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Abstract: Aerosol–cloud interactions play a crucial role in shaping Earth’s climate and hydrological
cycle. Observing these interactions with high precision and accuracy is of the utmost importance for
improving climate models and predicting Earth’s climate. Over the past few decades, lidar techniques
have emerged as powerful tools for investigating aerosol–cloud interactions due to their ability to
provide detailed vertical profiles of aerosol particles and clouds with high spatial and temporal
resolutions. This review paper provides an overview of recent advancements in the study of ACI
using lidar techniques. The paper begins with a description of the different cloud microphysical
processes that are affected by the presence of aerosol, and with an outline of lidar remote sensing
application in characterizing aerosol particles and clouds. The subsequent sections delve into the key
findings and insights gained from lidar-based studies of aerosol–cloud interactions. This includes
investigations into the role of aerosol particles in cloud formation, evolution, and microphysical
properties. Finally, the review concludes with an outlook on future research. By reporting the latest
findings and methodologies, this review aims to provide valuable insights for researchers engaged in
climate science and atmospheric research.

Keywords: aerosol; cloud; lidar

1. Introduction

Aerosol and clouds are two fundamental components of the Earth’s atmosphere, ex-
erting significant influences on climate, weather, and atmospheric chemistry. Aerosol is a
suspension of tiny solid or liquid particles in air. Aerosol particles originate from natural
sources such as dust storms, volcanic eruptions, and sea spray, as well as anthropogenic ac-
tivities like industrial emissions and vehicle exhaust. Clouds, on the other hand, consist of
water droplets or ice crystals suspended in the atmosphere, forming in response to changes
in temperature, humidity, and atmospheric dynamics. It is well known that without aerosol
particles, clouds would be a different phenomenon in their morphology and probably
a rare occurrence in the atmosphere, since significant supersaturations of atmospheric
water vapor are needed to trigger the homogeneous nucleation of the liquid phase [1–4].
Aerosol particles serve as nuclei for water vapor condensation at relatively low levels of
supersaturation, thereby eliminating the need to achieve much higher supersaturation
levels for condensation to take place. For this reason, the presence and characteristics
of the aerosol particles are closely linked to the micro- and macrophysical properties of
clouds. Conversely, clouds act as scavengers for atmospheric particles, both by exploiting
them as condensation nuclei and by capturing aerosol through collision and coalescence
processes. As a result, clouds serve as effective collectors for removing particles from
the atmosphere, leading to their vertical redistribution, and finally, to deposition onto
Earth’s surface through precipitation. Moreover, clouds can serve as reactive environ-
ments where aerosol particles undergo chemical transformations. Aqueous-phase reactions
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within cloud droplets can lead to the production or depletion of certain particle species
through oxidation, acid–base reactions, and aqueous-phase chemistry, thus influencing
atmospheric composition.

It is evident that studying the interaction between aerosol particles and clouds—two
closely intertwined atmospheric components—represents a complex and dynamic phe-
nomenon. This formidable challenge has significant implications for the climate system.
Aerosol and clouds have direct radiative effects through scattering and absorbing solar and
infrared radiation. But by far the most fascinating and complicated part of their interaction
is that part by which different types and amounts of aerosol impact the properties of the
clouds. Aerosol, due to its capability to serve as cloud condensation nuclei (CCN) or solid
ice nucleating particles (INPs), affects cloud microphysical properties such as droplet size
distribution, cloud albedo, and cloud lifetime. These properties of clouds in turn change
their radiative behavior, which play a crucial role in regulating the planet’s temperature and
climate variability. Furthermore, through these processes, such as cloud droplet nucleation
and cloud phase transition, aerosol particles can influence precipitation processes, thus
impacting regional rainfall patterns, droughts, extreme weather events, and the whole hy-
drological cycle. These aerosol effects, and their future projections, still have large margins
of uncertainty.

