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Abstract: Landslides are a widely recognized phenomenon, causing huge economic and human
losses worldwide. The detection of spatial and temporal landslide deformation, together with the
acquisition of precursor information, is crucial for hazard prediction and landslide risk management.
Advanced landslide monitoring systems based on remote sensing techniques (RSTs) play a crucial
role in risk management and provide important support for early warning systems (EWSs) at local
and regional scales. The purpose of this article is to present a review of the current state of knowledge
in the development of RSTs used for identifying landslide precursors, as well as detecting, monitoring,
and predicting landslides. Almost 200 articles from 2010 to 2024 were analyzed, in which the authors
utilized RSTs to detect potential precursors for early warning of hazards. The applications, challenges,
and trends of RSTs, largely dependent on the type of landslide, deformation pattern, hazards posed
by the landslide, and the size of the area of interest, were also discussed. Although the article
indicates some limitations of the RSTs used so far, integrating different techniques and technological
developments offers the opportunity to create reliable EWSs and improve existing ones.

Keywords: landslides; early warning; detection; monitoring; prediction; precursor; hazard
assessment

1. Introduction

Landslides significantly affect the quality of life in the local community and the safety
of buildings. Their occurrence is complex and depends on many natural and anthropogenic
factors. The most significant natural factors leading to the formation of mass movements,
such as landslides, include geological and geomorphological conditions, heavy and pro-
longed rainfall, topography, groundwater, freeze–thaw, and wetting–drying cycles [1].
Identifying and monitoring these factors and understanding their impact on landslides is
key to effective risk management [2] and minimizing the effect of landslides by, among
other things, taking warning and evacuation measures [3].

An essential step in controlling the risks associated with mass movements is the
introduction of continuous monitoring [4] and EWS [5]. The purpose of monitoring is
the systematic and continuous processing of acquired observations about the changes
occurring in areas prone to landslides. On the other hand, analyzing data obtained from
real-time monitoring or historical data, which forms the basis of early warning systems,
allows potential risks to be identified. Landslide monitoring and EWS have mainly relied
on in situ measurements [6]. Various techniques were used for this purpose, such as geode-
tic, geotechnical, geophysical, and hydrological measurements, utilizing inclinometers,
piezometers, total stations, and GNSS receivers, among others [7]. However, RSTs, includ-
ing Synthetic Aperture Radar (SAR), Ground-Based Interferometric Synthetic Aperture
Radar (GB-InSAR), multispectral and optical images from unmanned aerial vehicles (UAV)
and optical satellites, Light Detection and Ranging (LiDAR), which include TLS (Terrestrial
Laser Scanning) and ALS (Airborne Laser Scanning), Infrared Thermography (IRT), are
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becoming increasingly popular. These techniques enable earth observation from satellite,
airborne, and ground altitudes [8–10], contrary to traditional techniques, and can be imple-
mented on a regional scale. The developments in landslide hazard monitoring also allow
the detection of various landslide precursors. These are defined as features or phenom-
ena showing displacements over time or abnormal changes in monitored features, which
can significantly increase the landslide probability. Their identification aims to minimize
the risk of landslides by detecting potential hazards in advance and taking appropriate
responses [3]. The main precursors include groundwater levels, soil moisture, movements
and deformations of the land surface, thermal anomalies, and topographic changes. Based
on these data, detailed analyses are often carried out to map landslide distributions for
public safety and emergency management [11]. Integrating data from various sources,
such as geodetic measurements, radar systems, satellite images, and meteorological data,
allows for a comprehensive approach to landslide hazard analysis. By analyzing these data
and detecting characteristic changes in the analyzed factors over time for landslide areas
identified in the past, the potential risk of hazards in potential new areas can be assessed
more effectively [12]. All this creates the opportunity to predict landslides even several
days before their occurrence [13,14].

This paper reviews articles and discusses the potential and use of RSTs to identify
landslides for early warning of hazards between 2010 and 2024. This review focuses on
identifying recent advances and research trends in identifying landslide precursors based
on an in-depth analysis of nearly 200 scientific articles. The data collection process was
conducted using the PRISMA schema, providing a transparent approach to literature selec-
tion. This review included a variety of RSTs, such as SAR, GB-InSAR, optical multispectral
and hyperspectral imaging, LiDAR, and IRT. These techniques were evaluated for their
effectiveness in identifying landslide precursors, as well as their advantages and limitations.

2. Data Collection

In this literature review, the Scopus database was used to collect all possible scientific
inputs in which authors use RSTs to detect potential precursors for early warning of hazards.
The diversity of publication types in the Scopus database, i.e., scientific journals, conference
papers, books, technical reports, and other materials published in English, allows for a
more comprehensive literature review than in the Web of Science (WoS). On the other hand,
Google Scholar (GS), which has less precise and advanced tools for filtering results, may be
less effective in providing articles that comply with established criteria [15]. Scopus and
WoS data in all areas are considered a subset of the GS database [16]. However, GS contains
a lot of duplicate citations [17], which can significantly affect the quality of the literature
review. In addition, Scopus is highly correlated with the GS article database in life and
earth sciences (93%), indicating a high level of coverage and compatibility between these
databases [16]. According to the research, almost 99.11% of the journals indexed in WoS are
also included in the GS database [18]. Scopus also has an advantage over other databases
by offering advanced tools for analyzing scientific data, allowing detailed filtering of data,
trend research, and analysis of results.

The data collection for the literature review was conducted in several stages. The
first was to define the time range of the review (2010–2024) and to select articles written in
English. Four main criteria were then determined and used to search the Scopus database.
These included the following keywords: (1) landslide and precursor; (2) landslide and early
warning and detection; (3) landslide and early warning and monitoring; and (4) landslide
and early warning and prediction. Their selection was significant in identifying critical
articles that contained valuable information directly relevant to the topic under review.
The first criterion defined was chosen as the primary criterion. Since the word ‘landslide’
plays a crucial role in both ‘detection,’ ‘monitoring,’ and ‘prediction’ of landslides, it was
included when analyzing results from the Scopus database in the subsequent criteria.
After a detailed review of many articles, the additional keyword ‘early warning’ helped
narrow the selection and focus on publications presenting novel research approaches or
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results that could be developed and implemented in modern EWSs. A total of 1808 search
records and an additional 22 through manual and origin of the search were identified in
the database (total n = 1830). After removing 327 duplicates, screening by title and abstract
removed 1299 records. During the review of titles and abstracts, articles were rejected for
three reasons:

• Reason 1: The articles were not directly related to the literature review topic. They
covered various issues, including strategies for implementing EWSs, testing measure-
ment equipment to improve the quality of data acquired, managing and transmitting
measurement data, and countering various natural disasters and phenomena;

• Reason 2: The articles were not related to landslide detection, monitoring, and pre-
diction as defined in the article [2]. Therefore, publications in which the prediction
approach was based entirely on statistical or physical models and did not involve
analysis of historical data, field observations, or monitoring results were excluded
from the review;

• Reason 3: The articles presented the results of studies where RST was not used.

The full texts of the remaining 204 records were reviewed. On reading the full texts,
39 articles only met some eligibility criteria. The first reason was the need for more crucial
information on using RST to study precursors, even though the abstract mentioned this.
The second reason was the exclusion of items that were books containing a series of articles
that were previously analyzed separately and included in the review. In this way, the
final number of 165 articles analyzed in the remainder of the study was selected. Figure 1
shows a flow chart of the PRISMA study describing the selection process and reasons for
exclusion [19].
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3. RSTs: Description and Temporal Evolution of Scientific Production

RSTs show high efficiency in investigating surface changes, allowing a systematic, time-
efficient, and cost-effective view of the ground surface on a large scale. These technologies,
which include SAR, GB-InSAR, optical and multispectral image acquisition, LiDAR, and
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IRT, play a crucial role in EWSs, enabling the identification of ground displacements and
structural changes induced by the occurrence of landslides.

This section describes the characteristics of RSTs, their sensors, and the basic pro-
cessing principles used in monitoring changes in landslide areas. RSTs using optical and
multispectral imaging are described separately due to their different applications and the
type of analysis performed. Table 1 shows the main characteristics of the spatial data
acquired using RST, i.e., the types of sensors acquiring the data, the platforms on which
they are mounted, the spatial resolution, and the standard scene sizes. For satellite data,
example sizes of standard maps obtained in imaging mode are given, while standard areas
of studies obtained during measurements are given for the other techniques.

Table 1. Comparison of example characteristics of spatial data acquired with RSTs used to observe
earth surface displacements.

