3.2. Akaike Information Criterion (AIC)-like Weighted Regression

In order to analyze the influence of geo-registration error and temporal discrepancy in
model training, this study proposed AIC-like weighted regression. The overall framework
is summarized in Figure 2. The proposed algorithm consists of three main parts: (1) conduct
a leave-one-out process, (2) calculate AIC-like weight, and (3) compute weighted linear
regression.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 17 
 

 

discarded to avoid the inclusion of bottom reflectance in shallow waters along the shore-
line. Furthermore, negative values and outliers from ground-based Chl-a (e.g., those out-
side the range of three standard deviations) were not considered. Finally, if specific pixels 
from either Sentinel-2 or Landsat 8 were cloud-contaminated (indicated by QC flags from 
HLS), the corresponding ground-based measurements were discarded to minimize the 
uncertainty triggered by clouds. As a result, only 42% of the datasets were available for 
model development and validation. Accordingly, we divided them into 6:4 for model de-
velopment and validation. 

3.2. Akaike Information Criterion (AIC)-like Weighted Regression 
In order to analyze the influence of geo-registration error and temporal discrepancy 

in model training, this study proposed AIC-like weighted regression. The overall frame-
work is summarized in Figure 2. The proposed algorithm consists of three main parts: (1) 
conduct a leave-one-out process, (2) calculate AIC-like weight, and (3) compute weighted 
linear regression. 

 
Figure 2. Overall framework of the proposed AIC-like weighted linear regression model. 

Suppose we have n combinations of surface reflectance (for each band) from HLS 
paired with n ground-based Chl-a measurements across the study domain during the 
study period. Note that each surface reflectance combination comprises multiple surface 

Figure 2. Overall framework of the proposed AIC-like weighted linear regression model.

Suppose we have n combinations of surface reflectance (for each band) from HLS
paired with n ground-based Chl-a measurements across the study domain during the
study period. Note that each surface reflectance combination comprises multiple surface
reflectance observations (8 different band spectra for each observation) depending on
different spatio-temporal windows (described in Section 3.1). The first step is to select one
pair of surface reflectance combinations (composed of 8 bands) and the corresponding
Chl-a measurement. The underlying motivation for leave-one-out weighted linear regres-
sion framework originated from leave-one-out cross-validation. This technique has been
widely applied to evaluate the statistical performance of both classification and regression
algorithms [45]. Although leave-one-out cross-validation is computationally intensive as it
requires repetition, it can minimize the error magnitude by utilizing as many datasets as
possible to build the statistical model.
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Then, the remaining n-1 combinations of surface reflectance for each band will be
averaged, and in turn, we obtain n-1 combinations of simple-averaged surface reflectance
for each band and the corresponding Chl-a measurement, which will be used as predictor
and independent variables, respectively. For the leftover combination of surface reflectance,
we also use m individual band reflectance from each band (before averaging) and the
corresponding ground-based Chl-a measurement. This allows us to develop m different
multivariate linear regression models and calculate the mean square error (MSE) based on
different regression models. Subsequently, AIC-like weight is calculated by considering the
MSE of different regression models following Equation (1):

w(i) =

1
(ŷi−y)2

∑m
i=1

1
(ŷi−y)2

(1)

where ŷi denotes the estimated Chl-a from mth regression model and y represents the
ground-based Chl-a measurement. m represents the different number of surface reflectance
observations within the nth combination. The underlying concept of Equation (1) comes
from AIC in that assigning more reliability toward the model yields a smaller magnitude of
MSE. More specifically, Equation (1) indicates the greater weight will be assigned to surface
band reflectance, which provides Chl-a estimates that closely match the ground-based
Chl-a measurement. Once the weight calculation is completed, it is further compared with
the Chl-a estimates based on using simple average of the surface reflectance to ensure that
weighted average of the surface reflectance will provide more accurate Chl-a estimates. If
not, weighted average of the surface reflectance will be replaced with the simple averaged
value. Afterward, we move to the next pair of surface reflectance combinations and ground-
based measurement and repeat the same procedure.

3.3. Evaluation Metrics

To evaluate Chl-a estimates from HLS and AIC-like weighted linear regression, we cal-
culated Chl-a estimates from both multivariate linear regression (MLR) and RF. MLR-based
Chl-a estimates were calculated by using HLS surface reflectance of same-day observations
(temporal windows of 24 h) at specific pixel-containing measurement locations. The same
matched-up datasets were used to calculate the RF-based Chl-a estimates with additional
hyperparameter optimization scheme (gridsearchCV).

For quantitative evaluation, statistical metrics including the coefficient of determina-
tion (R2), bias, mean absolute error (MAE), error variance (σ2

E), and root mean square error
(RMSE) were computed using the following equations:

R2 =
N ∑N

j=1
(
ŷj × yj

)
− ∑N

j=1
(
ŷj
)

∑N
j=1(yj)√[

N ∑N
j=1

(
ŷ2

j

)
−

(
∑N

j=1
(
ŷj
))2

][
N ∑N

j=1(yj)−
(

∑N
j=1

(
yj
))2

] (2)

bias =
1
N

N

∑
i=1

(
ŷj − yj

)
(3)

MAE =
1
N

N

∑
j=1

∣∣ŷj − yj
∣∣, (4)

RMSE =

√√√√ 1
N

N

∑
j=1

(
ŷj − yj

)2 (5)

where N represents the total number of ground-based Chl-a measurements over the study
period across the inland lakes in Ohio; ŷj and yi denote the jth estimated and measured
Chl-a value, respectively. Note that σ2

E is calculated as the square of the RMSE.



