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Abstract: Working with pushbroom imagery in photogrammetry and remote sensing presents a
fundamental challenge in object-to-image space transformation. For this transformation, accurate
estimation of Exterior Orientation Parameters (EOPs) for each scanline is required. To tackle this
challenge, Best Scanline Search or Determination (BSS/BSD) methods have been developed. However,
the current BSS/BSD methods are not efficient for real-time applications due to their complex
procedures and interpolations. This paper introduces a new non-iterative BSD method specifically
designed for line-type pushbroom images. The method involves simulating a pair of sets of points,
Simulated Control Points (SCOPs), and Simulated Check Points (SCPs), to train and test a Multilayer
Perceptron (MLP) model. The model establishes a strong relationship between object and image
spaces, enabling a direct transformation and determination of best scanlines. This proposed method
does not rely on the Collinearity Equation (CE) or iterative search. After training, the MLP model
is applied to the SCPs for accuracy assessment. The proposed method is tested on ten images with
diverse landscapes captured by eight sensors, exploiting five million SCPs per image for statistical
assessments. The Root Mean Square Error (RMSE) values range between 0.001 and 0.015 pixels
across ten images, demonstrating the capability of achieving the desired sub-pixel accuracy within a
few seconds. The proposed method is compared with conventional and state-of-the-art BSS/BSD
methods, indicating its higher applicability regarding accuracy and computational efficiency. These
results position the proposed BSD method as a practical solution for transforming object-to-image
space, especially for real-time applications.

Keywords: best scanline determination (BSD); object-to-image transformation; pushbroom imagery;
multilayer perceptron (MLP); photogrammetry

1. Introduction

Linear pushbroom imaging sensors have become the most widely used optical satellite
sensors due to modern high-resolution imaging technology [1,2]. These sensors capture
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high-resolution images with high revisit frequency and large coverage area, making them
suitable for different photogrammetric and remote sensing tasks [3,4]. As a result, they are
extensively used for Earth’s surface imaging in diverse applications, such as land cover
classification, three-dimensional (3D) reconstruction, and environmental monitoring [5,6].

Linear pushbroom images have a more complex geometry and acquisition character-
istics compared to frame-type images, such as aerial photographs [7]. In particular, each
scanline of a linear pushbroom image has its own Exterior Orientation Parameters (EOPs)
because it is captured at a specific exposure time [8]. This is different from frame-type
images, which have a single set of EOPs [9–11]. As a result, the perspective center position
and rotation angles of pushbroom images change scanline by scanline [7,12], making the
object-to-image space transformation a complicated process [13,14]. When using a rigorous
sensor model such as the Collinearity Equation (CE), physical parameters of a pushbroom
image, including Interior Orientation Parameters (IOPs) and EOPs, are required to describe
the imaging geometry on a line-by-line basis [15,16]. This means that the problem of the
Best Scanline Search/Determination (BSS/BSD), or equivalently determining the exact
time of exposure [17] must be solved to obtain the EOPs for each scanline. The process
of transforming a particular point on the object/ground to its corresponding point in an
image, known as object-to-image space transformation, is essential in photogrammetric
applications like stereoscopic measurements, rectifying pushbroom images, epipolar re-
sampling, and orthoimage generation [18,19]. Achieving sub-pixel accuracy is crucial for
this transformation to ensure the accuracy of the resulting products [20].

Various BSS/BSD methods have been developed to apply object-to-image transforma-
tion for linear pushbroom images. The Sequential Search (SS) approach involves iteratively
searching for the specific scanline of a ground point through the CE, which is inefficient
due to the high computational cost of multiple transformations between object and image
spaces per line through the CE. The Bisecting Window Search (BWS) method, introduced
by [21], reduces the SS search space by repeatedly halving the image space and using the
CE for object-to-image space transformation. However, the BWS method still requires an
iterative procedure and is not efficient for practical applications. The Newton Raphson (NR)
method proposed by [22] is another iterative BSS method that uses the mathematical New-
ton Raphson root-finding approach to account for pushbroom sensors’ characteristics. The
Central Perspective Plane (CPP) approach proposed by [23] has proved superior applicabil-
ity in aerial pushbroom images; although, the associated assumptions are violated when
working with satellite images with distortion, and the efficiency is notably reduced [24].
This is because the CPP of the scanline becomes a 3D curved surface instead of a 3D plane.
Therefore, it is necessary to divide the curved shape linear array into numerous short line
segments. This segmentation enables the precise identification of the accurate CPP corre-
sponding to the ground point [25]. The iterative process of establishing the relationship
between each ground point and the CPP, as well as the computation of the best scanline
through CE during the refinement stage make the CPP-based method relatively challenging
to implement. In the General Distance Prediction (GDP) approach proposed by [26], the
ground point is back-projected to image space using EOPs of the first scanline, then the GDP,
the distance between the projected image point and the first line of the image, is calculated
and used for refinement of specific equations. This iterative procedure will continue until
the stopping criterion is met and the best scanline corresponding to the ground point is
determined by linear interpolation. This method performs in an iterative procedure with
several interpolations and thus requires moderate computation time. However, both the
iterative process and the use of the CE to search for the best scanline result in a heavy
computational burden for all these methods.