RST Sensor Example Spatial Resolution Standard Scene Size

SAR
Satellite radar

Sentinel-1 Range: 1.5 m
Azimuth: 3.6 m 80.1 × 80.1 km

TerraSAR-X Range: 0.24 m
Azimuth: 0.6 m 4 × 3.7 km

ALOS-2 Range: 3.0 m
Azimuth: 1.0 m 25 × 25 km

GB-InSAR Ground-based radar FMCW Range: 0.75 m
Azimuth: 1.5 m 2 × 2 km

Optical images
Optical satellite sensor WorldView-3 PAN band: 0.31 m 13.1 × 13.1 km
Optical aircraft sensor Leica RC-30 5 cm (500 AGL) 10 × 10 km

Digital camera on UAV Zenmuse P1 ~1 cm (75 AGL) 2 × 2 km

Multispectral/
Hyperspectral images

Multispectral satellite
sensor

Sentinel-2 10/20/60 * m 100 × 100 km
PlanetScope 3 m 20 × 20 km

Multispectral camera
on UAV MicaSense RedEdge-P ~5 cm (70 AGL) 2 × 2 km

LiDAR
Aerial laser scanner Riegl

miniVUX-3UAV 5 mm (100 AGL) 2 × 2 km

Terrestrial laser scanner RIEGL VZ-400i 1 mm (distance of 100
m) 800 m

IRT
Thermal camera on UAV Zenmuse H20

Series ~2 cm (75 AGL) 2 × 2 km

Handheld IR camera Flir SC620 ~6 cm (distance of 100
m) 80 × 60 m

The table uses the following abbreviations: PAN (Panchromatic), VNIR (Visible Near Infrared), SWIR (Shortwave
Infrared), AGL (Height above ground level), and IR (Infrared camera). * 10 m spatial resolution bands: B2
(490 nm), B3 (560 nm), B4 (665 nm), B8 (842 nm); 20 m spatial resolution bands: B5 (705 nm), B6 (740 nm), B7
(783 nm), B8a (865a nm), B11 (1610 nm), B12 (2190 nm); 60 m spatial resolution bands: B1 (443 nm), B9 (940 nm),
B10 (1375 nm).

3.1. SAR Overview

In recent years, the SAR technique has started to be used in studies related to natural
hazards and has become a powerful remote sensing tool used to acquire data for vast areas.
They provide a way to understand landslide movement’s spatial and temporal patterns [20].
SAR sensors on various satellites (Figure 2) can penetrate clouds, enabling data acquisition
in different atmospheric conditions, regardless of the time of day or season. This feature is
crucial for continuous landslide monitoring and prediction [2].
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The SAR sensors can operate in different frequency bands, including the X (8–12 GHz,
wavelength: 2.4–3.8 cm), C (4–8 GHz, wavelength: 3.8–7.5 cm), and L (1–2 GHz, wavelength:
15–30 cm) bands. The frequency of radar sensors determines their ability to penetrate a
medium, influencing the choice of radar band based on the type of study area and research
purposes [22–24]. X-band and C-band signals only penetrate the upper layers of soil and
vegetation. On the other hand, L-band data are far more suitable for monitoring displace-
ments in areas covered with dense vegetation [25] and with low correlation areas [11]. SAR
images consist of pixels characterized by signal intensity, direction, amplitude, and phase
values [21]. The amplitude value depends on the radar reflectance, while the phase value
of a single SAR image partly depends on the distance of the sensor from the earth’s surface.

Techniques such as Coherence Change Detection (CCD) [26,27], Offset Tracking
(OT) [28–31], and Interferometric Synthetic Aperture Radar (InSAR) are commonly used
SAR techniques for analyzing the earth’s surface with high resolution and precision. The
continuous development of SAR has also allowed the development of Adaptive Distributed
Scatterer InSAR (ADS-InSAR) [32] and SAR Shape from Shading (SAR-SfS) [33] techniques
that extend its potential and enable different approaches to data processing and analysis
depending on the area under study. Among the best-known techniques for obtaining
information on changes in the topography of the land surface is Differential Interferometric
SAR (D-InSAR). This technique measures the difference in signal phase between succes-
sive radar image recordings over time [23,34]. However, emerging limitations related to
temporal and spatial decorrelation, as well as phase interference due to the atmosphere,
reduce the reliability of this technique. To overcome these limitations, In-SAR-based in-
formation can be enhanced using multi-temporal interferometric techniques (MT-InSAR)
based on the analysis of large SAR image sets [35–38]. The results of MT-InSAR analyses
are ground surface displacements over time. Among the most well-known and frequently
used MT-InSAR techniques in landslide studies are Permanent Scatterer Interferometry
(PS-InSAR) [39–43], Small BAseline Subsets Interferometry (SBAS-InSAR) [22,40,44–47],
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SqueeSAR [45], Quasi PS technique (QPS-InSAR) [48], and Temporal Coherent Point InSAR
(TCP-InSAR) [25,49].

Basic interferometric data analysis techniques can use different approaches, such as
Single Look, Multi Look [50], and Two-Pass Interferometry [51]. The first is based on ana-
lyzing the complete information contained in a single pixel of a radar image. This allows
for more detailed data, but the approach is more susceptible to noise and atmospheric
interference. On the other hand, the Multi-Look technique involves grouping the pixels of
the radar image. As a result of this process, the resolution of the image is reduced while im-
proving image quality and reducing noise. The Two-Pass Interferometry approach involves
accurately comparing two independent satellite overflights to determine changes in signal
phase and precisely measure terrain deformation. This technique is beneficial when the
displacements are dynamic and can occur between consecutive satellite visits. Backscatter
is also essential for interpreting radar data [52–54]. The intensity of the scattering is used to
determine land surface characteristics such as texture, soil moisture, or vegetation features.

PS-InSAR and SBAS-InSAR effectively deal with the challenges of radar signal deco-
herence between two consecutive satellite revisits [55]. Both techniques use many SAR
images to estimate and correct atmospherically induced phase distortions. SBAS-InSAR and
PS-InSAR are the main techniques for monitoring deformation using time series analysis.
PS-InSAR uses highly coherently distributed points in cell resolution, while SBAS-InSAR
uses spatial distribution in short baselines [40]. These techniques are primarily used in
urbanized areas. Depending on the degree of vegetation cover, the SqueeSAR technique
can also be used in non-urbanized areas. The technique allows ground displacement to
be measured using PS points and partially coherently distributed scatterers (DS). DSs are
radar targets corresponding to multiple neighboring pixels in a SAR image, characterized
by similar low reflectance. They usually correspond to homogeneous areas with limited
radiometric variability. These are natural scatterers, i.e., forests, agricultural fields, bare
soil, wasteland, and rock surfaces. These techniques achieve high accuracy in determining
land deformation, especially in the case of slow landslide movements. In contrast, the tech-
nique based on the interferogram phase may not be sufficient for rapid movements due to
underestimation caused by phase unwrapping errors [56]. For comparison, the maximum
detectable displacements between two interferogram acquisitions, using appropriate phase
unwrapping algorithms and assuming that the data are free of noise, are 25.7, 42.6, and
46.8 cm/year for platforms such as Terra SAR-X, Sentinel-1, and ALOS-2, respectively [57].
Therefore, to determine displacements with high deformation velocities that exceed the
measurement capabilities of the standard multi-interferometric approach, the OT technique
is used, utilizing total amplitude information [31].

The data acquired with SAR sensors can be utilized for mapping unstable slopes [52,58],
monitoring [13,59], identifying [48], characterizing landslides [21], and analyzing their
evolution over time [28,60–62]. Such studies have mainly been carried out using techniques
such as CCD [26], D-InSAR, MT-InSAR, and Stream Length-gradient Hotspot and Cluster
Analysis (SL-HCA) [3]. However, most of them have focused on conducting detailed
studies of individual landslides at the local scale [63], with significantly fewer studies
conducted at the regional scale [64–66].

3.2. GB-InSAR Overview

Continuous technological advances improving the GB-InSAR quality have increased
its popularity and use in various fields. The high resolution of the acquired data, the speed
of acquisition, the ability to acquire data from restricted areas, and the ability to work
in all weather conditions make the GB-InSAR application capable of supporting ground
displacement monitoring and early warning systems [67,68]. Additionally, the ability to
take measurements at much shorter intervals gives GB-InSAR a significant advantage,
particularly over satellite measurements.

The operating principle of GB-InSAR is similar to that of satellite-based InSAR and
enables the determination of displacements by analyzing the phase differences of radar
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signals between two SAR images with millimeter accuracy [67,69]. It can accurately deter-
mine both the amplitude and the phase of the microwave signal between two SAR image
acquisitions, which are backscattered by the target. This type of radar interferometry allows
a flexible choice of measurement geometry and spatial and temporal resolution [70]. The
most common GB-InSAR technique for monitoring objects and terrain surfaces is differen-
tial interferometry. It allows precise measurement of displacements by analyzing phase
differences between two or more radar acquisitions. The transmit and receive antennas’
selectable location allows the angle of view to be optimized, adapting it to the surveyed
area. As a result, monitoring accuracy and efficiency have increased. As with satellite
techniques, GB-InSAR uses sensors operating in the X, C, and L bands. In addition, the
system also has a Ku-band (1.67–2.5 cm), which has a frequency range of approximately 12
to 18 GHz [21], allowing for high spatial resolution images.

In recent years, GB-InSAR has been extensively used in landslide research, enabling
improved monitoring and mapping activities [71,72]. It also allows the ability to accu-
rately and precisely describe the deformation pattern, even in areas with different rates
of displacement [73,74]. With its ability to select the appropriate measurement frequency,
GB-InSAR technology overcomes the limitations of temporal decorrelation, which can be
challenging in observing dynamic landslide processes [75,76]. In addition, it enables real-
time or near-real-time monitoring of slopes [77,78], where it is necessary to take appropriate
preventive measures due to rapidly developing displacements [67].

3.3. Optical, Multispectral, and Hyperspectral Imaging Overview

Recently, the launch of additional satellites into space, the thriving UAV market,
and the increasing spatial resolution of the retrieved products have increased the use
of optical, multispectral, and hyperspectral imaging techniques. Sensors mounted on
satellites, aircraft, and UAVs use natural sunlight to record images of the Earth’s surface
in different spectral bands with varying spatial and temporal resolution. Optical systems
operating allow for obtaining images similar to what the human eye sees. Multispectral and
hyperspectral sensors capture images in several or even hundreds of selected spectral bands,
i.e., near-infrared (NIR), shortwave infrared (SWIR), and Red Edge, which allow assessment
of vegetation, soil, and hydrological conditions. For more detailed analysis, derived
products, i.e., panchromatic images, panoramic sharpening, and false-color compositions,
are also used to extract information on vegetation density, soil chemistry, and moisture.