Remote Sens. 2024, 16, 2761 8 of 16

4. Results and Discussion
4.1. Overview of Chlorophyll-a over Inland Lakes in Ohio

Before evaluating Chl-a estimated using surface reflectance from HLS and AIC-like
weighted regression, we analyzed the overall temporal behavior of Chl-a measured through
sampling activities across inland lakes in Ohio from 2000 to 2020. The results indicated that
the overall concentration of Chl-a (Figure 3a) increased from 2000 to 2013, although the
mean concentration of Chl-a slightly decreased from 2011 to 2013 (Figure 3b). Afterward,
the mean concentration of Chl-a showed a significant increase in 2015, with the largest
standard deviation of 291.49 µg/L, followed by a slight decrease. The maximum Chl-a
concentration during the study period was 856 µg/L at Buckeye Lake during the year of
2016, indicating a high eutrophication level.
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Focusing on the top five annual maximum Chl-a concentrations since 2010, they were
generally observed at Grand Lake St. Marys (GLSM), Buckeye Lake, and Lake Erie, which
was also witnessed by Gorham et al. [25] More specifically, 99.2% of the observed Chl-a
concentrations (i.e., 514 out of 519) at Buckeye Lake and GLSM yielded Chl-a concentrations
of over 56 µg/L, suggesting hypereutrophic conditions [46]. Both GLSM and Buckeye Lake
have similar causes for high Chl-a concertation: non-point source pollutant loading. For
example, GLSM is affected by pollutants from non-irrigated crop production, residential
development, and livestock feeding operations [47]. In the case of Buckeye Lake, it routinely
suffered algae blooms every year after 2010 due to nearby crop fields, accounting for 40.6%
of the land cover in Buckeye Lake [48]. The Buckeye Lake reservoir experienced a high Chl-
a concentration during 2015–2016 with the mean Chl-a concentration of 248.59 µg/L, which
corresponds to the algae warning issued by the Ohio Department of Natural Resources.

Figure 4 depicts the time series of Chl-a samples collected across Lake Erie during the
study period. Note that the period from 2000 to 2009 is illustrated separately, as the EPA
Great Lakes National Program sampled water quality parameters only during April and
August of each year. The main difference between the periods before and after 2010 is the
magnitude of the Chl-a concentration. The overall mean Chl-a concentration before 2010
was 2.20 µg/L, with annual averages ranging from 0.74 µg/L to 5.50 µg/L. In contrast, the
later period yielded a mean Chl-a concentration of 13.55 µg/L, with the maximum annual
average Chl-a of 31.49 µg/L occurring in 2015. According to Figure 4b, Chl-a measurement
exceeding 200 µg/L was first observed in August 2011, corresponding to the substantial
algal bloom that occurred in Lake Erie from June to October 2011. Michalak et al. [49]
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reported that the peak bloom intensity in August 2011 was 7.3 times higher than that
from 2001 to 2009, caused by phosphorus loading from agricultural practices coupled with
meteorological conditions such as heavy rainfall and discharge.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 17 
 

 

accounting for 40.6% of the land cover in Buckeye Lake [48]. The Buckeye Lake reservoir 
experienced a high Chl-a concentration during 2015–2016 with the mean Chl-a concentra-
tion of 248.59 μg/L, which corresponds to the algae warning issued by the Ohio Depart-
ment of Natural Resources. 

Figure 4 depicts the time series of Chl-a samples collected across Lake Erie during 
the study period. Note that the period from 2000 to 2009 is illustrated separately, as the 
EPA Great Lakes National Program sampled water quality parameters only during April 
and August of each year. The main difference between the periods before and after 2010 
is the magnitude of the Chl-a concentration. The overall mean Chl-a concentration before 
2010 was 2.20 μg/L, with annual averages ranging from 0.74 μg/L to 5.50 μg/L. In contrast, 
the later period yielded a mean Chl-a concentration of 13.55 μg/L, with the maximum 
annual average Chl-a of 31.49 μg/L occurring in 2015. According to Figure 4b, Chl-a meas-
urement exceeding 200 μg/L was first observed in August 2011, corresponding to the sub-
stantial algal bloom that occurred in Lake Erie from June to October 2011. Michalak et al. 
[49] reported that the peak bloom intensity in August 2011 was 7.3 times higher than that 
from 2001 to 2009, caused by phosphorus loading from agricultural practices coupled with 
meteorological conditions such as heavy rainfall and discharge. 

In terms of seasonal behavior, the maximum Chl-a concentration was generally 
measured in August of each year after 2010 (Figure 4b). This pattern aligns with the posi-
tive relationship between lake surface temperature and Chl-a concentration. Kraemer et 
al. [50] noted that phytoplankton incubate more readily under warming conditions, lead-
ing to an increase in phytoplankton biomass in lakes due to enhanced energy transfer to 
phytoplankton consumers. Additionally, changes in meteorological conditions and land 
cover triggered by warming can increase nutrient inflow into the lake. In 2014, the maxi-
mum Chl-a concentration was observed in October, corresponding to a harmful and nui-
sance cyanobacterial algal bloom in Lake Erie. This bloom further overwhelmed the water 
treatment system in the city of Toledo [51]. 