A difficulty encountered in the study of aerosol-cloud-interaction (ACI) is that the
effect of the aerosol on the morphological, microphysical, and radiative properties of clouds
and on precipitation is mediated and conditioned by the dynamic and thermodynamic
state of the atmosphere, so that it is a combination of many factors that finally determines
the final state and fate of clouds. Given the complexity and interdependence of ACI,
advanced observational techniques combined with modeling approaches are thus required
to disentangle the mixing of factors, unravel underlying mechanisms, and quantify the
impacts of aerosol on climate and the environment. In recent years, ACI has been the
subject of many review articles [5–11] and its effects on the climate system have also been
extensively surveyed [2,12–16]. We refer interested readers to these works for an in-depth
overview of the current understanding of ACI.

Research into ACI employs a variety of approaches to understand the complex dy-
namics and implications for climate systems. The primary methodologies include in situ
measurements, passive remote sensing, and active remote sensing. Each of these ap-
proaches provides unique insights and comes with specific advantages and limitations. In
situ measurements involve direct sampling and analysis of aerosols and cloud particles
using instruments onboard aircraft, ground stations, or ships. These measurements offer
highly detailed and accurate data on aerosol properties (such as size distribution, chemical
composition, and optical properties) and cloud microphysics (such as droplet size, liquid
water content, and cloud condensation nuclei). These high-accuracy and -precision data
deliver detailed information on aerosol physical and chemical properties and offer the
advantage to conduct controlled experiments and calibrate remote sensing instruments.
However, the spatial and temporal coverage is limited to the specific locations and times of
measurement campaigns, and high operational costs and logistical challenges do not allow
extensive space–time coverage, therefore they are limited to studying particular processes
rather than continuous monitoring.

Passive remote sensing involves the detection of radiation, either emitted or reflected
by aerosols and clouds. Instruments onboard satellites measure this radiation across various
wavelengths to infer aerosol and cloud properties. Common passive sensors include
radiometers and spectrometers. This approach allows global coverage and continuous
monitoring, which allows long-term datasets, useful for studying trends and variability.
Nevertheless, such indirect measurements can introduce uncertainties and require complex
retrieval algorithms, have limited vertical resolution, and have potential difficulties in
distinguishing between aerosol and optically thin cloud layers. Moreover, the dependence
on sunlight restricts some measurements to daytime.
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Some of these limitations are overcome by active remote sensing using instruments
that emit electromagnetic radiation and measure the returned signal after interaction with
aerosol and clouds. Lidar (light detection and ranging) and radar (radio detection and
ranging) are the most common active sensors used in ACI studies. Such instruments
provide vertical profiles of aerosol and cloud properties, can operate in both day and night
conditions, and provide high spatial resolution and detailed characterization of aerosol and
cloud layers. A drawback of these systems is that they are often complex and expensive,
and often have limited spatial coverage compared to passive sensors.

Radars and lidars have distinct merits and drawbacks based on their operational
principles and the specific information they provide. Radars operate in the microwave
region of the electromagnetic spectrum, allowing them to penetrate through thick clouds
and provide information on the internal structure of clouds and precipitation. So they
are highly effective in detecting and quantifying precipitation, distinguishing between
rain, snow, and hail and quantifying their intensity and distribution. Radars have a longer
detection range than lidars, allowing for the observation of large atmospheric volumes
and the tracking of weather systems over considerable distances. Moreover, unlike optical
sensors, radars can operate in almost all weather conditions, including during heavy
precipitation and cloudy skies. However, radars are far less sensitive than lidars to small
aerosols and cloud droplets, making it challenging to accurately measure these smaller
particles. In addition, the spatial resolution of radar systems is generally lower than that of
lidar systems and this can limit the ability to resolve fine-scale features within clouds and
aerosol layers. So radars are the primary choice for observing precipitation, internal cloud
structures, and large-scale weather systems, due to their all-weather capability, long range,
and detection efficacy for larger particles.