In the case of satellite data, besides the crucial role of atmospheric conditions in data
acquisition, the frequency of data collection is important, which depends on the satellite’s
revisit time. Figure 3 presents the most well-known satellites and information on the
temporal and spatial resolution of the data they acquire. The most common satellites are
Sentinel-2A and Sentinel-2B, which offer free access to data. Satellite platforms, such as
WorldView and Pleiades, provide sub-meter maximum resolution images at daily intervals
but still cannot match the spatial and temporal resolution of data acquired with UAVs,
which are particularly useful for monitoring local land deformation and displacement [79,80].

Optical data were used to identify and map changes on the land surface, often relying
on visual techniques [81,82], thereby providing valuable information on the history of
deformation and the processes within them that affect slope stability [83–85]. Thanks to
different spectral bands, using vegetation indices to monitor surface changes has proven
to be an important element in providing essential information about environmental and
morphological changes on the surface of the studied landslide areas [86]. These indices,
such as the Normalized Difference Vegetation Index (NDVI) [52], the Normalized Difference
Water Index (NDWI), the Soil Adjusted Vegetation Index (SAVI), and the Normalized
Multiband Drought Index (NMDI) [53], are calculated based on different spectral channels,
allowing us to assess the condition of vegetation and identify areas that are changing
over time.
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3.4. LiDAR Overview

LiDAR is a remote, three-dimensional (3D) measurement technology using laser light.
It sends a laser pulse from the instrument to the object’s surface and back to the detector.
The distance between the instrument and the object is calculated by measuring the phase
difference in the signal or the time course of the measurement pulse while recording
the laser beam’s horizontal and vertical deviation angles [87]. LiDAR systems can be
mounted on mobile platforms (airborne laser scanning (ALS) with regional coverage) or
placed on tripods on the ground (terrestrial laser scanning (TLS) with local coverage). It
is also increasingly common to see laser scanners mounted on UAVs, walking robots, or
autonomous vehicles.

In recent years, most sensors have been dominated by linear mode LiDAR (LML),
with a single wavelength and a single pulse, with the possibility of single- or multi-pulse
operation. Recently, however, several new LiDAR technologies and sensors have emerged,
such as multi-pulse in the air (MPiA) LiDAR, full waveform digitization (FWD) LiDAR,
multi-spectral LiDAR (MSL), Geiger Mode LiDAR (GML), and Single Photon LiDAR
(SPL) [88]. Each has unique features and applications, allowing the appropriate sensor
selection for specific needs.

The most common LiDAR sensors record one to three features of the reflected pulse. In
contrast, modern sensors can register up to a dozen echoes, depending on the laser scanner
and the surface from which the signal is reflected [89]. In addition, full-waveform LiDAR
systems can record the entire waveform of the return pulse, enabling the identification of
different structures and objects in the surveyed area. This allows these systems to penetrate
even dense vegetation, providing details on the canopy, sub-canopy structures, ground
vegetation, and ground morphology [2].

TLS and ALS techniques are generally used to monitor unstable slopes [90,91], debris
flows [92], and slow-moving landslides [93] and to create digital elevation models (DEMs)
even in areas with high vegetation cover [94]. Models created based on TLS are compared
with products obtained in previous measurement series to determine displacements for
individual landslides [2]. In contrast, ALS is mainly used for landslide inventory and map-
ping [95,96]. TLS and ALS also allow the estimation of changes in the volume of removed
and/or accumulated material, allowing the identification of landslide sites and their evolu-
tion over time [97,98]. In recent years, the potential of point cloud correlation techniques
for monitoring the displacements of active landslides has also been explored. The results
have shown that these methods are particularly useful for observing areas with small
surface changes [99,100]. However, by supplementing the research with further geospatial
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techniques, such as discontinuity line tracking, it is possible to detect displacements of
several meters [101].

3.5. IRT Overview

IRT is a technology based on acquiring and processing information about the infrared
radiation emitted by objects. This type of measurement is performed using non-contact
devices such as thermal imaging cameras and infrared cameras [102]. The acquired data
are converted into visible images by assigning the appropriate infrared energy level to the
pixels. This results in images called thermograms [103]. In the case of ongoing research,
radiant temperature maps are obtained after prior correction of sensitive parameters, i.e.,
object emissivity, path length, air temperature, and humidity [21].

In research using the IRT technique, observations of the areas under investigation are
carried out from satellite, aerial, or ground levels. Currently, several satellites are acquiring
thermal data from different regions of the earth. These include Landsat, which is used
to monitor forested areas; the Moderate-Resolution Imaging Spectroradiometer (MODIS),
which monitors forested areas and water quality; Sentinel-3, which allows monitoring
of ocean and land surface temperatures; and Geostationary Operational Environmental
Satellites (GOES) with a thermal imaging camera, which allows monitoring of atmospheric
conditions. Thermal imaging cameras mounted on aerial platforms such as drones or
aircraft enable thermal imaging measurements over much smaller areas. However, they
enable more detailed identification of areas with different thermal properties. IRT analysis
can be approached in two ways. The passive approach utilizes the natural thermal radiation
emitted by the objects under investigation, mainly for monitoring surface temperatures
and detecting warm and cold areas on objects. In contrast, the active approach requires an
external energy source to induce the appropriate thermal contrasts.

IRT is increasingly being used to characterize and map unstable slopes. To achieve a
more accurate and detailed interpretation of the results, IRT is typically integrated with
other RSTs, such as TLS and GB-InSAR [21]. This integration allows for detecting rock
mass cracks, subsurface voids, and moisture and seepage zones. Their formation affects
the thermal properties of the medium, i.e., density, heat capacity, or conductivity, and these
changes can be detected on the created temperature maps as thermal patterns that differ
from the surroundings [104]. Such areas are called thermal anomalies and can indicate
potential slope instability [90].

3.6. Temporal Evolution of the Scientific Production

In this review, 165 articles, spanning from early 2010 to early January 2024, were
analyzed and statistically compiled (Figure 4a). The distribution of the described RSTs
in the articles analyzed over the years is shown in Figure 4b. It should be noted that
several different measurement techniques were used in many of the articles. Therefore, the
numerical values in Figures 2, 4b and 5 do not add to those in Figure 4a.

In the initial period, the number of publications using RSTs gradually increased.
However, a significant increase occurred in the second half of the study period, which was
attributed to the development of satellite and aerial technologies, global data availability,
and increased public awareness.

The first publications using RSTs to study landslide precursors, dating from the
beginning of the review period (2010–2012), used techniques such as GB-InSAR, LiDAR,
and optical imagery. In addition to the data during this period being mainly acquired
from the ground level, a few articles using satellite precipitation monitoring systems were
also classified as ‘others’ (Figure 4b) [105]. Publications from the beginning of the study
period were mainly focused on supporting the monitoring and early warning of unstable
slopes from ground level. Landslide monitoring using satellite and aerial data became
increasingly popular over the review period, especially in 2016–2023, caused by access to
data from newly launched radar and optical satellites, i.e., ALOS, Sentinel-1, Sentinel-2,
and TerraSAR-X (Figure 4b).
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Figure 5 shows the quantitative distribution of articles that used different RSTs between
2010 and 2024. As many as 85 articles describe the use of SAR in their research, indicating
its popularity in landslide precursor studies.

SAR, associated with various techniques (Figure 6a), has become essential due to its
independence from atmospheric conditions and the possibility of using current and histori-
cal data in the analyses. In particular, its significance is noticeable due to the increasing
number of articles using the MT-InSAR technique in research, allowing deformation to
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be monitored over time (Figure 6b). This enables a better understanding of the processes’
dynamics and the identification of deformation patterns and trends. Despite the emergence
of more advanced technologies, GB-InSAR is still prevalent due to its high accuracy and
ability to monitor ground deformation in real-time, as confirmed by 42 articles utilizing
this technique. The emergence of drones and improved optical, multispectral, and hyper-
spectral sensors have contributed to significant advances in detecting displacements and
deformations on the ground surface. Improvements in the quality of satellite data have
made it possible to identify and study temporal changes on the ground surface with magni-
tudes as small as a few tens of centimeters [106]. In addition, advances in computerization
have enabled the development of algorithms that automatically determine displacements
based on images, as confirmed by as many as 62 articles describing the use of these tech-
niques in research. Among the 36 articles in the review that use the LiDAR technique, most
describe the use of point clouds, acquired with this technique, to monitor landslide-prone
areas. LiDAR products are characterized by high spatial resolution and the ability to create
3D models, which has made the technique popular for landslide monitoring and EWSs.
Meanwhile, publications using IRT to identify landslide precursors have shown that the
ability to analyze significant thermal changes may play a crucial role in future landslide
research. These features are important in permafrost regions, where freeze–thaw cycles
and snowmelt caused by elevated temperatures affect the stability of the land surface [83].
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4. Application of RSTs in Landslide Precursor Detection and Measurement Data
Integration in EWSs

Landslides, especially those of large magnitudes, can indicate early warning signals
involving geomorphological, geotechnical, and geoenvironmental precursors [83]. These
mainly include changes in terrain, vegetation, hydrology, and cracks and fissures. Detecting
the precursors of landslides offers the possibility of early identification and warning long
before they occur. RSTs, enabling remote monitoring of areas in a regular and systematic
manner, are a powerful tool with great potential to achieve this goal. However, this requires
analysis to determine what precursors may be typical of a landslide, depending on the
type of landslide (fall, topple, slide, spread, flow), the degree of activity (active, dormant,
or potential), and what mechanisms may trigger it (precipitation, earthquakes, human
activity, hydrological changes, melting glaciers, and snow) [107]. When creating EWS on
a regional scale, where the genesis of landslide formation and types of landslides may
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differ, it is necessary to look for the most optimal solution that integrates appropriate
measurement techniques. Therefore, in order to create an effective EWS, it is essential to
integrate appropriate measurement techniques, taking into account the specific geological
and climatic characteristics of the region, which will enable effective monitoring and
analysis of potential landslide hazards.