 
Figure 4. Temporal variation in chlorophyll-a concentration over Lake Erie (a) from 2000 to 2009 
and (b) 2010 to 2020. 

4.2. Evaluation of Chlorophyll-a Estiamtes from AIC-like Weighted Regression 
To examine the statistical performance of AIC-like weighted regression, we com-

pared the Chl-a estimates from both multivariate linear regression and AIC-like weighted 
regression against Chl-a observed from the ground-based stations (Figure 5). Overall, the 
results indicated that AIC-like weighted regression yielded better consistency with 

Figure 4. Temporal variation in chlorophyll-a concentration over Lake Erie (a) from 2000 to 2009 and
(b) 2010 to 2020.

In terms of seasonal behavior, the maximum Chl-a concentration was generally mea-
sured in August of each year after 2010 (Figure 4b). This pattern aligns with the positive
relationship between lake surface temperature and Chl-a concentration. Kraemer et al. [50]
noted that phytoplankton incubate more readily under warming conditions, leading to
an increase in phytoplankton biomass in lakes due to enhanced energy transfer to phyto-
plankton consumers. Additionally, changes in meteorological conditions and land cover
triggered by warming can increase nutrient inflow into the lake. In 2014, the maximum
Chl-a concentration was observed in October, corresponding to a harmful and nuisance
cyanobacterial algal bloom in Lake Erie. This bloom further overwhelmed the water
treatment system in the city of Toledo [51].

4.2. Evaluation of Chlorophyll-a Estiamtes from AIC-like Weighted Regression

To examine the statistical performance of AIC-like weighted regression, we compared
the Chl-a estimates from both multivariate linear regression and AIC-like weighted regres-
sion against Chl-a observed from the ground-based stations (Figure 5). Overall, the results
indicated that AIC-like weighted regression yielded better consistency with ground-based
measurements. Specifically, the coefficient of determination (R2) of the AIC-like weighted
regression was 0.91, which was significantly higher than the R2 of multivariate linear
regression (0.34). Similarly, the error variance of estimated Chl-a from AIC-like weighted re-
gression (0.30 µg/L on a log scale) was also an improvement over that of multivariate linear
regression (2.34 µg/L on a log scale). Additionally, Chl-a estimates from AIC-like weighted
regression showed better statistics than those estimated from a random forest model with
an R2 of 0.82 and an error variance of 0.92 µg/L. While the random forest model performed
better than multivariate linear regression, the AIC-like weighted regression proposed in
this research demonstrated the best agreement with ground-based observations.

Figure 6 represents the scatterplot of observed versus estimated Chl-a from AIC-like
weighted regression for spring (March to May), summer (June to August), and autumn
(September to November). The R2 values ranged from 0.89 to 0.93, indicating that the
estimated Chl-a showed good consistency with the observed Chl-a across all seasons. In
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terms of bias and RMSE, summer had the lowest bias (0.06 µg/L) and RMSE (0.55 µg/L),
followed by autumn (bias: 0.20 µg/L, RMSE: 0.89 µg/L) and spring (bias: −0.39 µg/L,
RMSE: 1.08 µg/L). One of the main reasons for the relatively poorer statistical performance
during spring is the presence of a strong vertical line in Figure 6a, along with a scattered
pattern at relatively low Chl-a concentrations. Similar findings have been reported by
Seegers et al. [52] and Neil et al. [53], indicating that Chl-a estimated via satellite-based
band reflectance exhibited lower statistical performance in the low Chl-a concentration
range. Figure 7 depicts a typical example of the Chl-a estimation process by an AIC-like
weighted scheme over the spring period. Specifically, Chl-a estimates from each HLS
reflectance (before averaging each band spectrum) yielded a large deviation from the
observed Chl-a. This phenomenon occurred due to the small magnitude (ranging from
1.9 × 10−6 to 8.7 × 10−6) and variation in reflectance (ranging from 10−6 to 10−5) within
spatio-temporal windows. These band reflectances are used as independent variables for
the simple linear equation developed with the n-1 combination of matchup pairs, which
creates a large deviation from the Chl-a observation. In the case of Chl-a estimates with
simple-averaged reflectance, it yielded relatively less deviation with the measurement
than weight-averaged HLS reflectance. Consequently, even though AIC-based weights
are continuously updated during iterations, they may not be updated significantly if the
band reflectance does not vary. The main reason for the small magnitude and variation is
related to the different characteristics of satellite-based reflectance depending on the water
body condition. In general, scattering in water is caused by pigments and other impurities,
contributing to the overall reflectance. Conversely, clean water yields a low signal-to-noise
ratio across the visible and near-infrared spectrum as it acts as an absorber [54]. In addition,
Timmons [55] revealed that inland lakes over Ohio during spring are under well-mixed
conditions due to the spring turnover, leading to homogeneous water conditions and small
magnitude and variation in satellite-based reflectance.
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4.3. Influence of the Spatial and Temporal Windows on Estimating Chlorophyll-a