More recently, Ahooei Nezhad et al. [13] proposed two non-iterative three-stage BSD
methods called Optimal Global Polynomial (OGP) and Artificial Neural Network (ANN).
These methods use the CE and geometric calculations to obtain subpixel accuracies within
a short time. Simulated points generated by the CE are used to model the errors between
the exact and estimated scanline of these points through geometric interpolation. The OGP
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model later utilized a fifth-degree polynomial and Genetic algorithm to compress the model
and improve the accuracy of the estimated scanline following the geometric interpolation
of any given ground point. On the other hand, the ANN model used a different structure
based on image characteristics for the refinement stage. While these methods do not
involve iteration, they are relatively complex due to the three-stage procedure and use of
geometric calculations.

This paper introduces a new approach for transforming objects to image space using
a Multilayer Perceptron (MLP) Machine Learning (ML) algorithm to address the BSD
problem. This method uses the CE to accurately simulate points across pushbroom images.
A portion of these points is used to train the MLP to establish a relationship between
object-to-image space, which can then be used to directly determine the best scanline for
any arbitrary ground points. The proposed method was tested using ten images with
diverse characteristics, and a comparison with previous methods was conducted to assess
its accuracy and computational efficiency. This paper is divided into five sections. The
Section 1 gives an overview of the BSS/BSD field and its importance in photogrammetry.
The Section 2 begins with a presentation of the used datasets. Afterwards, the mathematical
models that were dealt with are outlined. At the end of this section, the proposed method is
described in detail, along with the prerequisite concepts of MLP. The experimental results
of the proposed method are given in the Section 3. A discussion is included in a later
section. Some conclusions are drawn in the final section.

2. Materials and Methods

A diagram of the proposed method is illustrated in Figure 1. In addition, the inputs
and outputs of each step of the proposed method are provided in Table 1. The proposed
method consists of two general steps. In the first step, the MLP network is trained using
Simulated Control Points (SCOPs) to establish the relation between the object/ground and
image spaces. In the second step, the model is evaluated using Simulated Check Points
(SCPs), as arbitrary ground points, through the transformation from the ground space to
the image space and determination the corresponding best scanlines. More details of the
proposed method will be provided in Section 2.4.

Table 1. The inputs and outputs of the proposed method in each step.

Inputs Outputs

Preprocessing and
data preparation

Space resection using the
MPC model (Equation (2))

• IOPs
• Image and object/ground

coordinates of GCPs

• EOPs of the whole image for
each scanline

SCOPs and SCPs generation
using CE

(Equation (1))

• IOPs
• EOPs
• Mean height of the study area

• Image and ground
coordinates of SCOPs

• Image and ground
coordinates of SCPs

Processing steps
of BSD

Training phase of the MLP
model

(Equation (3))

• Image and ground coordinates
of SCOPs

• Fitted MLP model for
object-to-image
transformation

Prediction (testing) phase of
the MLP

(Equations (3)–(5))
• Ground coordinates of SCPs

• Image coordinates of SCPs
estimated using the fitted
MLP model

• Accuracy assessment
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Figure 1. The diagram of the proposed Best Scanline Determination method.