This section of the article discusses the types of landslide precursors identified by RSTs,
such as coherence changes, cracking, displacements, temperature, structural discontinuities,
and vegetation indices (Table 2). Based on the literature review, methods for integrating
RSTs into landslide monitoring and EWSs are also presented.

Table 2. Landslide precursors detected by various RSTs.

RST Precursor Type

SAR

CCD
• displacements [3,28,31,83,108]
• coherence changes [26,109,110]

Figure 7

OT Figure 8

InSAR Figure 9

GB-InSAR • displacements [68,78,111,112] Figure 10

Optical images • displacements [113]
• structural discontinuities [83] Figure 11

Multispectral/Hyperspectral images • vegetation indices change [109] Figure 12

LiDAR
ALS • displacements [114–117]

• cracking [114,118]

Figure 13

TLS Figure 14

IRT • temperature [54,83,119] Figure 15
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and the surrounding reference slope, outlined in black. Figures (a,b) show the slope in autumn 2016,
while figures (c,d) show the loss of coherence in this area in spring 2017. The landslide occurred on
the 20th of May 2017; modified after [109], licensed under CC BY 4.0.
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Figure 9. Differential interferograms in the radar coordinate systems for the Gaojiawan landslide
(China), created from Sentinel-1A (a) ascending and (b) descending images. The segments from
point A to point B (a) and point C to point D (b) designations illustrate where distinct color changes
were observed in the interferograms, corresponding to large ground displacements in these areas;
source [31], licensed under CC BY 4.0.
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Figure 11. Surface movement maps determined from correlations of RGB images between annual
data sets for the Home Hill landslide (Tasmania, Australia); (a) 2011B–2012A; (b) 2012A–2013A;
(c) 2013A–2013B; (d) 2013B–2014A. The black arrows show the direction and size of the displacements;
modified after [113], licensed under CC BY 4.0.
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Figure 12. Analysis of NDVI in the Mud Creek landslide area. The first panel depicts the typical
vegetation behavior pattern. The second one corresponds to the dip in the NDVI index observed in
early 2016, which grew more significant during the spring of 2017, before most of the vegetation was
removed due to the landslide that occurred on the 20th of May 2017; source [109], licensed under CC
BY 4.0.
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Figure 15. Temperature maps of the studied surface of the Roaschia (Italy) rock slide were acquired
at 8:00 a.m. (a) and 1:00 p.m. (b). The arrows in image (b) indicate cold thermal anomalies that are
undetectable in the corresponding optical image acquired by a built-in digital camera (c). The arrow
on the generated differential surface temperature map (d) indicates thermal variations on the slope
surface, signifying higher heat transfer capacity than the surrounding rocks; modified after [119],
licensed under CC BY 4.0.

4.1. SAR Techniques

The current development of SAR techniques, access to increasing high-spatial and tem-
poral resolution data, and the ability to acquire data from large areas have also made this
technique widely used in landslide monitoring, enabling precise monitoring of millimeter-
scale deformations. The ability to analyze changes in soil structure, decreases in interfero-
gram coherence values, the velocity of the resulting deformations, and their acceleration
over time provide the basis for this technology to be widely used in the study of landslides
and the identification of their precursors.

One of the most straightforward techniques for detecting disturbing changes in the
ground surface is SAR data analysis using coherence change. Although it is a statistical
value and does not allow for the determination of specific displacement values, it allows
the detection of areas where there has been a change in its value over time [110]. A high
value usually indicates ground stability, while a decrease may indicate displacements or
changes in the ground structure, as occurred during the studies conducted at the Mud
Creek landslide [109]. The authors of the article used radar images acquired from the
same path to minimize the influence of spatial decoherence. However, the problem of
temporal coherence loss was solved by using an improved CCD technique to assess ground
deformation and land cover changes caused by landslide activity. By calculating the ratio
of the average coherence of the surrounding slope to the average coherence of the landslide
itself, it was possible to eliminate disturbances caused by temporal loss of coherence,
weathering, and vegetation cycles. Thus, it was possible to detect a significant decrease in
coherence due to temporal and spatial decorrelation in an area that had suffered a landslide
as much as five months before the disaster occurred. Despite the significant potential
of this precursor, additional research is needed to determine which types of landslides
exhibit this kind of behavior and how much deviation from the stable indicators indicates
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instability. Another successful application of the CCD technique for landslide detection is
using coherence difference and normalized coherence difference indices [26]. To eliminate
the impact of phase decorrelation, vegetation covering the studied areas was reduced by
calculating NDVI values from Sentinel-2 satellite images and creating an NDVI mask with
a threshold considered the boundary between areas with bare soil and low vegetation. As
a result, maps of pixels classified as landslide or non-landslide areas were created, enabling
the determination of optimal decision thresholds and the identification of areas potentially
at risk of landslides. However, problems resulting from the overgrowth of landslide areas
with high vegetation still appear to be a significant obstacle to the precise monitoring and
search for landslide precursors.

Developments in SAR techniques have made it possible to conduct advanced appli-
cations of MT-InSAR techniques for monitoring not only individual landslides but also
deformation on a regional scale. While the SqueeSAR technique allowed for the detection
of a trend change two years before the event in Ponzano [28], which can be seen as a
precursor to the main failure of the monitored landslide, the use of MT-InSAR to detect
and measure ground movements on a large scale faces several challenges [120]. In the case
of the system described in the paper, these include image decorrelation in vegetated areas,
low spatial resolution, and ambiguity in the precise location of measurement points on a
meter scale. The OT technique has also been used to evaluate the deformation field caused
by the Ponzano landslide [28]. While the technique can determine displacements of tens
of centimeters to several meters, it also has huge potential for identifying precursors by
detecting the acceleration of active landslides.

In Italy, a system for monitoring and mapping landslide-prone areas based on the
systematic processing of Sentinel-1 data using the SqueeSAR technique has also been
developed for the Tuscany region, providing a continuous flow of processed data [42]. The
described approach was carried out in search of anomaly points indicating a change in
movement dynamics. However, once a change in the deformation pattern is detected, it
must be analyzed and correctly interpreted to decide whether the anomalous pattern is
consistent with the actual slope dynamics. Therefore, the interpretation of SAR data alone
is not sufficient. It requires proper analysis supported, among other things, by information
obtained from various types of topographic, geomorphological, and geological maps, as
well as in situ data that can attribute geomorphological significance to scattered ground
displacement measurements at individual points. A similar approach was used in a study
applied to the central part of the Three Gorges Reservoir area (China), in which InSAR
techniques were used on a regional scale to identify precursors and active landslides or
zones of major deformation that required further investigation [3]. The current strategy
has great potential to expand the existing system by integrating various RSTs to analyze
potential landslides in detail, significantly reducing the workload.

4.2. GB-InSAR Techniques

GB-InSAR has significant potential for detecting landslide precursors due to its ability
to quickly process and interpret data in near-real time, enabling the detection of signals
indicating impending hazards. Possible delays before issuing a warning, resulting from the
need to analyze the acquired data, do not pose a problem for landslides characterized by
slow or moderate velocity.

The ability to detect even the smallest changes on the ground surface using GB-InSAR
enables the detection of microdeformations. This was the case with the detection of a
secondary landslide in Zhonghaicun (China), triggered by heavy rainfall that accelerated
over time, leading to a landslide [111]. The L-band synthetic aperture radar (MDSR-LSAR)
carried out enabled near-real-time recording of cumulative displacement time data in
the landslide area and the surrounding region. The velocity of the earth masses and the
velocity increment exceeded the alarm threshold, resulting in the automatic transmission
of an alarm message. The displacements and their increase over time detected with GB-
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InSAR have proven to be useful precursors to avoiding another disaster. Unfortunately, in
hard-to-reach areas, conducting such surveys can be very difficult or even impossible.

Another approach exploiting the potential of GB-InSAR to detect precursors to actual
slope displacement was also described in a paper on monitoring a gradually moving
landslide [112]. The developed system detected ground surface displacement towards
the bottom of the slope based on differences in the phase of the radar signal. It made
monitoring displacements of different velocities over the entire analyzed area possible.
However, the developed system does not have the ability to detect displacements in the
acceleration phase of a landslide, which is the essence of support for EWSs.