Lidars use laser light, typically in the ultraviolet, visible, or near-infrared regions,
which is highly sensitive to small aerosol particles and cloud droplets. This allows for
detailed characterization of aerosol properties and cloud microphysics, delivering high-
resolution vertical profiles of aerosol and cloud layers, enabling detailed studies of their
structure and dynamics. Probably the most important feature of lidars regarding ACI
investigations is the ability to differentiate between various types of aerosol based on their
optical properties, such as size, shape, and composition. Polarization lidar can further
distinguish between spherical and non-spherical particles. Unfortunately, lidars struggle to
penetrate through thick clouds and heavy precipitation, limiting their ability to observe the
internal structure of deep cloud systems, and their range is generally shorter than that of
radars, which can constrain the observation of large atmospheric volumes. Moreover, lidar
performance is limited by atmospheric conditions such as fog, heavy aerosol loading, and
daylight, particularly for systems operating in the visible spectrum. Their high sensitivity
to small particles, high spatial and vertical resolution, and detailed aerosol characterization
capability makes lidars particularly suitable for the study of aerosol while their limited
penetration in thick clouds and shorter range, affected by certain atmospheric conditions,
prevent their use in the study of large-scale weather systems.

Although radars and lidars provide complementary data, and their combined use can
offer a more comprehensive understanding of ACI, in this review we focus on the contribu-
tions of lidar techniques to this field. Furthermore, to keep the article within reasonable
dimensions, we seek to select results achieved by the lidar as a stand-alone instrument and
only briefly mention its potential when used in synergy with other instruments. The article
is organized as follows: In the next section, to provide the context, we will schematically
illustrate the ways in which aerosol influences the main types of clouds. Subsequently,
we describe the capabilities and recent developments of lidar technologies that allow to
investigate aspects of ACI. Then, we report some main observational results presented in
the recent literature and discuss some case studies. We then indicate the current challenges
and limitations in studying ACI and propose future research directions and technologi-
cal advancements, with emphasis on potential multi-instrument approaches to address
remaining gaps.



Remote Sens. 2024, 16, 2788 4 of 35

2. Aerosol–Cloud Interactions

In a nutshell, aerosol can influence clouds in two directions: i. An aerosol increase,
and consequently, a proportional increase in CCN, induces an increase in the number of
cloud particles which, for the same amount of condensed water, leads to a corresponding
decrease in their average dimension, and an increase in their surface area density (SAD),
cloud optical thickness (τ), and albedo (A). This is the well-known “Twomey effect” [17],
observable in the different optical characteristics of continental (i.e., formed in an aerosol-
rich atmosphere) compared to marine low-level clouds. An increase in cloud albedo for
low-level clouds (“cloud brightening”) has a net cooling effect on climate [18]. This aerosol
effect on mixed-phase and ice clouds is more complex due to the complicated mechanisms
of ice nucleation, multiplication, and accretion and is dealt with later; ii. smaller cloud
particles depress collision and coalescence, and consequently, delay or cancel the onset
of precipitation, resulting in increased cloud extents, thicknesses, and lifetimes [19,20].
This “lifetime” or “Albrecht effect” further enhances planetary cooling. However, ACI are
inserted into a complex of meteorological factors that call for feedback and adjustments, so
the dominant effect of aerosol varies with respect to the type of cloud, its life phase, and its
environment. The increase in lifetime is a well-documented effect for warm clouds, such as
shallow cumulus and stratocumulus, while in mixed-phase clouds and in deep convection
this aerosol effect is complicated by the dynamic processes and thermodynamics inside
the cloud.

ACI parameters [21–24] are often used to quantify the aerosol effect: The indirect-effect
parameter

ACIN =
∂ln(Nc)

∂ln
(
αp
) (1)

with the aerosol particle extinction coefficient αp, usually measured at the cloud’s base, as
a proxy for the aerosol load, describes the increase in the droplet number concentration
with increasing aerosol load for constant liquid water path (LWP) (or liquid water con-
tent, LWC) conditions. Similar to ACIN , the nucleation efficiency parameter ACIr can be
defined as

ACIr =
∂ln(rc)

∂ln
(
αp
) (2)

and quantifies the relative change in the cloud droplet effective radius rc with a relative
change in the aerosol parameter. ACIr equals 3 ACIN for constant LWC according to the
rc ∝ N−1/3

c relationship. ACIr and ACIN can vary between zero (no dependence) and 0.33
and 1, respectively.