2.1. Dataset

Ten satellite images acquired by eight different sensors, whose specifications are
provided in Table 2, were employed to evaluate the proposed BSD method. The experi-
ments were carried out on images captured by various linear array pushbroom sensors,
including IKONOS, Pleiades 1A, Pleiades 1B, QuickBird, SPOT 6, SPOT 7, Worldview 1,
and Worldview 2. These images covered several parts of the world, including Sao Paulo
(Brazil), Melbourne (Australia), Annapolis (USA), Jaipur (India), Jaicos (Brazil), Amsterdam
(Netherlands), Curitiba (Brazil), Boulder (USA), Sydney (Australia), and San Diego (USA).
Ten images with diverse sensor characteristics (e.g., dimension and spatial resolution) and
distinct landscapes and topographic conditions (i.e., urban areas, flat areas, agricultural
areas, and a mixture of all) were considered to conduct a robust assessment (see Figure 2).
In particular, the spatial resolution of images varied between 0.5 m and 6 m. Note that all
the images used in this study were accompanied by the Rational Polynomial Coefficients
(RPC) files; the required Ground Control Points (GCPs) were obtained by these auxiliary
files. Additionally, elevation values of the GCPs and the mean height of the study areas
were extracted from the available Digital Elevation Model (DEM) sources.
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Figure 2. Linear array pushbroom images used to evaluate the proposed BSD method, includ-
ing (a) IKONOS image from Sao Paulo, Brazil, (b) Pleaides 1A image from Melbourne, Australia,
(c) Pleaides 1B image from Annapolis, USA, (d) QuickBird image from Jaipur, India, (e) SPOT6 image
from Jaicos, Brazil, (f) SPOT7 image from Amsterdam, Netherland, (g) SPOT7 image from Curitiba,
Brazil, (h) WorldView1 image from Boulder, USA, (i) WorldView2 image from Sydney, Australia, and
(j) WorldView2 image from SanDiego, USA.
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Table 2. The characteristics of the used images.

Image. Sensor Region Dimension (Pixel) Resolution (m) Central
Latitude

Central
Longitude

ISB IKONOS Sao Paulo, Brazil 8300 × 8600 0.8 −23.54 −46.63
PMA Pleiades 1A Melbourne, Australia 6000 × 7000 0.5 −37.77 144.86
PAU Pleiades 1B Annapolis, USA 6057 × 5636 0.5 38.98 −76.49
QJI QuickBird Jaipur, India 6000 × 6000 0.6 26.92 75.78
SJB SPOT 6 Jaicos, Brazil 6200 × 6600 1.5 −7.26 −41.27

SAN SPOT 7 Amsterdam, Netherland 5824 × 6616 1.5 52.37 4.91
SCB SPOT 7 Curitiba, Brazil 2597 × 1463 6 −24.63 −49.69

WBU Worldview 1 Boulder, USA 6000 × 6000 0.5 40.02 −105.28
WSA Worldview 2 Sydney, Australia 6000 × 6000 0.5 −33.84 151.20
WSU Worldview 2 SanDiego, USA 3996 × 4015 0.5 32.72 −117.16

2.2. Mathematical Models

To determine the dynamic geometry of satellite images, mathematical models were
expanded, which relates the two-dimensional (2D) image space and 3D object/ground
space [27–29]. The well-known CE is a commonly used mathematical model for linear
array pushbroom images in photogrammetry, which can be expressed by Equation (1) [30].

x = −f
ri

11(X−Xi
S)+ri

12(Y−Yi
S)+ri

13(Z−Zi
S)

ri
31(X−Xi

S)+ri
32(Y−Yi

S)+ri
33(Z−Zi

S)
= 0

y = −f
ri

21(X−Xi
S)+ri

22(Y−Yi
S)+ri

23(Z−Zi
S)

ri
31(X−Xi

S)+ri
32(Y−Yi

S)+ri
33(Z−Zi

S)

(1)

where (x,y) are 2D image point coordinates, f is the focal length, (X,Y,Z) are 3D ground
point coordinates, i represents the scanline number, (Xi

S,Yi
S,Zi

S) are the object space coordi-
nates of the perspective center, and (ri

11,. . .,ri
33) are the rotation matrix elements, including

rotational angles ω, φ, and κ of EOPs. It is worth noting that the x is theoretically equal to
zero according to linear array pushbroom imagery characteristics.

In the practical processing of pushbroom images, when using the CE, the reliable
EOPs of each scanline must be obtained during the space resection [30]. In this paper,
the Multiple Projection Center (MPC) model was employed for EOPs’ calculation, the
equations of which are given in Equation (2) [7,31].