This section focuses on analyzing the overall influence of spatial and temporal win-
dows (depicted in Section 3.3) on the estimation of chlorophyll-a using AIC-like weighted
regression. Figure 8 illustrates the boxplots of the normalized weight across different spatial
windows for Lake Erie and the other inland lakes. For Lake Erie, the median normalized
weight varied from 0.405 to 0.433, while the mean normalized weight tended to increase
with the expansion of the spatial window from 0.696 (zero spatial window) to 1.152 (eight-
pixel spatial window). Sayers et al. [56] explored the spatial and temporal heterogeneity
of water quality parameters and their optical properties during 2015–2016. The results
indicated that the normalized beam attenuation and scattering coefficients from the stations
located within 13 km showed similar magnitudes, even though the water quality indicators
revealed slightly different values. This suggests that expanding the spatial window over
Lake Erie could help acquire more available band reflectance, thereby resulting in more
accurate Chl-a estimation. For all inland lakes except Lake Erie, the median normalized
weight ranged from 0.037 to 0.065, which was significantly less than that from Lake Erie.
Fee et al. [57] suggested that the spatial gradient of nutrient concentration in a smaller
lake was significantly smaller than that in a relatively larger lake due to the difference in
the mixing layer. On the other hand, the mean normalized weight for other lakes sug-
gested that the band reflectance extracted at a point (zero spatial window) revealed the
highest mean normalized weight of 2.085. This phenomenon can be explained by the fact
that a large spatial window can introduce the uncertainty caused by the land vegetation
surrounding lakes.

According to Figure 9, temporal windows of ±3 days and ±4 days yielded the largest
median normalized weights across Lake Erie and the other inland lakes, respectively. In the
case of exact same-day matches and a temporal window of ±1 day, relatively small median
normalized weights were observed across all lakes. In terms of mean normalized weight,
all lakes revealed the highest mean values at a temporal window of ±3 days, followed by
±2 days and ±1 day. The main reason for the relatively small weight given to the exact
same-day match observations was the insufficient number of datasets compared to other
temporal windows. For instance, the number of cloud-free HLS images matched with
ground-based records during the study period was less than 150, while this number tripled
when the temporal window was extended to ±3 days over Lake Erie.
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Several researchers have explored effective time windows for applying satellite ob-
servations to estimate Chl-a. For example, Balley and Werdall [58] suggested to utilize
a 3-h time difference between satellite-based imagery and ground-based measurements
to estimate accurate water quality parameters. Conversely, Li et al. [59] used temporal
windows of ±7 days and ±12 days to estimate Chl-a over Chinese lakes in the northern
and southern parts of the country, respectively, using support vector machines. Kayastha
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et al. [38] explored effective time windows (up to ±5 days) for Landsat-5, Landsat-8, and
Sentinel-2 to estimate Chl-a over Oklahoma reservoirs from 2006 to 2020. Their results
indicated that Landsat-5 yielded the best statistical performance in a relatively short tem-
poral window (±1 day), while Landsat-8 and Sentinel-2 yielded the best coefficients of
determination with temporal windows of ±3 days and ±5 days, respectively. It is worth
noting that the average cloud cover over the state of Ohio falls within 60 to 70%, with
Lake Erie generally showing cloud cover over 60% excluding the summer season over the
past 30 years [60]. Consequently, the appearance of relatively high cloud cover hinders
the acquisition of cloud-free satellite images and reduces the available number of datasets
to estimate Chl-a. This suggests that extending the temporal windows could help secure
sufficient datasets to estimate Chl-a over inland lakes across Ohio.

5. Conclusions

This study proposed a novel, simple AIC-like weighted regression method for esti-
mating Chl-a using band reflectance observed from HLS and applied it to inland lakes in
Ohio. Prior analysis of the temporal behavior of Chl-a across these lakes revealed that the
maximum Chl-a concentration was observed during the 2015–2016 seasons, with the high-
est concentrations measured in major inland lakes such as Grand Lake St. Marys (GLSM)
and Buckeye Lake. For Lake Erie, there was a significant difference in Chl-a concentration
before and after 2010.

Chl-a concentration was then estimated using cloud-free HLS imagery over Ohio and
an AIC-like weighted regression scheme. The statistical evaluation confirmed that Chl-a es-
timated from AIC-like weighted regression (R2 = 0.92, σ2

E = 0.31 µg/L) yielded significantly
better statistics than both multivariate linear regression (R2 = 0.34, σ2

E = 2.34 µg/L) and
random forest (R2 = 0.82, σ2

E = 0.92 µg/L). In terms of seasonal analysis, the summer and
autumn seasons revealed good statistical performance, while the spring season showed the
poorest performance due to relatively small variations in band reflectance caused by large
scattering components over deep water and low Chl-a concentrations in spring.

Further analysis of the weight depending on different spatial window length revealed
that spatial homogeneity was high for both Lake Erie and the other inland lakes. However,
the mean normalized weight suggested that the expansion of the spatial window should
be carefully chosen depending on the lake size and surrounding vegetation. In terms
of temporal windows, ±2, ±3, and ±4 days yielded the highest weights over inland
lakes in Ohio. This indicates that increasing the temporal window up to 4 days helps
acquire a sufficient number of datasets to estimate Chl-a without impeding the underlying
assumption of relatively homogeneous temporal variations in inland lake water quality.