Below, we detail what is known about aerosol effects in relation to different types
of clouds.

2.1. Liquid Clouds

Liquid clouds consist of tiny liquid water droplets that can exist at temperatures both
above and slightly below freezing, whereas warm clouds specifically refer to those that
form when the air temperature is above freezing. These are among the most interesting
clouds from a climatic point of view given that, being low-altitude clouds, and therefore,
dwelling at temperatures not significantly different from the surface, they reflect visible
radiation without particularly influencing the infrared emission, so they are defined as one
of the “air conditioners” of the climate system [25]. This effect is specifically important for
marine stratocumulus that drastically change the surface albedo with respect to the ocean
below [26]. Their study is simplified by the fact that their microphysics includes exclusively
the gaseous and liquid phases. For such kinds of clouds it is well established that an
increase in aerosol leads to an increase in the albedo, suppressing the collision–coalescence
process, and therefore, depressing the rain, increasing the cloud lifetime and coverage.

At the cloud’s base, the number of CCN activated to become cloud droplets Nc
depends on the initial availability of CCN and on the updraft velocity. The activation of a
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particle of dry radius rd to a CCN depends on whether the supersaturation S exceeds its
critical value Sc, given by [27]

Sc =

(
4A3

27κr3
d

) 1
2

(3)

where A is the Kelvin coefficient, proportional to the surface tension and inversely propor-
tional to temperature and κ is the hygroscopicity, a phenomenological parameter depending
on the water activity of the solution [28]. The formula describes the fact that large, hygro-
scopic particles with low surface tension act more effectively as CCN. Aerosol particles take
up water hygroscopically before they activate, thereby decreasing water vapor supersatura-
tion, and this is even more the case when they activate and create droplets, so there is a
‘saturation’ mechanism with respect to their number density that makes the concentration
of cloud droplets non-linearly dependent on the concentration of CCNs. Reutter et al. [29]
identify two asymptotic regimes, one CCN-limited at small values of CCN concentration
(few hundred cm−3) and one updraft-limited (since the updraft speed in turn controls
supersaturation) at high values of CCN concentration (several thousand cm−3). In fact, in
warm clouds, the droplet number concentration is influenced by both the availability of
CCN and the strength of updrafts within the cloud. The transition from a CCN-limited
regime to an updraft-limited regime can be explained as follows: i. in the CCN-limited
regime the droplet number concentration in the cloud is primarily controlled by the avail-
ability of CCN. When there are few CCN present, not many droplets can form regardless of
the updraft strength. Thus, in a CCN-limited regime, increasing the number of CCN leads
to a corresponding increase in the droplet number; ii. however, as the number of CCN
increases, more droplets form and there comes a point where the updraft velocity starts to
play a more significant role. Updrafts cause adiabatic cooling and, together with the rate
of droplet condensation, control supersaturation. When sufficient CCN are available, the
ability of updrafts to continue lifting air parcels and supporting the formation of additional
droplets becomes critical; iii. in the updraft-limited regime, the droplet concentration is
primarily controlled by the strength of the updrafts since, even if the CCN concentration is
high, the droplet concentration cannot increase significantly unless the updrafts are strong
enough to support the continued formation and growth of cloud droplets and keep the
supersaturation at high levels. Hence, when large concentrations of CCN are available,
stronger updrafts are needed to provide enough cooling to maintain supersaturation and
support further condensation.

Figure 1 shows these processes at work, where an increase in the concentration of CCN
(on the horizontal axis) initially causes an increase in the concentration of cloud droplets
(on the vertical axis) supported by high levels of supersaturation (color-coded in the figure).
This CCN-limited regime ends up in a plateau where high CCN concentrations have no
further effect on the concentration of cloud droplets, due to relatively low supersaturation,
in this case not supported by sufficient vertical speed (updraft-limited regime). The data
were collected in airborne measurement campaigns in 2013 [30].