Xs
i(t) = X0 + X1(ti) + X2

(
t2
i
)

Ys
i(t) = Y0 + Y1(ti) + Y2

(
t2
i
)

Zs
i(t) = Z0 + Z1(ti) + Z2

(
t2
i
)

ws
i(t) = w0 + w1(ti) + w2

(
t2
i
)

φs
i(t) = φ0 + φ1(ti) + φ2

(
t2
i
)

ks
i(t) = k0 + k1(ti) + k2

(
t2
i
)

(2)

where (Xs
i(t), Ys

i(t), . . ., and ks
i(t)) are the ith scanline’s EOPs, (X0, X1, . . ., and k2) are the

achieved reference scanline’s EOPs, and ti indicates the ith scanline’s exposure time, which
can be used as a substitute for the along-track coordinate of the satellite or the scanline
number [17]. The availability of EOPs of each scanline and other specifications of the
pushbroom sensor enables us to use CE to transfer any ground point to the corresponding
image point in image space. At the stage of space resection based on the MPC model,
appropriate control points with known image and ground coordinates must be available.
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2.3. Simulated Points Generation

Two categories of simulated points, SCOPs and SCPs, were generated. The SCOPs
and SCPs were simulated as a regular grid in the image space to comply with suitable
distribution across images. Thereupon, these image points were mapped to the object space
by employing the CE and the mean height of the study area. This projection step required
the EOPs of each scanline, which were computed through the MPC model (Equation (2)).
Hence, the image and object/ground coordinates and the exact scanline number (r) of
SCOPs and SCPs were available. The SCOPs were used in the training step of the MLP, and
the SCPs were used to evaluate the proposed BSD approach.

2.4. MLP Model

MLP models are widely recognized and used more often than other types of neural
networks in various problem domains [32]. The MLP algorithm is a type of supervised
machine learning that consists of interconnected elements called neurons, arranged in three
distinct layers: input, hidden, and output [33,34]. Information is transmitted from the input
layer to the output layer through the intermediary hidden layer. Each neuron within a layer
forms complete connections with neurons in adjacent layers, and these connections are
represented as weights during the computational process [32]. Each neuron maps multiple
inputs to an output [35,36] using an activation function [37]. The number of independent
variables in the model determines the number of neurons allocated to the input layer,
while the number of neurons in the output layer corresponds to the count of dependent
variables. The output layer can consist of a single neuron or multiple neurons. The number
of neurons in the hidden layer of the MLP model depends on the network’s ability to model
nonlinear functions [38]. MLP networks can effectively model and approximate both linear
and nonlinear functions [39]. The MLP model establishes a connection between inputs
and outputs by adjusting the weighted connections between neurons through the error
back-propagation technique during the training process to minimize discrepancies between
the anticipated target values and those generated by the model [32,33]. If the errors exceed a
predefined threshold, weight adjustments are made to reduce these discrepancies. To define
an MLP structure, important parameters such as the number of neurons, hidden layers,
learning algorithm, and activation function must be considered [33]. In this study, several
MLP topologies were tested to find the most accurate one for transforming object-to-image
space. Only the Levenberg–Marquardt algorithm and the sigmoid function were used as
the back-propagation learning algorithm and activation function, respectively, due to their
efficiency and ease of implementation [13,40]. The Levenberg–Marquardt algorithm has
been identified as a suitable learning algorithm for similar fields [41].

The proposed BSD method involves using SCOPs to train MLP models. The inputs
are ground coordinates, and the output is the corresponding exact scanline to establish a
relationship between object and image spaces (Equation (3)). The trained MLP models can
be used to determine the scanline number of any ground points without the CE and iterative
procedure. The trained MLP models were applied to SCPs, and the estimated scanline
numbers were then compared with the exact scanline numbers to compute statistical
assessment criteria.

Scanline number (r) = f (Ground coordinates(X, Y)) (3)

In Equation (3), (X, Y) are ground points’ coordinates, f is the MLP model and
r is row/scanline number. It is worth noting that the relationship for object-to-image
transformation involves the coordinates (X, Y, Z) and (r, c), which connect 3D ground space
to 2D image space. However, Equation (3) lacks the third ground component due to the
use of the average height of the study area, which remains constant for all ground points
to simplify computation. Also, the equation does not include the second component of
the image (c). The primary challenge in object-to-image transformation is calculating the
scanline number.



Remote Sens. 2024, 16, 2787 8 of 17

2.5. Accuracy Assessment

As noted earlier, the SCPs were used to evaluate the performance of the proposed
method. In this regard, the estimated scanline number using the MLP models was compared
with the exact scanline number known from the simulation phase. Two statistical measures
of Root Mean Square Error (RMSE) and drmax (the maximum error in the scanline number
determination) were computed according to Equations (4) and (5). Additionally, the
computational time of the proposed method was measured to specify its time efficiency for
real-time applications. Finally, the obtained results were compared with the ones computed
by several other BSS/BSD methods it investigate the superiority of the proposed method.