4.3. Optical, Multispectral, and Hyperspectral Imaging Techniques

Using optical, multispectral, and hyperspectral data acquired from different altitudes
with appropriate revisit times has become an essential source for acquiring landslide pre-
cursors such as displacements, structural discontinuities, and changes in vegetation indices.
Depending on the type of landslide and its patterns of change, precursors detected by
optical images can appear from days to months or even years before the event [121,122].
The case of monitoring the Trièves area in the Western Alps (France) enabled precursor mo-
tions to be detected three days before rapid landslides based on optical images (Sentinel-2,
Landsat-7/8) [14]. Growing areas of exposed slopes, which are visual precursors of land-
slides, allowed the detection of area changes exceeding 10,000 m2 in 5 years [39], which
gives a good chance of identifying sites potentially at risk of landslides over vast areas.
Multi-temporal optical images are also used to investigate potential geomorphological
precursors of large ones, such as large cracks, escarpments, and rock slides [106]. Visual
interpretation based on them showed that the detected geomorphological features were
correlated with available slope deformation data, which supports the idea that they may
be geomorphological precursors of rock slides. Visual analysis of optical imagery is very
useful as a first step in identifying potential landslide areas due to detecting vegetation
changes even months before a landslide occurs [123]. However, quantitative analysis of
ground displacement values, which usually requires more sophisticated measurement
techniques, is more important to detect their precursors. This is because they can provide
more precise information for landslide risk assessment.

This data type can be provided using high-resolution remote sensing images and
the scale-invariant feature transformation (SIFT) algorithm to monitor intense landslide
displacements [124]. SIFT is an algorithm for determining the displacement vector field
based on matching invariant features against image transformation, rotation, zooming,
and affine transformation. Continuous monitoring of the displacement of active land-
slides is also based on high-resolution optical images analyzed using cross-correlation
algorithms [125]. COSI-Corr is one of the most widely used tools that allows precise time
series registration of optical satellite and aerial images and sub-pixel measurement of
landslide surface displacements [113,126,127]. Cross-correlation, which enables real-time
analysis of slope movement, has also been used to apply flow visualization techniques
using time-lapse imagery (TLI). The acquisition of slope motion velocity vectors is achieved
using particle image velocimetry (PIV) algorithms [128]. As a result of ongoing monitoring,
slope movement initiated by rainfall 20 days before the landslide occurred was recorded.
The image correlation technique is more robust to vegetation’s influence than InSAR data
but requires images from the same season [126].

The development of UAV photogrammetry and the drive for automation have made
it possible to develop a landslide monitoring system that acquires data automatically and
then enables the creation of point clouds and 3D models of the study area [129]. Such a
system, based on the comparison of current data with results from previous series, allows
the status of landslide activity to be monitored in a short period of time [130]. However,
this type of solution encounters the resulting dependence of the measurements on weather
conditions and the limited measurement range (1–2 km).
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Multispectral data, covering several to hundreds of spectral channels, can provide
more detailed information on the condition of the vegetation present in an area, the moisture
content of the soil, or its chemical composition. An approach using multispectral data
to study the precursor to a change in the NDVI index in assessing landslide activity
allowed the time series of the index to be calculated as the ratio of the average NDVI in the
area considered unstable to the surrounding slope [109]. The advantage of the proposed
approach was the elimination of disturbances due to temporal loss of coherence and the
negative impact of disturbances due to weathering and vegetation cycles. The developed
technique proved to be a very useful precursor for the landslide, as it showed that the NDVI
decreased almost linearly five months before the landslide occurred. Unfortunately, further
research is required to assess the feasibility of using the proposed solution for heavily
vegetated slopes and to determine how much deviation from stable indices indicates
slope instability.

4.4. LiDAR Techniques

LiDAR is a technique for detecting precursors such as displacements and crack-
ing [114,116,117]. In the case of determining land surface displacements, it usually involves
comparing point clouds or creating digital terrain models (DTMs) between measurement
series. Although the data acquisition technique does not differ significantly, the method of
processing the acquired data, depending on the type of area under study and the expected
results, plays a significant role.

When dealing with small displacements, identifying precursors to potential landslides
can be challenging due to the limited accuracy of the equipment or observation techniques
used, which can be crucial. In one article, using TLS to monitor slow-moving landslides, a
hybrid-weighted iterative closest point (HWICP) algorithm and an adaptive local cloud-
to-mesh method (ALC2M) were used to detect precursors of small deformations [115].
The algorithms used enabled the precise unification of spatial references in long-range
TLS point clouds from different epochs and the eventual detection of deformations in the
monitored objects. The obtained results demonstrated the ability and potential to detect
small deformations before the failure of slow-moving landslides within the Three Gorges
Reservoir Region (China) with complex topography.

Using TLS to detect new cracks and monitor scarps of pre-existing landslides allows
mapping deformations and changes on the land surface with high spatial resolution, which
can be used as a precursor to landslides [114,118]. Detected changes can be the first step in
taking preventive measures and making detailed observations of areas where significant
changes have occurred. However, due to the limitations of observing individual landslides,
it is suggested that other measurement techniques be used, which require much less effort
and are less costly [118].

4.5. IRT Techniques

IRT enables the identification of landslide precursors by monitoring a time series of
geoenvironmental information, such as thermal changes. The technique is particularly
effective in permafrost regions, where landslides are caused by freeze–thaw cycles and
snow melt, affecting surface stability.

Thermal sensors operating at the satellite level can collect ground temperature infor-
mation on a regional scale, which can significantly support EWSs. Inversion analyses of
ground surface temperature and soil moisture were carried out using IRT to reflect the
actual conditions of the monitored region near Beihei Highway (China) [54]. Ongoing mon-
itoring and measurements based on discrete points allow macro-regional environmental
changes to be captured and the evaluation of the unstable region to be carried out. The
study results show they can support assessment and early warning of significant deforma-
tions caused by climate change and permafrost degradation. Limitations of temporal and
spatial resolution for frequent measurements may require other techniques.
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The data used in the time series analysis of the thermal environment for the Pink
Mountain, Mount Meager, and Yigong landslides, located high in the mountains, showed an
increase in the temperature of the monitored areas before the occurrence of each event [83].
The proposed approach to detecting precursors is limited to only glacial and snowy areas,
which poses a problem when monitoring landslides in different locations.

Landslide mapping using IRT may also be useful in detecting landslide precur-
sors [119]. The thermal anomalies revealed indicate the ability of IRT to identify signals
indicating unstable areas such as faults and sediment cones. However, by mapping the
obtained results onto a 3D differential map of the surface acquired with TLS, integrating
the techniques can significantly facilitate the interpretation of the data and identification of
potentially unstable areas.

4.6. Measurement Data Integration in EWSs

A deeper understanding of landslide processes’ failure mechanisms and dynamics is
required to effectively apply appropriate monitoring instruments and techniques (classical
and remote sensing). Classical in situ measurements, which include such sources of infor-
mation as surveying, geotechnical, geophysical, and hydrological measurements, provide
detailed information at the local level. Because of their ability to acquire comprehensive
data remotely from wide areas, RSTs are increasingly favored in EWSs.

This section presents the various measurement techniques used in EWSs to monitor
landslides and detect their precursors (Table 3). The first section describes systems that
integrate both classical and RSTs. They enable continuous monitoring and tracking of
landslide evolution history, mapping of landslide activity, and analyzing development
trends, significantly reducing the risk of landslides [131]. The second part presents case
studies that examine the use of RSTs alone to monitor and detect landslide precursors.
It also presents the possibility of overcoming the limitations of applied RSTs by using
other RSTs.

Table 3. Landslide monitoring techniques relating to landslide type and parameters to monitoring.

Landslide Type Parameters to
Monitoring

Equipment for
Monitoring Monitoring Techniques Reference

Multidisciplinary approaches

Rock slides

Displacement,
Deformation,

Volume
calculations,
Inclination,

Rainfall,
Temperature

Ground radars,
Laser scanners,

UAVs,
GNSS receivers,

Cameras,
DMS

instrumentations,
Extensometers,

Tiltmeters,
Rain gauges,

Thermometers

GB-InSAR,
LiDAR (ALS, TLS),

UAV photogrammetry
(3D modeling analysis),

GNSS measurement,
Deformation analysis,

Geotechnical measurements
using extensometers and

tiltmeters,
Rainfall monitoring,

Temperature monitoring in
boreholes and modeling

[132]

Rock slides

Displacement,
Deformation,

Rainfall,
Crack features

Radar satellites, UAVs,
GNSS receivers,
Crack meters,
Rain gauges

InSAR,
UAV photogrammetry
(3D modeling analysis),

GNSS measurement,
Geotechnical measurements

using a crack meter,
Rainfall monitoring

[133]

Translational
slides

Displacement,
Inclination

Radar satellites,
Inclinometers

InSAR (PS-InSAR,
DS-InSAR),

Geotechnical measurements
using inclinometer

[134]
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Table 3. Cont.