Since the concentration of cloud droplets Nc is controlled by the CCN concentration,
the latter can in turn control the cloud albedo A. To evaluate this effect, for a cloud of
geometric thickness h we write its optical thickness τ as

τ =
∫

h

∫ ∞

0
Qeπr2nc(r)drdz (4)

where nc(r) is the cloud droplet size distribution, and Qe ∼ 2—in the geometrical optics
approximation—is the extinction efficiency. Introducing altitude-dependent effective radius
re(z) and the liquid water content (LWC(z)) in a unit volume of air as

re(z) =

∫ ∞
0 rπr2nc(r; z)dr∫ ∞
0 πr2nc(r; z)dr

(5)
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LWC(z) =
4π

3
ρw

∫ ∞

0
r3nc(r; z)dr (6)

we can rearrange τ as

τ =
∫

h

3
2ρw

LWC(z))
re(z)

dz (7)

Figure 1. Cloud droplet number vs. total aerosol number. Data are colored by maximum super-
saturation. (Figure and caption from Figure 4 in Bougiatioti et al. [30], licensed under CC BY 4.0).

We can easily connect the cloud droplet concentration Nc with the LWC through the
droplet volume mean radius rv, and if the cloud droplet distribution is such that rv ∼ re we
write [31]

Nc(z) =
LWC(z)

ρw
4πr3

e (z))
3

(8)

We can account for the non-adiabaticity of the cloud by defining the adiabatic fraction,
fad, the ratio of the liquid water content (LWC) in a real cloud to the LWC that would be
present if the cloud were strictly adiabatic, which represents the occurrence and amount of
cloud mixing with the surrounding subsaturated air. fad is characterized by a large vari-
ability ( fad = 0.45 ± 0.21 according to Barlakas et al. [32]) driven by entrainment processes,
but at the cloud base and close to its center we can assume that fad is close to 1 [33,34]. We
can indicate with Γad the rate of increase in LWC(z) with height in fully adiabatic condi-
tions, a function of temperature and pressure ranging from 0.5 to 3 gm−3 km−1, that can
be assumed to be relatively constant throughout the cloud depth for shallow clouds [35].
Thus, taking into account the entrainment of subsaturated air in the cloud, we can pose for
LWC(z) at height z from the cloud base:

LWC(z) = fadΓadz (9)

so we can write the cloud optical thickness τ in terms of Nc and of the liquid water path
(LWP), the amount of liquid water per unit area in the column of air from the cloud base to
its top:

τ = N
1
3

c LWP
5
6 A
(

32
fadΓad

) 1
6

(10)
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where A = (243π/250ρ2
w)

1/3. Finally, using Lacis and Hansen [36] and Meador and Weaver [37],
we connect optical thickness and albedo A:

A =
τ

τ + η
(11)

where η depends on the particle scattering phase function asymmetry, and can vary by a
few units around 10.

So, Equations (10) and (11) tell us that increasing aerosol could produce higher cloud
optical thickness and albedo (“cloud brightening”). Here, too, we note in both equations the
presence of a ’saturation’ effect which makes the increase in optical thickness and albedo
less and less relevant as the concentration of cloud droplets increases.

Opposed to those considerations, it should be noted that a greater number of cloud
droplets with smaller size favors more evaporation. When droplets evaporate, the sur-
rounding air cools and this can enhance the instability of the cloud and can increase the
rate of entrainment, thus triggering the so-called “evaporation–entrainment feedback” [38].
This effect could sometimes overcome the cloud lifetime effect described above, in very
polluted conditions [39]. In addition, a higher concentration of smaller droplets slows
the sedimentation, which in turn may enhance the entrainment of dry air into the cloud,
enhancing the droplet evaporation and reducing the albedo and water content, the so-called
“sedimentation–entrainment feedback” [40].