The AIC-like weighted regression method proposed in this study can be further
examined by using band reflectance from different optical sensors and applying it to
various water quality parameters (e.g., nutrients, Secchi depth, and organic matter) as well
as hydrometeorological variables (e.g., land surface temperature and soil moisture). For
future studies, consideration of water reflectance by using open-water-based atmospheric
corrections (e.g., Atmospheric Correction for OLI, Case 2 Regional CoastColour) can be
applied to retrieve water quality parameters from optical imagery. Additionally, the AIC-
like weighted regression method can be improved by implementing different weighting
schemes depending on the size of the lake and the influence of different seasons.
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STOrage and Retrieval (STORET) data utilized in this study can be obtained through the National
Water Quality Council (https://waterqualitydata.us, accessed on 28 May 2022). Water quality pa-
rameters acquired from Ohio Sea Grant and Stone Laboratory can be retrieved through Stone Lab
Algal and Water Quality Laboratory (https://ohioseagrant.osu.edu/research/live/water, accessed
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cessed on 31 May 2024). AquaSat dataset can be found via the University of North Carolina, Chapel
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Acknowledgments: The authors appreciate Xuesong Zhang at USDA-ARS, Alexis Londo at the Ohio
State University, Joshi Neha at Arcadis U.S., Inc., the Harmful Algal Bloom Research Initiative of the
Ohio Department of Higher Education, and two anonymous reviewers.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Griffith, A.W.; Gobler, C.J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems. Harmful

Algae 2020, 91, 101590. [CrossRef] [PubMed]
2. Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.;

McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom
impacts. Commun. Earth Environ. 2021, 2, 117. [CrossRef] [PubMed]

3. Zhang, J.; Phaneuf, D.J.; Schaeffer, B.A. Property values and cyanobacterial algal blooms: Evidence from satellite monitoring of
Inland Lakes. Ecol. Econ. 2022, 199, 107481. [CrossRef]

4. Tanvir, R.U.; Hu, Z.; Zhang, Y.; Lu, J. Cyanobacterial community succession and associated cyanotoxin production in hypereu-
trophic and eutrophic freshwaters. Environ. Pollut. 2021, 290, 118056. [CrossRef]

5. Schreidah, C.M.; Ratnayake, K.; Senarath, K.; Karunarathne, A. Microcystins: Biogenesis, toxicity, analysis, and control. Chem.
Res. Toxicol. 2020, 33, 2225–2246. [CrossRef] [PubMed]

6. Hollister, J.W.; Kreakie, B.J. Associations between chlorophyll a and various microcystin health advisory concentrations.
F1000Research 2016, 5, 151.

7. He, J.; Chen, Y.; Wu, J.; Stow, D.A.; Christakos, G. Space-time chlorophyll-a retrieval in optically complex waters that accounts for
remote sensing and modeling uncertainties and improves remote estimation accuracy. Water Res. 2020, 171, 115403. [CrossRef]

8. Ma, A.Q.; Yan, X.; Wang, Y.X. Research on Remote Sensing Retrieval of Chl-a Concentration in the Jiaozhou Bay, Qingdao Based
on Semi-analytical/Semi-empirical Model. In Proceedings of the 2022 3rd International Conference on Geology, Mapping and
Remote Sensing (ICGMRS), Zhoushan, China, 22–24 April 2022.

9. Boucher, J.; Weathers, K.C.; Norouzi, H.; Steele, B. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for
regional freshwater monitoring. Ecol. Appl. 2018, 28, 1044–1054. [CrossRef]

10. Zhang, F.; Li, J.; Yan, B.; Yu, J.; Wang, C.; Wang, S.; Shen, Q.; Wu, Y.; Zhang, B. Tracking historical chlorophyll-a change in the
guanting reservoir, Northern China, based on landsat series inter-sensor normalization. Int. J. Remote Sens. 2021, 42, 3918–3937.
[CrossRef]

11. Mamun, M.; Ferdous, J.; An, K.G. Empirical estimation of nutrient, organic matter and algal chlorophyll in a drinking water
reservoir using Landsat 5 TM data. Remote Sen. 2021, 13, 2256. [CrossRef]

12. Germán, A.; Shimoni, M.; Beltramone, G.; Rodríguez, M.I.; Muchiut, J.; Bonansea, M.; Scavuzzo, C.M.; Ferral, A. Space-time
monitoring of water quality in an eutrophic reservoir using Sentinel-2 data-A case study of San Roque, Argentina. Remote Sens.
Appl. Soc. Environ. 2021, 24, 100614. [CrossRef]

13. Sherman, J.; Tzortziou, M.; Turner, K.J.; Goes, J.; Grunert, B. Chlorophyll dynamics from Sentinel-3 using an optimized algorithm
for enhanced ecological monitoring in complex urban estuarine waters. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103223.
[CrossRef]

14. Tran, M.D.; Vantrepotte, V.; Loisel, H.; Oliveira, E.N.; Tran, K.T.; Jorge, D.; Mériaux, X.; Paranhos, R. Band Ratios Combination for
Estimating Chlorophyll-a from Sentinel-2 and Sentinel-3 in Coastal Waters. Remote Sens. 2023, 15, 1653. [CrossRef]

15. Joshi, N.; Park, J.; Zhao, K.; Londo, A.; Khanal, S. Monitoring Harmful Algal Blooms and Water Quality Using Sentinel-3 OLCI
Satellite Imagery with Machine Learning. Remote Sens. 2024, 16, 2444. [CrossRef]

16. Gidudu, A.; Letaru, L.; Kulabako, R.N. Empirical modeling of chlorophyll a from MODIS satellite imagery for trophic status
monitoring of Lake Victoria in east Africa. J. Gt. Lakes Res. 2021, 47, 1209–1218. [CrossRef]