Landslide Type Parameters to
Monitoring

Equipment for
Monitoring Monitoring Techniques Reference

Earth flows

Displacement,
Deformation,
Detecting the

sub-surface structure of
landslides,

The distribution of
hydrological

characteristics and
reconstructing the landslide

body

Radar and optical satellites,
Laser scanners,
Multi-electrode

resistivity meters

InSAR (SBAS-InSAR),
Optical image analysis,

TLS (3D modeling analysis),
Geophysics measurements

using ERT

[135]

Rock slides Displacement,
Vibration

Radar and optical satellites,
Seismic stations

InSAR (D-InSAR),
Optical images and DEM

analysis, Monitoring seismic
activity

[136]

Lateral spread
Displacement,
Deformation,

Inclination

Radar satellites,
UAVs,

GNSS receivers,
Extensometers,

Tiltmeters

InSAR (PS-InSAR),
UAV photogrammetry
(3D modeling analysis),

GNSS measurement,
Geotechnical measurements

using extensometers and
tiltmeters

[137]

Deep-seated
landslides

Displacement,
Deformation,
Atmospheric

conditions,
Groundwater level,

Visual change
detection

Radar satellites,
Ground radars,

UAVs,
Automatic weather stations

(AWSs),
Wireless networks,

Camera systems (PICSs)

Mobile techniques:
InSAR (SBAS-InSAR),

GB-InSAR,
UAV photogrammetry (3D

modeling analysis,
orthomosaic analysis),
Permanent techniques:

Meteorological data analysis,
Groundwater level

measurements,
Optical images analysis

[138]

Slow moving
landslides

Displacement,
Deformation,

Inclination, Rainfall

Radar satellites,
Inclinometers,
Extensometers,

Rain gauges

InSAR (PS-InSAR),
Geotechnical measurements

using
inclinometer and

extensometers,
Rainfall monitoring

[139]

Remote Sensing approaches

Flows
Displacement,
Deformation,

Change detection

Radar and optical satellites,
UAVs

InSAR,
Optical images and aerial

images analysis
[50]

Different types of
landslides

Displacement,
Deformation,

Creep

Radar and optical satellites,
UAVs

InSAR,
Optical images and aerial

images analysis
[20]

Rockfalls,
Rock slides

Displacement,
Deformation,
Temperature

Ground radars,
Laser scanners,

Thermal cameras

GB-InSAR,
TLS (point cloud and 3D

modeling analysis),
IRT (temperature map

analysis)

[58]
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Table 3. Cont.

Landslide Type Parameters to
Monitoring

Equipment for
Monitoring Monitoring Techniques Reference

Mud flows

Displacement,
Coherence change detection,

Vegetation index,
Rainfall,

Temperature

Radar and optical satellites,
Rain gauges,

Thermometers

InSAR (NSBAS—the new
small baseline subset), CCD,

Multispectral images,
Rainfall and temperature

monitoring

[109]

Rockfalls Displacement,
Deformation

Radar satellites, Ground
radars,

Laser scanners

InSAR (PS-InSAR),
GB-InSAR,

TLS (3D modeling analysis)
[108]

Translational
slides

Displacement,
Deformation Radar satellites, Ground radars InSAR (PS-InSAR),

GB-InSAR [140]

Earth flows
Displacement,
Deformation,

Change detection

Radar satellites,
UAVs

InSAR (SBAS-InSAR),
UAV photogrammetry (3D

modeling analysis,
orthomosaic analysis)

[141]

Different type of
landslides

Displacement,
Deformation,

Change detection

Radar and optical satellites,
UAVs,

Ground radars,
Laser scanners

InSAR (D-InSAR, PS-InSAR),
GB-InSAR, Optical image

analysis,
3D modeling analysis,

LiDAR (DEM analysis),
UAV photogrammetry
(orthomosaic analysis)

[142]

Rock slides Displacement,
Deformation

Ground radars,
Laser scanners,

UAVs

GB-InSAR,
TLS (3D modeling analysis),

UAV photogrammetry
(orthomosaic analysis)

[143]

Debris flows Displacement Optical satellites,
UAVs

Optical images and
orthomosaic analysis [144]

4.6.1. Multidisciplinary Approaches

An advanced disaster warning system has been developed, using GNSS receivers,
fracture meters, and rainfall gauges to monitor landslide precursors, i.e., displacements
and deformations [133]. The system has been extended to monitor multi-temporal satellite
imagery and use InSAR techniques. The analyses of landslide precursor events carried out
on their basis, using available historical data, showed that displacements and deformations
in the study area had already occurred decades before the event. Implementing RSTs for
systematic monitoring of areas subject to pre-event observations could have predicted the
occurrence of an event much earlier and avoided many economic losses.

Moreover, combining a network of geotechnical surface sensors (inclinometers) with
InSAR data for landslide monitoring proved to be a solution for detecting slope failures
on Gediminas Castle Hill [134]. The monitoring system, integrating the techniques above,
enabled the observation of displacement on a large scale and over a period of time, detecting
precursors of displacement before slope failures occur. The use of MT-InSAR with a wireless
sensor network made of several bar extensometers and a borehole inclinometer to monitor
landslides also helped to understand how rainfall can affect the rate of deformation and
showed high agreement in the spatial and temporal distribution of deformation between the
two monitoring techniques [139]. Thanks to their vast coverage, InSAR satellite data enable
clear identification of spatial surface movements and their long-term evolution. Installed
geotechnical sensors provide near-real-time information, which allows the identification of
accelerations of rapid slope movements.

The selection of measurement techniques for monitoring landslides depends on the
ground. A combination of multi-source remote sensing and Electrical Resistivity Tomog-
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raphy (ERT) techniques for monitoring deformation and moisture changes is effective in
loess areas. Integration of InSAR, TLS, and optical image interpretation has been used to
monitor precursors of ground surface displacement over time [135]. The proposed system
also overcame the difficulties encountered by InSAR technology in effectively capturing
meter-long deformations using TLS. For permafrost areas, also requiring the selection of ap-
propriate measurement techniques, precursors such as displacement, deformation, volume
change, and landslide temperature have been studied [132]. The case of monitoring rock
slide Vaslemannen (Norway) with several techniques shows (Table 3) how the complexity
of structural conditions can hinder hazard management. Nevertheless, data from various
sources enabled accurate monitoring of changes, which was crucial for disaster prevention
and risk management.

Multidisciplinary approaches, including seismological records, the InSAR technique,
and the analysis of optical satellite imagery, have been used to detect and locate unstable
rock slopes [136]. Due to the lack of optical data in winter and problems with D-InSAR
resolution on steep slopes, more than remote sensing data is needed for detailed anal-
ysis or prediction of rock slope failures. However, seismic, interferometric, and optical
signatures of rock avalanche precursors provide early warning of potential new events.
To better understand the kinematics and evolution of slope deformation, a monitoring
system was developed using UAV-photogrammetry, PS-InSAR, GNSS reflectors, slope
meters, and extensometers [137]. InSAR results confirmed by GNSS measurements showed
displacement precursors. Extensometers and tiltmeters supported system performance by
monitoring displacements and gaps. Data integration requires crucial analyses to establish
alarm thresholds, but already at this stage, it enables comprehensive landslide monitoring.

The use of different measurement techniques, divided into mobile (measuring instru-
ments are moved to collect data) and permanent (permanently installed and continuously
collecting data) (Table 3), allowed the development of an innovative landslide monitoring
system [138]. The proposed monitoring system was divided into three scales. The first
is regional, using InSAR technology to detect and monitor landslides. The second, from
regional to local scales, is based on UAVs and automated weather station measurements.
The third is local, with an in situ visual monitoring camera system and groundwater level
measurements. This system’s main ideas include monitoring and detecting landslides on
a regional scale and local monitoring of their behavior, which provides opportunities for
innovative EWSs.

4.6.2. RS Approaches

The potential of several ground-based RSTs (Table 3) and their effectiveness in syner-
gistic use have been investigated in several case studies analyzing different slope instability
processes at various scales of emergency or post-disaster management [58]. The results
confirmed that, for each of the analyzed cases, using a single monitoring technique may
not be entirely sufficient due to inherent limitations, i.e., the range of detectable displace-
ment velocity or the repeatability of data recording. By combining several RSTs, such as
SAR, optical imagery, LiDAR, and IRT, an effective monitoring system for landslides and
landslide activity can be established due to the diverse features of these instruments, thus
overcoming the limitations of individual techniques.

Time series analysis based on the InSAR technique has the potential to provide essen-
tial knowledge on the precursors of large-scale landslide displacement and deformation.
Unfortunately, this technique cannot fully capture rapid ground surface movements due to
its limitations, i.e., low spatial and temporal resolution and phase noise. The proposed land-
slide monitoring solution integrates the SB-InSAR technique and UAV photogrammetry,
providing high-resolution images and capturing the fastest surface movements [141]. How-
ever, the proposed combination of GB-SAR integrated with data acquired from satellites
(e.g., Sentinel-1/2, TerraSAR-X, and SkyMED) has great potential to fully capture surface
motions and improve the system. This can be confirmed by studies integrating InSAR
and GB-InSAR techniques in geohazard monitoring [140,142]. The results showed that the
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InSAR technique is effective in mapping unstable areas. However, as a standalone RST
technique, it is only partially suitable for real-time landslide monitoring and early warning.
With the additional use of GB-InSAR, characterized by high precision and frequency of
measurements and the ability to take measurements in vegetated areas, the two techniques
complement each other and form the basis of an effective monitoring system.

Attempts to overcome the problem arising from obtaining reliable results using InSAR
in vegetated areas were made using the InSAR time series analysis technique using single
and multi-view phases [50]. The main objective was to increase the number of measurement
points in non-vegetated areas, which ultimately enabled the analysis of deformation’s
magnitude and dynamic evolution in different landslide parts. Additional studies based
on optical imaging to determine landslide boundaries and UAV photogrammetry to create
DTM and DEM for analyzing the landslide’s characteristics confirmed the reliability of
the results obtained using InSAR techniques. Based on the same RSTs, the possibility of
predicting the failure time based on the analysis of deformation patterns before the event
was demonstrated [20]. Thanks to the study’s comprehensiveness, three different phases of
mass movements (initiation, transport, and accumulation) were distinguished, providing
essential information for improving landslide EWS and hazard assessment under similar
geological and geomorphological conditions.