RMSE =

√
dT

r × dr

n(dr)
(4)

dr = |r exact − restimated| (5)

In Equations (4) and (5), restimated is the calculated scanline value obtained from the
MLP model, rexact is the exact scanline value obtained from the simulation phase, dr is
the difference between these two values, and n(dr) is the total number of scanlines in
each image.

The SCOPs and SCPs were created separately in regular grids across each image as
outlined in Section 2.3. In the evaluation stage, five million SCPs were considered. During
the training phase, five different groups of SCOPs, each comprising 10, 20, 30, 50, and
100 points, were taken into account. The SCPs worked as check points for measuring
criteria such as RMSE and drmax. The SCOPs were randomly divided into two groups:
70% for training and 30% for validation. They were then used in the training phase of the
MLP algorithm.

3. Results

During the training phase of MLP models, the structure of the model and the number
of SCOPs used have a significant impact on the performance. To identify the most suitable
MLP structure, a grid search analysis was conducted with the number of layers and neurons
ranging between one and five (with an interval of one) and 10 and 50 (with an interval
of ten), respectively. Increasing the number of layers and neurons in the model results
in a more complex MLP model with a higher number of unknown parameters (ranging
between 41 and 10,401), which requires more SCOPs. The study employed several sets of
SCOPs with different sizes, ranging from 10 to 1000 points (in increments of 10, 20, 30, 50,
100, 300, 500, and 1000) to explore the impact of SCOPs size. Although this led to 1000 cases
for each image, only feasible cases (i.e., achieving sub pixel accuracy) were considered to
ensure convergence concerning the number of SCOPs and unknown parameters.

Table 3 provides a summary of the statistical results (RMSE and drmax) and computa-
tion times (using an Intel Core i7-7500U 2.90 GHz processor) for the ISB image based on
MLP models. The evaluations were carried out with five million SCPs, and only the feasible
cases that achieved the desired sub-pixel accuracies are displayed in Table 3. The RMSE
and drmax values were almost the same (differing by just hundredths and thousandths
of a pixel) for all cases, with variations primarily in computation times. Larger MLP
models led to longer processing times and more SCOPs, resulting in higher complexity.
Consequently, MLP models with fewer layers (one), neurons (five to ten), and SCOPs
were chosen to minimize unnecessary complexity and reduce the risk of overfitting in
subsequent steps [42].
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Table 3. The results of ISB image analysis using different MLPs.

Number of
SCOPs

Number of
Layers

Number of
Neurons RMSE (Pixel) Computation

Time (s) drmax (pixel) Number of MLP
Parameters

50 1 10 0.06 3.27 0.15 41

100
1 10 0.01 3.40 0.02 41

1 20 0.05 4.20 0.17 81

300

1 10 0.02 3.90 0.07 41

1 20 0.02 4.84 0.06 81

1 30 0.02 5.62 0.06 121

1 40 0.02 6.36 0.08 161

1 50 0.09 7.75 0.03 201

2 10 0.06 5.70 0.37 151

2 20 0.14 19.63 0.69 501

500

1 10 0.03 3.95 0.09 41

1 20 0.02 4.69 0.07 81

1 30 0.001 5.95 0.003 121

1 40 0.001 6.64 0.005 161

1 50 0.002 7.76 0.01 201

2 10 0.06 5.80 0.30 151

2 20 0.05 21.48 0.15 501

3 10 0.02 8.47 0.20 261

1000

1 10 0.04 4.04 0.09 41

1 20 0.06 5.17 0.15 81

1 30 0.05 6.81 0.16 121

1 40 0.10 8.04 0.24 161

1 50 0.02 9.72 0.08 201

2 10 0.03 6.86 0.20 151

2 20 0.01 26.40 0.09 501

3 10 0.14 10.23 0.90 261

4 10 0.02 17.83 0.93 371

5 10 0.01 26.53 0.09 481

The detailed results for the ISB image are presented here as the outcomes for other
images were found to be similar.