17. Mohebzadeh, H.; Mokari, E.; Daggupati, P.; Biswas, A. A machine learning approach for spatiotemporal imputation of MODIS
chlorophyll-a. Int. J. Remote Sens. 2021, 42, 7381–7404. [CrossRef]

https://waterqualitydata.us
https://ohioseagrant.osu.edu/research/live/water
https://www.glerl.noaa.gov/data/#biological
https://www.glerl.noaa.gov/data/#biological
https://earthdata.nasa.gov
https://doi.org/10.1016/j.hal.2019.03.008
https://www.ncbi.nlm.nih.gov/pubmed/32057338
https://doi.org/10.1038/s43247-021-00178-8
https://www.ncbi.nlm.nih.gov/pubmed/37359131
https://doi.org/10.1016/j.ecolecon.2022.107481
https://doi.org/10.1016/j.envpol.2021.118056
https://doi.org/10.1021/acs.chemrestox.0c00164
https://www.ncbi.nlm.nih.gov/pubmed/32614166
https://doi.org/10.1016/j.watres.2019.115403
https://doi.org/10.1002/eap.1708
https://doi.org/10.1080/01431161.2021.1875149
https://doi.org/10.3390/rs13122256
https://doi.org/10.1016/j.rsase.2021.100614
https://doi.org/10.1016/j.jag.2023.103223
https://doi.org/10.3390/rs15061653
https://doi.org/10.3390/rs16132444
https://doi.org/10.1016/j.jglr.2021.05.005
https://doi.org/10.1080/01431161.2021.1957513


Remote Sens. 2024, 16, 2761 15 of 16

18. Yu, X.; Shen, J.; Zheng, G.; Du, J. Chlorophyll-a in Chesapeake Bay based on VIIRS satellite data: Spatiotemporal variability and
prediction with machine learning. Ocean. Model. 2022, 180, 102119. [CrossRef]

19. Cao, Z.; Ma, R.; Pahlevan, N.; Liu, M.; Melack, J.M.; Duan, H.; Xue, K.; Shen, M. Evaluating and Optimizing VIIRS Retrievals
of Chlorophyll-a and Suspended Particulate Matter in Turbid Lakes Using a Machine Learning Approach. IEEE Trans. Geosci.
Remote Sens. 2022, 60, 4211417. [CrossRef]

20. Hyde, K.; O’Reilly, J.; Oviatt, C. Validation of SeaWiFS chlorophyll-a in Massachusetts Bay. Cont. Shelf Res 2007, 27, 1677–1691.
[CrossRef]

21. Salama, M.S.; Su, Z. Resolving the subscale spatial variability of apparent and inherent optical properties in ocean color match-up
sites. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2612–2622. [CrossRef]

22. Carmello, V. Using a spatial synoptic classification to analyze the weather-type dring the main soybean development period in
northwest Ohio, 1999–2013. Pa. Geogr. 2019, 57, 34.

23. Urquhart, E.; Schaeffer, B.A.; Stumpf, R.P.; Loftin, K.A.; Werdell, P.J. A method for examining temporal changes in cyanobacterial
harmful algal bloom spatial extent using satellite remote sensing. Harmful Algae 2017, 67, 144–152. [CrossRef] [PubMed]

24. Evrendilek, F.; Wali, M.K. Modelling long-term C dynamics in croplands in the context of climate change: A case study from
Ohio. Environ. Model. Softw. 2001, 16, 361–375. [CrossRef]

25. Gorham, T.; Jia, Y.; Shum, C.K.; Lee, J. Ten-year survey of cyanobacterial blooms in Ohio’s waterbodies using satellite remote
sensing. Harmful Algae 2017, 66, 13–19. [CrossRef] [PubMed]

26. Clark, J.M.; Schaeffer, B.A.; Darling, J.A.; Urquhart, E.A.; Johnston, J.M.; Ignatius, A.R.; Myer, M.H.; Loftin, K.A.; Werdell, P.J.;
Stumpf, R.P. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water
sources. Ecol. Indic. 2017, 80, 84–95. [CrossRef] [PubMed]

27. Steffen, M.M.; Zhu, Z.; McKay, R.M.L.; Wilhelm, S.W.; Bullerjahn, G.S. Taxonomic assessment of a toxic cyanobacteria shift in
hypereutrophic Grand Lake St. Marys (Ohio, USA). Harmful Algae 2014, 33, 12–18. [CrossRef]

28. Mitsch, W.J. Solving Lake Erie’s harmful algal blooms by restoring the Great Black Swamp in Ohio. Ecol. Eng. 2017, 108, 406–413.
[CrossRef]

29. Cousino, L.K.; Becker, R.H.; Zmijewski, K.A. Modeling the effects of climate change on water, sediment, and nutrient yields from
the Maumee River watershed. J. Hydrol. Reg. Stud. 2015, 4, 762–775. [CrossRef]

30. Philpott, T. The Big-Ag-Fueled Algae Bloom That Won’t Leave Toledo’s Water Supply Alone. Mother Jones, 5 August 2015. Avail-
able online: https://www.motherjones.com/food/2015/08/giant-toxic-algae-bloom-haunts-toledo/#:~:text=The%20citizens%
20of%20Toledo,%20Ohio,400,000%20draws%20its%20tap%20water (accessed on 5 May 2024).

31. Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine
continuum. Wiley Inerdiscip. Rev. Water 2019, 6, e1373. [CrossRef]

32. Ross, M.R.; Topp, S.N.; Appling, A.P.; Yang, X.; Kuhn, C.; Butman, D.; Simard, M.; Pavelsky, T.M. AquaSat: A data set to enable
remote sensing of water quality for inland waters. Water Resour. Res. 2019, 55, 10012–10025. [CrossRef]

33. Chaffin, J.D.; Kane, D.D.; Stanislawczyk, K.; Parker, E.M. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll,
and turbidity in a large lake (Lake Erie, North America): Implications for estimation of cyanobacterial bloom parameters from
water quality sonde measurements. Environ. Sci. Pollut. Res. 2018, 25, 25175–25189. [CrossRef] [PubMed]

34. Cooperative Institute for Great Lakes Research; University of Michigan and NOAA Great Lakes Environmental Research
Laboratory. Physical, Chemical, and Biological Water Quality Monitoring Data to Support Detection of Harmful Algal Blooms (HABs) in
Western Lake Erie, Collected by the Great Lakes Environmental Research Laboratory and the Cooperative Institute for Great Lakes Research
Since 2012; [2015–2017]; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2019. [CrossRef]

35. Hoffman, D.K.; McCarthy, M.J.; Boedecker, A.R.; Myers, J.A.; Newell, S.E. The role of internal nitrogen loading in supporting
non-N-fixing harmful cyanobacterial blooms in the water column of a large eutrophic lake. Limnol. Oceanogr. 2022, 67, 2028–2041.
[CrossRef]

36. Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and
Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [CrossRef]

37. Claverie, M.; Masek, J.G.; Ju, J.; Dungan, J.L. Harmonized Landsat-8 Sentinel-2 (HLS) Product User’s Guide; National Aeronautics and
Space Administration (NASA): Washington, DC, USA, 2017.

38. Kayastha, P.; Dzialowski, A.R.; Stoodley, S.H.; Wagner, K.L.; Mansaray, A.S. Effect of time window on satellite and ground-based
data for estimating chlorophyll-a in reservoirs. Remote Sens. 2022, 14, 846. [CrossRef]

39. Liu, X.; Yang, Q.; Wang, Y.; Zhang, Y. Evaluation of GOCI remote sensing reflectance spectral quality based on a quality assurance
score system in the Bohai Sea. Remote Sens. 2022, 14, 1075. [CrossRef]

40. Zhang, M.; Ibrahim, A.; Franz, B.A.; Ahmad, Z.; Sayer, A.M. Estimating pixel-level uncertainty in ocean color retrievals from
MODIS. Opt. Express 2022, 30, 31415–31438. [CrossRef] [PubMed]

41. Zhou, Y.; Yu, D.; Cheng, W.; Gai, Y.; Yao, H.; Yang, L.; Pan, S. Monitoring multi-temporal and spatial variations of water
transparency in the Jiaozhou Bay using GOCI data. Mar. Pollut. Bull. 2022, 180, 113815. [CrossRef] [PubMed]

42. Keith, D.; Rover, J.; Green, J.; Zalewsky, B.; Charpentier, M.; Thursby, G.; Bishop, J. Monitoring algal blooms in drinking water
reservoirs using the Landsat-8 Operational Land Imager. Int. J. Remote Sens. 2018, 39, 2818–2846. [CrossRef]

43. McCullough, I.M.; Loftin, C.S.; Sader, S.A. Combining lake and watershed characteristics with Landsat TM data for remote
estimation of regional lake clarity. Remote Sens. Environ. 2012, 123, 109–115. [CrossRef]

https://doi.org/10.1016/j.ocemod.2022.102119
https://doi.org/10.1109/TGRS.2022.3220529
https://doi.org/10.1016/j.csr.2007.02.002
https://doi.org/10.1109/TGRS.2011.2104966
https://doi.org/10.1016/j.hal.2017.06.001
https://www.ncbi.nlm.nih.gov/pubmed/28755717
https://doi.org/10.1016/S1364-8152(00)00089-X
https://doi.org/10.1016/j.hal.2017.04.013
https://www.ncbi.nlm.nih.gov/pubmed/28602249
https://doi.org/10.1016/j.ecolind.2017.04.046
https://www.ncbi.nlm.nih.gov/pubmed/30245589
https://doi.org/10.1016/j.hal.2013.12.008
https://doi.org/10.1016/j.ecoleng.2017.08.040
https://doi.org/10.1016/j.ejrh.2015.06.017
https://www.motherjones.com/food/2015/08/giant-toxic-algae-bloom-haunts-toledo/#:~:text=The%20citizens%20of%20Toledo,%20Ohio,400,000%20draws%20its%20tap%20water
https://www.motherjones.com/food/2015/08/giant-toxic-algae-bloom-haunts-toledo/#:~:text=The%20citizens%20of%20Toledo,%20Ohio,400,000%20draws%20its%20tap%20water
https://doi.org/10.1002/wat2.1373
https://doi.org/10.1029/2019WR024883
https://doi.org/10.1007/s11356-018-2612-z
https://www.ncbi.nlm.nih.gov/pubmed/29943249
https://doi.org/10.25921/11da-3x54
https://doi.org/10.1002/lno.12185
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.3390/rs14040846
https://doi.org/10.3390/rs14051075
https://doi.org/10.1364/OE.460735
https://www.ncbi.nlm.nih.gov/pubmed/36242224
https://doi.org/10.1016/j.marpolbul.2022.113815
https://www.ncbi.nlm.nih.gov/pubmed/35671614
https://doi.org/10.1080/01431161.2018.1430912
https://doi.org/10.1016/j.rse.2012.03.006