For what concerns precipitation in warm clouds, the collision–coalescence rate that
drives rain depends on ∼ r5

e [41], so re should be greater than a threshold value ∼19 µm,
the so-called Hocking limit [42], to initiate rain within a cloud. Freud and Rosenfeld [43]
demonstrated that the relationship between the number of activated cloud droplets near
the cloud base Nc and the cloud depth where re reaches the threshold value is nearly linear.
Since Nc at the cloud base is positively influenced by the abundance of CCN, that means
that deeper clouds need more CCN to suppress rain formation.

Complicating the picture is the fact that the presence of the aerosol itself has an effect
on cloud deepening and on its overall macrostructure. In fact, there are some theoretical
studies [44] and observations [45] that show how an increase in CCN can in fact invigorate
the vertical development of clouds, increasing their thickness, LWP, and rain rate [46], as
we will detail when treating in more detail the effect of aerosol on deep convective clouds.
Moreover, in the case of marine stratocumulus, a change in the cloud decks from open cells
to closed cells is documented as the aerosol increases compared to the background [47].
This has an effect on precipitation, since closed-cell clouds are reported be more stable and
generally do not produce rain, whereas open cells, more prone to raining, dissipate as rain
begins to fall.

To summarize, the warm cloud precipitation response to aerosol is predominantly
to delay or suppress it. However, it is a complex and multifaceted process whose magni-
tude and direction depend on various factors, including aerosol properties, concentration,
distribution, cloud regime and dynamics, and meteorological conditions. Figure 2 from
Christensen et al. [48] reports a schematic of the micro- and macrophysical processes that
regulates the warm stratocumulus morphology (upper panel). The interested reader can
refer to the exhaustive review in Wood [26].
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Figure 2. Schematic diagram showing the various radiative mechanisms associated with aerosol
indirect effects for warm (red outline) and mixed-phase (blue outline) clouds. Solid (dotted) arrows
denote incident (reflected) shortwave radiation. An increase in CCN (batch of small red dots)
instantaneously enhances cloud albedo by decreasing cloud droplet size (open circles). Rapid
adjustments due to smaller droplets can affect precipitation (dashed lines) and entrainment (curved
arrows). More IN (batch of small black dots) reduce cloud cover and albedo by causing greater
amounts of cloud ice (small crystals) and solid precipitation (large crystals). More CCN in mixed-
phase clouds decrease riming, thereby resulting in less precipitation. Increasing both CCN and IN
results in relatively small changes in reflected sunlight and precipitation compared to the aggregate
(combined) indirect effect in warm clouds. (Figure and caption from Figure 1 in Christensen et al. [48]
©Wiley. Used with permission).

2.2. Mixed-Phase Stratiform Clouds

These are low-altitude clouds composed of droplets of supercooled water and ice
crystals, occurring at all latitudes and very frequent in the polar areas where they can
have lifespans of many days. In mixed-phase clouds, the process of transferring water
from the liquid to the solid phase (the Wegener–Bergeron–Findeisen (WBF) process) is
likely to be more effective in a population of smaller cloud droplets, leading to larger ice
crystals, and probably inducing greater precipitation and a shorter lifetime of the cloud
(“glaciation effect”).