The results of the MLP models with one layer and five-to-ten neurons for all the
images are shown in Figures 3–8. Generally, the results indicated that the number of
neurons had no significant effect on the RMSE and drmax values, considering the cases
that achieved sub-pixel accuracies. To evaluate the performance of the BSD method, five
SCOPs sets with 10, 20, 30, 50, and 100 simulated points and five million SCPs per image
were used. However, the SCOPs sets with 10 and 20 simulated points failed to establish a
transformation between object and image spaces with sub-pixel accuracy, so their results
were excluded. This suggests that a limited number of SCOPs cannot be used to relate
object and image spaces, even with shallow MLP models. According to the results, even
30 SCOPs were not enough for object-to-image transformation with the desired accuracy.
For some images, the obtained RMSE and drmax values were higher than one pixel, which
were mapped to one for better representation. When using an MLP with a 5-neuron
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structure and 30 SCOPs, the ISB, SJB, and SAN images had RMSE values higher than one
pixel. This may be due to the lower spatial resolution of these images compared to others.
However, the land cover in these images varies, including urban, flat, and mixed areas, so
the accuracy is not solely dependent on the land cover. Increasing the number of SCOPs to
100 resolved this issue, providing sub-pixel accuracy in all images. In the case of a 6-neuron
structure with 30 or 50 SCOPs, the drmax values of ISB, PMA, PAU, and SJB images were
more than one pixel, but using 100 SCOPs achieved the desired sub-pixel accuracy.
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Similarly, using a 7-neuron MLP structure resulted in RMSE values of more than one
pixel for SAN, SJB, and ISB images due to their low resolution. The complexity of an
8-neuron MLP network required more SCOPs, and using 30 SCOPs still resulted in RMSE
and drmax values of more than one pixel for ISB, PMA, SJB, SAN, and WSU, indicating
the insufficiency of this number of SCOPs. Finally, increasing the number of neurons led
to convergence issues or very low accuracy due to the increase in unknown parameters
and deficient SCOPs to estimate them. However, the MLP models obtained reasonable
RMSE values for the SCB image even when the number of neurons reached ten, possibly
due to the smaller dimensions of the image or its coarser spatial resolution. In general, the
cases without sub-pixel accuracy increased as the number of neurons increased, which is
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due to the fact that MLP models with a higher number of neurons have more unknown
parameters, and 30 SCOPs were insufficient. The issues were solved when the number
of SCOPs reached 50, and almost all MLP models converged with sub-pixel accuracy,
except for a few cases in the ISB and PMA images. This might be due to the dimension
of the ISB and PMA images, in which 50 SCOPs were not enough to cover the images
appropriately and enable a sub-pixel transformation. The existence of dense buildings in
the urban landscape of the ISB image might introduce more complexity to the MLP models.
The results imply that the desired RMSE and drmax in all images were attained when 100
SCOPs were used in the training phase of the MLP models. In other words, 100 SCOPs
comprehensively supported achieving sub-pixel accuracy regardless of image dimension,
spatial resolution, and landscape characteristics. It should be noted that the MLP models
could also attain sub-pixel accuracies when a higher number of SCOPs are used; however,
such numbers incur computation time and increase the risk of overfitting. In general,
the proposed MLP algorithm can determine the best scanline with very high accuracy on
different data with different characteristics by choosing the right network structure and the
optimal number of SCOPs.

In this study, the proposed method for BSS/BSD was compared to previous state-
of-the-art methods. The comparison was based on several quantitative measures: RMSE,
computation time, drmax, and the number of SCOPs (Table 4). The NR method achieved
sub-pixel accuracy but had a long computation time due to its iterative procedure of
root-finding using the CE. The BWS method, despite being an improved version of SS,
still required considerable time to determine the best scanline. Additionally, the BWS
method could not achieve sub-pixel accuracy according to drmax, although the RMSE
values were below one pixel. In contrast, the proposed method achieved sub-pixel accuracy
in both RMSE and drmax and required significantly less computation time. The ANN
and OGP are two state-of-the-art BSD methods that require SCOPs. The required number
of SCOPs varied between 200 and 700, with 500 being sufficient for most images. The
proposed method achieved sub-pixel accuracy with only 100 SCOPs, while the ANN and
OGP methods required trial and error attempts to identify the optimal number of SCOPs.
Moreover, the proposed method required nearly half of the computation time compared
to the OGP. The ANN and the proposed method (both with one hidden layer) obtained
similar results, although the proposed method was more efficient, requiring fewer SCOPs
and achieving better RMSE and drmax values.

Table 4. Obtained results of the proposed approaches and other well-known methods for best scanline
determination.