Remote Sens. 2024, 16, 2761 16 of 16

44. Mishra, D.R.; Narumalani, S.; Rundquist, D.; Lawson, M. Characterizing the vertical diffuse attenuation coefficient for down-
welling irradiance in coastal waters: Implications for water penetration by high resolution satellite data. ISPRS J. Photogramm.
Remote Sens. 2005, 60, 48–64. [CrossRef]

45. Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. STAT
Comput. 2017, 27, 1413–1432. [CrossRef]

46. Carlson, R.E. A coordinator’s guide to volunteer lake monitoring methods. N. Am. Lake Manag. Soc. 1996, 96, 305.
47. Hoorman, J.; Hone, T.; Sudman Jr, T.; Dirksen, T.; Iles, J.; Islam, K.R. Agricultural impacts on lake and stream water quality in

Grand Lake St. Marys, Western Ohio. Water Air Soil Pollut. 2008, 193, 309–322. [CrossRef]
48. Perry Soil and Water Conservation District. Buckeye Lake HUC-12: Nine Element Nonpoint Source Implementation Strategic Plan

(NPS-IS Plan); Perry Soil and Water Conservation District: Somerset, OH, USA, 2020.
49. Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; Chaffin, J.D.; Cho, K.; Confesor, R.; Daloglu,

I.; et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future
conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [CrossRef] [PubMed]

50. Kraemer, B.M.; Mehner, T.; Adrian, R. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes.
Sci. Rep. 2017, 7, 10762. [CrossRef]

51. Smith, D.R.; King, K.W.; Williams, M.R. What Is Causing the Harmful Algal Blooms in Lake Erie? J. Soil Water Conserv. 2015, 70,
27A–29A. [CrossRef]

52. Seegers, B.N.; Werdell, P.J.; Vandermeulen, R.A.; Salls, W.; Stumpf, R.P.; Schaeffer, B.A.; Owens, T.J.; Bailey, S.W.; Scott, J.P.; Loftin,
K.A. Satellites for Long-Term Monitoring of Inland U.S. Lakes: The MERIS Time Series and Application for Chlorophyll-A. Remote
Sens. Environ. 2021, 266, 112685. [CrossRef]

53. Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A global approach for chlorophyll-a retrieval across optically complex inland
waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [CrossRef]

54. Zeng, C.; Richardson, M.; King, D.J. The impacts of environmental variables on water reflectance measured using a lightweight
unmanned aerial vehicle (UAV)-based spectrometer system. ISPRS J. Photogramm. Remote Sens. 2017, 130, 217–230. [CrossRef]

55. Timmons, J.S. Identifying the Isotopic Signature of Lake Effect Precipitation on Northeast Ohio Isocape. Master’s Thesis, Kent
State University, Kent, OH, USA, 2021.

56. Sayers, M.J.; Bosse, K.R.; Shuchman, R.A.; Ruberg, S.A.; Fahnenstiel, G.L.; Leshkevich, G.A.; Stuart, D.G.; Johengen, T.H.; Burtner,
A.M.; Palladino, D. Spatial and temporal variability of inherent and apparent optical properties in western Lake Erie: Implications
for water quality remote sensing. J. Gt. Lakes Res. 2019, 45, 490–507. [CrossRef]

57. Fee, E.J.; Hecky, R.E.; Regehr, G.W.; Hendzel, L.L.; Wikinson, P. Effects of lake size on nutrient availability in the mixed layer
during summer stratification. Can. J. Fish. Aquat. Sci. 1994, 52, 2756–2768. [CrossRef]

58. Bailey, S.W.; Werdell, P. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens.
Environ. 2006, 102, 12–23. [CrossRef]

59. Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H.; et al. Quantification of chlorophyll-a in
typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 2021, 778, 146271.
[CrossRef]

60. Ackerman, S.A.; Heidinger, A.; Foster, M.J.; Maddux, B. Satellite regional cloud climatology over the Great Lakes. Remote Sens.
2013, 5, 6223–6240. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.isprsjprs.2005.09.003
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11270-008-9692-1
https://doi.org/10.1073/pnas.1216006110
https://www.ncbi.nlm.nih.gov/pubmed/23576718
https://doi.org/10.1038/s41598-017-11167-3
https://doi.org/10.2489/jswc.70.2.27A
https://doi.org/10.1016/j.rse.2021.112685
https://doi.org/10.1016/j.rse.2019.04.027
https://doi.org/10.1016/j.isprsjprs.2017.06.004
https://doi.org/10.1016/j.jglr.2019.03.011
https://doi.org/10.1139/f94-276
https://doi.org/10.1016/j.rse.2006.01.015
https://doi.org/10.1016/j.scitotenv.2021.146271
https://doi.org/10.3390/rs5126223

	Introduction 
	Study Area and Datasets 
	Study Area 
	Datasets 
	Ground-Based Chlorophyll-a Measurements 
	Harmonized Landsat and Sentinel-2 (HLS) 


	Methodology 
	Data Processing and Quality Control 
	Akaike Information Criterion (AIC)-like Weighted Regression 
	Evaluation Metrics 

	Results and Discussion 
	Overview of Chlorophyll-a over Inland Lakes in Ohio 
	Evaluation of Chlorophyll-a Estiamtes from AIC-like Weighted Regression 
	Influence of the Spatial and Temporal Windows on Estimating Chlorophyll-a 

	Conclusions 
	References