An integrated system based on GB-InSAR, TLS, and UAV photogrammetry enabled
rapid analysis and evaluation of various aspects of small landslides, such as spatial distribu-
tion, volume, stability, potential expansion, extent of impact, and intensity [143]. GB-InSAR
has been used to create displacement maps and velocity diagrams, making it possible to
predict the kinematic evolution of a landslide. TLS contributed by rapidly modeling slopes
and extracting geometric features of the landslide, which, when adjusted with GB-InSAR
data, enabled the creation of a 3D deformation model, identifying potential landslide-prone
areas. UAV photogrammetry was used to study hidden dangerous points and landslide-
prone areas. Landslide deformation evolution and risk assessment of secondary landslide
events were carried out using techniques from InSAR, GB-InSAR, and TLS [108]. Analyses
of pre- and post-event displacements, stability of masses, and the activity status of long-
term ground displacements were evaluated using PS-InSAR. This allowed the detection
of potential precursors based on local time series accelerations. GB-InSAR enabled the
monitoring of short-term sediment behavior after rockfall events. In addition, TLS data
were used to create high-resolution 3D models that enabled displacement analysis over
time by comparing successive measurement data sets. The integrated approaches in both
cases overcame the limitations of individual techniques and enabled more comprehensive
and accurate monitoring and analysis of landslides. Comprehensive data analysis, using
integrations of GB-InSAR, TLS, and IRT techniques, additionally allowed for precursors of
thermal anomalies [58]. Long-term monitoring, the creation of detailed 3D models, and the
comparison of data enabled the detection of terrain changes. Thermal maps were crucial
for identifying seepage sectors and rock mass discontinuities, allowing early detection of
instability in areas with crack networks and block detachments.

An analysis of potential precursors was also carried out in a paper that presented a
new approach to radar coherence analyses and the NDVI index to investigate the time
series of landslide activity before failure [109]. Relatively easy-to-calculate radar coherence
coefficients were determined on a large spatial scale to monitor unstable slopes. The results
observed a decrease in radar coherence coefficient values, coinciding with the beginning
of landslide acceleration, which was recorded several months before the failure. The
advantage of the proposed approach is the elimination of the negative influence of long
temporal baselines, which can interfere with the analysis of InSAR data, and interferences
from atmospheric and vegetation cycles.

Using optical remote sensing data to develop a concept for quantitative evaluation
of EWS landslide timing using UAV photogrammetry and satellite optical imagery (Plan-
etScope) was also a novel approach [144]. The digital image correlation (DIC) technique
has been used to identify high-risk sites and to recognize landslide behavior by identifying
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displacement precursors. Knowing the processing time of the data made it possible to
estimate the time needed for warning actions, which is essential in creating EWSs.

5. Advantages and Limitations of Using RSTs to Analyze Landslide Precursors

RSTs have advantages and limitations (Table 4) that depend on their application. For
the study of landslide precursors, the selection of appropriate techniques depends on the
specifics and size of the area of interest, the type of landslide, and the pattern of deformation.
This section discusses the advantages and limitations of using RSTs to analyze landslide
precursors, as well as their effectiveness under different field conditions.
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Table 4. Comparison of different RSTs with an overview of the advantages/limitations of the employed techniques with respect to landslides and precursor types.

RST Sensors for Monitoring Landslide Type Advantages Limitations

SAR

CCD

Satellites with radar
sensors

• translational and
rotational slides

• rock slides
• deep-seated
• landslides
• creeping landslides

and flows
• lateral spread

• large-scale and
long-time series of
surface deformation
[21,83]

• detection of early
deformed slopes and
prediction of
potential failure
slopes [83]

• availability of
• historical data [21]
• day and night data

acquisition and all
weather conditions
[145]

• identification of loss
of coherence, i.e.,
phase decorrelation
[26]

• low spatial, volume, and
temporal resolution
[22,146]

• the phase gradient data
limit the magnitude and
extent of capture
deformation
characteristics [83]

• spatial decorrelation for
such land types as high
vegetation cover, water
areas, and surface
roughness [30,83]

• phase ambiguity [51]
• phase noise caused by

differential phase
generated by DEM
errors and orbital
inaccuracies [51]

• postponed time [21]

• lack of ability to
determine numerical
displacement values
[110]

OT

• detection of fast
movement [28]

• overcoming the
limitations of InSAR
in regions with low
coherence [30]

• monitoring
decimeter
displacements [31]

InSAR

• millimeter accuracy
(MT-InSAR) [147]

• atmospheric effects
correction using
MT-InSAR
techniques [83]

• ability to detect slow
landslides [147]

• atmospheric phase
delay (D-InSAR) [21]

GB-InSAR Ground-based radars

• translational slides
• rockfalls
• rock slides
• slow and

moderate-type
landslides

• complex landslides
• lateral spread

• high spatial and temporal resolution [145]
• long term monitoring [21]
• early warning and rapid assessment of risk

scenarios [21]
• day and night data acquisition [125]
• measuring steep slopes [67]

• coherence, temporal and spatial decorrelation due to
vegetation cover [71,145]

• atmospheric conditions, such as rain, fog, or
atmospheric turbulence, introduce noise and errors
into the data [76,78,148]

• displacement along the line of sight [125,149]
• limited observation radius [69]



Remote Sens. 2024, 16, 2781 27 of 39

Table 4. Cont.

RST Sensors for Monitoring Landslide Type Advantages Limitations

Optical
images

Satellites, UAVs with
digital cameras

• shallow soil
landslides

• superior capture accuracy with high spatial,
temporal, and spectral resolution optical images
[83]

• continuous characteristics of time series evolution
with medium-resolution optical images [83]

• approach to delineate landslide-affected areas [21]
• multiple platforms [21]
• low cost [125]

• bias and blur in spectral imaging [83]
• acquisition limited to daylight [21]
• weather and cloud cover dependence [14,47]
• establishment of landslide boundaries [20]
• accuracy of photo interpretation is slightly low [87]
• changing land coverage [127]
• areas covered with dense vegetation [39]

Multispectral
(MS)/

Hyperspectral
images

Satellites/UAVs with mul-
tispectral/hyperspectral

sensors

• translational slides
• deep seated

landslides
• creeping landslides

and flows
• slow and

moderate-type
landslides

• complex landslides
• shallow soil

landslides

• enhanced spectral information, allowing for the
extraction of valuable information about various
land surface properties related to landslide
precursors [109]

• detecting changes over time [125]
• wide area coverage [14]

• acquisition limited to daylight [21]
• weather and cloud cover dependence [35]

LiDAR

TLS

Aircraft with laser
scanners,

Terrestrial laser
scanners

• rockfalls
• rock slides
• slow-moving

landslides
• debris flows
• earth flows
• mud flows
• lateral spread

• high-resolution data
[87]

• ability to penetrate
vegetation [2]

• high-resolution
terrain models [145]

• detection of unstable
masses by
calculating volumes
[21]

• 3D capabilities [145] • point cloud resolution
related to scene distance
[21]

• data acquisition
dependent on weather
[145]

• high equipment cost [87]

• ground control
points needed for
high-quality 3D
product results [35]

ALS

• rapid acquisition of
large data sets,
enabling efficient
monitoring of wide
regions [145]

• less accuracy
compared with TLS
[145]

• low temporal
resolution [35]
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Table 4. Cont.

RST Sensors for Monitoring Landslide Type Advantages Limitations

IRT Satellites/UAVs with
thermographic cameras

• cracks and fractures
within rock slopes

• high-resolution data [145]
• day and night data acquisition [21,150]
• sustained increases in trends and peaks in

temperature provide the initiation time of
landslides [83]

• large range and long time series of surface
temperature data [83]

• restricted to low-temperature use [145]
• thermal differences related to slope orientation,

surface roughness, and solar radiation [21]
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SAR offers significant advantages, enabling the search and analysis of detected land-
slide precursors. The most important of these include the ability to cover vast areas that
may be inaccessible for measurement by classical techniques. The weather-independent
SAR technique allows penetration through fog, clouds, and light rain [145]. These tech-
niques use long time series to estimate and remove the atmospheric component of the
interferometric phase [83]. In addition to studying the evolution of landslides over time,
including historical analysis [21], these techniques can provide time series and maps of
mean ground surface displacements [38]. Combining techniques that detect slower [147]
and fast movements [28] allows the techniques to complement each other, resulting in the
ability to monitor landslides with different displacement rates. The phase-based (e.g., PS-
InSAR) approach can detect movements of several tens of cm per year, while the minimum
detectable values for the amplitude-based (e.g., OT) approach are a few meters [151]. The
difficulties encountered in determining the total deformation range have been resolved
using the two-phase MT-InSAR technique, which allows precise monitoring of movements
with different displacement scales [37].

In contrast to data acquired from satellite platforms, GB-InSAR can provide images
with high spatial [74] and temporal resolution [145]. It enables monitoring landslides in
hard-to-reach areas without needing to install sensors in the study area [78]. Moreover,
contrary to satellite images, GB-InSAR can operate on steep slopes [67].

Technological advances and access to open-source optical data (e.g., from Sentinel-2)
allow for continuous characterization of the evolution of the displacement time series
despite the medium resolution of the delivered products [83]. Developing various data
processing algorithms based on high-resolution optical images enables the determination
of ground surface displacements of single-centimeter values [35]. Multispectral and hyper-
spectral data can provide important precursors to landslides by allowing the extraction
of valuable information from calculated vegetation indices, such as changes in vegetation
conditions or moisture in landslide areas [109].

LiDAR techniques, on the other hand, have the ability to penetrate vegetation, facili-
tating the monitoring of vegetated areas [2]. Considering the ability to accurately monitor
slope deformation, TLS is characterized by high accuracy, spatial resolution, and the abil-
ity to create high-resolution terrain models [87]. With its ability to rapidly acquire large
datasets, ALS enables efficient monitoring on a larger scale [152]. Both of the techniques
offer the possibility of detecting changes in the ground surface by, among other things,
calculating volumes [21].