Datasets Quantitative Measurements

Methods’ Name

Newton
Raphson (NR)

[22]

Bisecting Window
Search (BWS)

[21]

ANN
BSD
[13]

OGP BSD
[13]

Proposed
Method
(MLP)

ISB

RMSE (pixel) 5.840 × 10−10 0.57 0.29 0.29 0.015

Computation time (second) 511.919 1490.505 3.295 6.812 3.29

drmax (pixel) 1.727 × 10−9 1 0.61 0.57 0.043

Number of SCOPs - - 400 400 100

Number of neurons - - 10 - 9

PMA

RMSE (pixel) 1.057 × 10−9 0.58 0.30 0.30 0.003

Computation time (second) 591.588 1413.097 3.427 7.941 3.31

drmax (pixel) 2.616 × 10−9 1 0.67 0.67 0.007

Number of SCOPs - - 500 500 100

Number of neurons - - 10 - 10
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Table 4. Cont.

Datasets Quantitative Measurements

Methods’ Name

Newton
Raphson (NR)

[22]

Bisecting Window
Search (BWS)

[21]

ANN
BSD
[13]

OGP BSD
[13]

Proposed
Method
(MLP)

PAU

RMSE (pixel) 9.561 × 10−10 0.58 0.30 0.30 0.003

Computation time (second) 520.065 1294.618 3.398 7.640 2.92

drmax (pixel) 1.203 × 10−9 1 0.67 0.77 0.010

Number of SCOPs - - 500 500 50

Number of neurons - - 10 - 10

QJI

RMSE (pixel) 4.401 × 10−10 0.58 0.30 0.30 0.002

Computation time (second) 423.808 1320.126 3.815 7.839 3.23

drmax (pixel) 1.162 × 10−9 1 0.72 0.69 0.006

Number of SCOPs - - 500 500 100

Number of neurons - - 10 - 10

SJB

RMSE (pixel) 6.182 × 10−10 0.58 0.30 0.30 0.002

Computation time (second) 480.380 1335.430 3.776 9.959 3.01

drmax (pixel) 2.184 × 10−9 1 0.73 0.63 0.005

Number of SCOPs - - 500 1000 100

Number of neurons - - 10 - 7

SAN

RMSE (pixel) 2.503 × 10−10 0.57 0.29 0.31 0.002

Computation time (second) 471.247 1259.437 4.452 8.305 2.96

drmax (pixel) 6.207 × 10−10 1 0.58 0.81 0.004

Number of SCOPs - - 700 500 100

Number of neurons - - 10 - 5

SCB

RMSE (pixel) 6.593 × 10−10 0.58 0.29 0.29 0.001

Computation time (second) 412.186 883.381 3.387 7.070 3.13

drmax (pixel) 2.379 × 10−9 1 0.61 0.55 0.003

Number of SCOPs - - 400 200 100

Number of neurons - - 10 - 9

WBU

RMSE (pixel) 1.181 × 10−9 0.57 0.29 0.28 0.002

Computation time (second) 474.471 1376.620 3.576 7.967 2.96

drmax (pixel) 2.756 × 10−9 1 0.52 0.52 0.005

Number of SCOPs - - 400 400 100

Number of neurons - - - 7

WSA

RMSE (pixel) 9.931 × 10−10 0.57 0.32 0.32 0.003

Computation time (second) 470.185 1245.763 3.310 7.803 2.09

drmax (pixel) 2.461 × 10−9 1 0.72 0.71 0.006

Number of SCOPs - - 500 500 100

Number of neurons - - 10 - 5
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Table 4. Cont.

Datasets Quantitative Measurements

Methods’ Name

Newton
Raphson (NR)

[22]

Bisecting Window
Search (BWS)

[21]

ANN
BSD
[13]

OGP BSD
[13]

Proposed
Method
(MLP)

WSU

RMSE (pixel) 3.860 × 10−10 0.57 0.30 0.30 0.001

Computation time (second) 483.562 1281.063 3.714 8.796 3.02

drmax (pixel) 9.327 × 10−10 1 0.57 0.58 0.003

Number of SCOPs - - 500 500 100

Number of neurons - - 10 - 6

4. Discussion

Efficiency and accuracy are two crucial criteria when evaluating a BSS/BSD method
in object-to-image space transformation in linear array pushbroom imagery. Efficiency
refers to computation time, while accuracy pertains to the difference between estimated
and exact scanline numbers. Sub-pixel accuracy is desired for a BSS/BSD method to
derive suitable products in photogrammetric tasks. The proposed BSD method showed
significant performance compared to previously well-known and state-of-the-art methods,
as shown in Figures 3–8 and Table 4. Ten images with diverse sensor characteristics (e.g.,
dimension and spatial resolution) and distinct landscapes and topographic conditions
(i.e., urban areas, flat areas, agricultural areas, and a mixture of all) were considered to
conduct a robust assessment. We believe that due to this variety and the achieved promising
results, the proposed method is likely to exhibit broad applicability and generality across
other datasets.

The research used the MLP model for the BSD and also tested other popular ML algo-
rithms such as Random Forest (RF) [43] and Support Vector Machines (SVM) methods [44]
with various numbers of SCOPs and five million SCPs. However, these methods were un-
able to accurately establish the relationship between object and image space with sub-pixel
precision. The minimum RMSE obtained from these methods reached one hundred pixels,
which is unacceptable. The evaluation demonstrates that using the MLP method is more
effective than other ML methods.

The main goal of this paper was to utilize the MPC model in space resection to
compute the EOPs of each scanline for all images. These EOPs were then employed to
simulate points. If the EOPs are provided with the images as an auxiliary file, they can
be directly used in the BSD method, and the space resection step can be bypassed. The
results demonstrated that the number and distribution of SCOPs are crucial in obtaining the
desired accuracy. The number of SCOPs should be the least required, and their distribution
across the image should be in a regular grid with an appropriate number. The MLP model’s
non-compliance with image and region characteristics and an inappropriate number of
SCOPs are among the factors that produce undesired values for RMSE and drmax.

It is worth noting that in pushbroom imagery, the sensor captures the image perpen-
dicular to its flight direction. According to theory, the first component of the CE for this
kind of sensor should be zero (Equation (1)). However, in practice, it is possible to obtain a
small x value, around 10−6 or smaller. In such cases, this difference can be ignored as it
will not affect the algorithm process.

The ANN and OGP BSD methods developed by [13] performed closely to the proposed
BSD method. However, the proposed method directly determines the best scanline number,
making it simpler than ANN and OGP methods, both of which were three-step algorithms.
In particular, the ANN model was used for the refinement of scanline numbers after
estimating the initial row and column values of each ground point through an affine
transformation and computing its approximate time of exposure using a specific equation.
The ANN model then establishes the relation between the initial row and column values
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of each ground point and difference between calculated approximate time and exact time,
which is available from SCOPs. The ANN method obtained sub-pixel accuracies, but its
computation time was 22% higher than the proposed BSD method on average. The OGP
method replaced the ANN with an optimized polynomial expression. The optimization task
was conducted by the genetic algorithm, which increases the processing time. Although
the ANN and MLP methods may seem very similar, the ANN method is a part of a three-
step BSD algorithm for error modeling, while the MLP method is based on a single-step
neural network, the purpose of which is to calculate the best scanline directly. Both models
have a similar three-layer structure, but due to different goals, the number of neurons in
the hidden layer and the number of SCOPs are different from each other. Owing to the
distinction between these two methods, we named the first method as the ANN method
and the proposed method as MLP method. Moreover, both ANN and OGP methods
required a higher number of SCOPs to successfully relate object and image spaces with
sub-pixel accuracy, while 100 SCOPs were sufficient for the MLP models regardless of
image and landscape characteristics. Furthermore, the proposed BSD method has no
specific assumption and can be employed for linear array pushbroom sensors with varying
exposure times.

5. Conclusions

A robust and accurate ground-to-image transformation method is crucial in the geo-
metric processing workflows of linear pushbroom images. Due to the different imaging
geometry in these sensors, the transformation of coordinates from the ground space to the
image space is more complicated than frame images. For this reason, the BSS/BSD methods
in this field are proposed. This study proposes a new algorithm for object-to-image space
transformations in linear array pushbroom images. The algorithm is a single-stage, non-
iterative approach based on MLP models, resulting in sub-pixel accuracy. The study shows
that using MLP models with lower complexity and 100 SCOPs can ensure achieving sub-
pixel accuracy regardless of using diverse sensor (e.g., dimension and spatial resolution)
and different landscapes and topographic conditions (urban areas, flat areas, agricultural
areas, and a mixture of all). The proposed method is compared with well-known BSS/BSD
methods such as NR, BWS, ANN, and OGP. The results reveal that the MLP model has
low processing complexity, demands less computation time, and delivers significantly
improved accuracies compared to previous methods. The proposed method has no specific
assumption without the need to acquire information about the structure of detectors and is
applicable for all linear array pushbroom images and subsequent photogrammetric tasks.
The obtained accuracies and computation time suggest the capability of the proposed
method for near real-time applications. In future studies, the utilization and assessment of
the proposed method will be conducted based on its efficacy and precision, particularly in
the realm of photogrammetric tasks like ortho-photos generation.
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