The advantage of the IRT technique is that it provides information on the timing of
landslide initiation based on sustained trends in temperature rise and peak values [83]. The
technique provides high-resolution data [145] and the ability to acquire data regardless of
the time of day [150] and visibility [153].

Despite the development of SAR techniques over the decades, monitoring landslides
covered by vegetation remains a challenge due to low temporal resolution [22], especially
for L-band satellite data, which plays a significant role during landslide investigations due
to L-band’s ability to penetrate vegetation [146]. The solution could be to use data acquired
from the L-band-equipped NISAR satellite and integrate C-band and L-band images, en-
abling deeper vegetation penetration with higher spatial resolution [154]. Unfortunately,
this satellite is still waiting to be launched into space. In addition, phase ambiguity, phase
noise, atmospheric phase delay, topographic errors, and spatial decorrelation significantly
impact the results [30,151]. Although several studies have taken steps to develop a pro-
cedure for correcting phase unwrapping errors and tropospheric delay correction, this
problem remains an obstacle, resulting in errors in the determined displacements of up
to several tens of centimeters [155]. D-InSAR also encounters some difficulties related to,
among other things, loss of integrity due to dense vegetation cover [30]. Additionally,
the technique allows the detection of displacements with centimeter accuracy in the line
of sight (LOS) [156]. When detecting deep-seated landslides moving at a rate of a few
millimeters per year, the technique may not yield the expected results.
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Similar to SAR, the GB-InSAR technique also encounters limitations, such as phase
wrapping, noise effects, and spatial and temporal decorrelation, due to dense vegetation in
the monitored area [71], terrain topography, and weather conditions [78,148]. In addition, the
system can only measure the motion component parallel to the LOS [125,149]. This leads to
the omission of displacements occurring in the direction perpendicular to the sensor [71,149].
The search for novel solutions may allow the gap in real-time data processing to be closed
through the use of appropriate filters, i.e., the Kalman filter [76].

Optical, multispectral, and hyperspectral images face limitations related to the ability
to obtain data only in daylight [21] and dependence on weather and cloud cover condi-
tions [14,47]. In addition, the changing land coverage [127] and dense vegetation of the
monitored areas [39] make it difficult to interpret the acquired data or may lead to errors in
the obtained results.

Limitations of using TLS to analyze landslide precursors include difficulties penetrat-
ing the forest or measuring in hard-to-reach areas, such as mountainous areas, and the
need to use ground control points to obtain high-quality products [35]. However, ALS
may encounter difficulties with measurement accuracy in areas with high topographical
variability and require significant financial and logistical resources [87]. In addition, both
techniques are susceptible to atmospheric conditions, which can limit their effectiveness in
some situations and reduce the amount of data acquired [152].

Atmospheric conditions, such as clouds, humidity, or low temperatures, can affect
the precision of IRT measurements, making the results difficult to interpret [145]. Variable
terrain topography also negatively affects the interpretation of thermal imaging data [21].

6. Discussion

The effectiveness of EWSs based entirely on RSTs has yet to be completely investigated.
Attempts to quantify the lead time of landslide EWS, analyzing the time to issue an alert,
which consisted of the time to collect, process, and evaluate data using UAV photogramme-
try and satellite optical images, allowed landslides to be predicted up to several hours in
advance [144]. However, integrating additional RSTs and using advanced data processing
algorithms can reduce this time. Such systems should consider the risk of false alarms that
can occur due to misinterpretation of data in areas whose structure has changed (human
activity, vegetation growth) and errors caused by various data disturbances. Scenarios for
solving such problems should be developed to minimize their occurrence in the future.
They should include such measures as regular calibration of equipment (optical, multispec-
tral, and hyperspectral cameras, scanners, and radars), advanced algorithms to reduce noise
and measurement errors, and data validation (using permanent GNSS stations). Unlike
false alarms, undetected events can lead to more severe consequences, such as human and
material losses. They can be caused by delayed response times due to the need to process
large amounts of data, occurring noise and disturbance, and their low spatial and temporal
resolution, leading to the omission of important details. Developing an automated system
with advanced algorithms and integrating RST data will enable faster data processing
and a complete view of changes detected by different techniques, ultimately eliminating
these problems.

Implementing remote sensing-based EWSs, especially on a large scale, involves costs
due to the need to acquire equipment, i.e., ground-based radars, laser scanners, thermal,
optical, and multispectral cameras, and their maintenance and servicing. Monitoring par-
ticular areas or slow-moving landslides requires high-resolution satellite data that can be
obtained from commercial sources, which entails an additional investment. In addition,
providing a robust infrastructure to store, process, and deliver massive amounts of data
requires servers, efficient computers, and appropriate software. In order to maintain the
reliability and accuracy of results, regular updates to software, systems, and databases,
improving algorithms, updating data, and optimizing performance are crucial. Imple-
menting standardized data collection, processing, and analysis procedures is crucial to
ensuring consistency in data analysis and avoiding errors due to inconsistent research and
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interpretation methods. An essential element of remote sensing-based EWSs is the prompt
delivery of results to relevant parties for effective warning of impending threats. Therefore,
it is necessary to develop notification and alert systems, i.e., web-based platforms, mobile
applications, or regular reporting showing threats and future forecasts.

For EWSs to effectively and efficiently counter hazards, they need to actively engage
stakeholders and end-users to report any problems that arise in the systems and promptly
initiate evacuation actions. In areas that require detailed investigations or are at risk,
analysis of historical data and consultation with local experts are required, which can
extend the decision-making process. Even advanced technological monitoring systems
are only effective if they reach the population in time and evacuation measures are taken.
Therefore, raising risk awareness among the population is crucial, reducing the probability
of hazardous behavior and increasing the effectiveness of landslide warnings.

In the rapidly evolving technological environment, measurement and data analy-
sis techniques based on artificial intelligence (AI), i.e., machine learning (ML) and deep
learning (DL), have found applications in detecting changes formed on the land surface,
especially shallow landslides [86]. It has improved landslide monitoring systems, enabling
the automation of computational processes and accelerated data analysis, mainly of radar
and optical images. Future directions for improving existing EWSs include these inno-
vations and improving RSTs and their integration. One example attempts to develop a
prototype drone-borne radar that significantly improves the temporal resolution of SAR
techniques [157]. With this approach, it will be possible to rapidly respond to sudden events
(rainfall, earthquakes) that occur locally, especially in hard-to-reach areas, i.e., mountainous
and forested areas. ML and DL techniques allow automatic analysis of vast amounts of data,
detection of patterns and trends in data, and prediction of phenomena based on previous
observations [158,159]. Using them can improve the identification of landslide precursors
and allow for more accurate predictions of future events, thereby improving the perfor-
mance of existing EWS and expanding them to a regional scale [160,161]. Convolutional
neural networks (CNNs) effectively extract features from images, making it possible to
automatically predict landslides on a regional scale by crowdsourcing optical images [162].
The DIC technique enables the determination of displacements over large areas [85,99].
Using high-resolution ground-based optical images enables continuous measurement of
active landslides with displacements amounting to one m/day [163]. Also, the use of
several new modern approaches in photogrammetry, such as structure from motion (SfM),
Object-Based Image Analysis (OBIA), and simultaneous localization and mapping (SLAM),
can support EWSs [164,165]. Despite increasingly innovative solutions, further research is
needed to overcome limitations, such as limited spatial and temporal coverage, selection
of suitable RSTs, the complexity of data processing, dense vegetation, atmospheric phase
delay, topographic error, large workload, interpretation, and validation challenges (Table 4).

7. Summary

This article reviews 165 articles on detecting, monitoring, predicting, and identify-
ing landslide precursors using RSTs. The application and integration of RSTs and their
advantages and limitations in detecting landslide precursors were also analyzed. It was
noted that the integration of RSTs should be selected not only based on the type of area
monitored, the type of landslides, or their deformation patterns but also considering the
appropriate temporal and spatial resolution of data acquisition, the expected results (metric
values or visual changes), or their measurement accuracy. It was found that creating the
best possible system for detecting landslide precursors on a regional scale should integrate
techniques that provide high-resolution, weather- and illumination-independent (SAR)
data, offer a broad perspective and regularity for monitoring large areas (optical and mul-
tispectral/hyperspectral images, IRT), and provide precise, detailed, and timely data for
high-risk areas and complex terrain (LiDAR, GB-InSAR). This combination can provide a
more complete and accurate view of changes and continuous, reliable system operation,
even during temporary interruptions or disruptions in any of the techniques.
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The integration of RSTs with advanced algorithms that optimize computational pro-
cesses and data analysis is expected to accelerate the identification of landslide precursors
in existing EWSs and enable their detection on a regional scale. In addition, the difficulty
of monitoring, especially in mountainous areas with permafrost, dense vegetation, and
steep slopes, will be a priority for the future development of RSTs. Monitoring deep-seated,
slow-moving landslides, which can have annual displacements of several mm per year,
also poses additional challenges, underscoring the need for further research to optimize
and adapt measurement techniques to specific regional conditions and landslide types.

Despite all these difficulties, it is vital to consider the social aspects. No matter
how technologically advanced monitoring and EWSs based on RSTs are developed, their
effectiveness is limited if they do not reach the population in time and no evacuation
measures are taken [2]. Therefore, in addition to the scientific aspect, it is crucial to raise
awareness of the risks among the population, which will undoubtedly reduce the likelihood
of dangerous behaviors and increase the effectiveness of landslide warnings.
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