Among these types of clouds, the polar ones have attracted particular attention.
Contrary to the behavior of their mid- and low-latitude counterparts, these clouds in polar
regions do not have a large surface cooling effect because the sea ice at the surface is already
bright so that the cloud-induced change in albedo is not significant. On the contrary,
since the clouds also absorb IR radiation efficiently, they re-emit that energy back so that
they could even warm the underlying surface. For these long lasting Arctic clouds, the
ineffectiveness of the process of transferring water from the liquid to the solid phase (the
Wegener–Bergeron–Findeisen (WBF) process) and the riming mechanism to complete the
glaciation of these clouds is explained by the fact that the few ice particles nucleated at the
top of the cloud, where the temperature is coldest due to radiative cooling, grow rapidly
in its supersaturated environment and sediment out very fast, thus failing to complete
the glaciation of the cloud [49]. The frequent presence of moist inversion layers above the
cloud and the process of entrainment at the cloud top help to sustain the cloud. The cloud
phase plays a key role in how it affects the polar surface radiation as glaciation can limit
the cloud lifetime and render it less optically and thermally opaque, but still produce an
overall positive radiative effect on the surface [50]. The lifetime of these clouds depends
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on the balance between CCN and INP concentrations. Studies have therefore focused on
the effect not only of CCN but also of INPs, which are necessary to freeze liquid droplets
at temperatures that are not low enough for homogeneous nucleation. The percentage
of CCN that can act as INPs (about one particle in 10−3–10−6 acts as an INP) is thus a
parameter of great importance, given that an increase in CCN at the expense of the INP
component would lead to a greater number of small droplets, for which glaciation is less
likely, and riming is less efficient, leading to a longer lifespan of the cloud, greater emissivity,
and less precipitation. On the contrary, increasing the percentage of INPs leads to rapid
glaciation, an enhancement of the WBP, and reduction in the duration of the cloud [51,52].
Aerosol types that can efficiently act as INPs are mineral dust, biological particles (pollen,
bacteria, fungal spores and plankton), carbonaceous combustion products, soot, volcanic
ash, and sea spray. Figure 2 from Christensen et al. [48] reports a schematic of the micro-
and macrophysical processes that regulate the mixed-phase stratocumulus morphology
(lower panel).

2.3. Deep Convective Clouds

Aerosol impacts deep convective clouds by changing how condensation and glaciation
develop along the vertical, influencing not only the type and sizes of the condensate, but
also the overall cloud’s dynamics through changes in latent heat release within the cloud.
At the cloud’s base, an increase in CCN has the effect of creating more numerous and
smaller droplets. In the warm part of the cloud, the additional SAD made available may
be more efficient in reducing the supersaturation, so that more water can condense and
the additional latent heat release can speed up the updraft. Moreover, smaller droplets
may disfavor the onset of coalescence until high altitudes are reached. If the coalescence
regime region lies above the freezing level, more liquid water can be transported aloft
and made available to freezing. The enhanced latent heating release at those altitudes
may further enhance the buoyancy and promote stronger updrafts. Both effects go in the
direction of promoting convection strength. These are two declinations of a “convective
invigoration” induced by the increase in aerosol [53,54]. Once ice starts forming, smaller
cloud droplets and narrower size distributions enhance the WBF process but depress riming.
However, the combined effect of increased CCN and INPs generally results in more efficient
secondary ice multiplication due to the increased availability of supercooled droplets
and initial ice crystals, which enhance interaction processes critical for secondary ice
formation. Supercooled water droplets are essential for secondary ice formation processes
like rime splintering (Hallett–Mossop process), when supercooled droplets collide with
existing ice particles and freeze, causing splintering and the generation of additional ice
crystals. Increasing CCN are responsible for greater numbers of supercooled droplets being
available to collide with ice crystals, potentially enhancing the rime splintering process,
while an increase in INPs leads to more primary ice crystals forming. This provides more
initial ice particles that can interact with supercooled droplets or other ice crystals. Thus,
higher concentrations of both CCN and INPs increase the number of interactions between
supercooled droplets and ice crystals, enhancing processes like rime splintering. In addition
to that, other secondary ice multiplication mechanisms such as mechanical fracturing of
ice during collisions, sublimation, and condensation processes can also be influenced by
increased CCN and INP concentrations. More initial ice crystals provide more opportunities
for these processes to occur.

The depression of warm rain, and consequently, higher ice water content, may im-
pact the formation of snow, graupel, and hail and enhance cloud electrification [55] and
precipitation rates [56]. The formation of snow, graupel, and hail, along with the cold rain
resulting from their melting, is influenced by the dynamic and thermodynamic structures
of the clouds and the availability of giant cloud condensation nuclei CCN and INPs [57].
Smaller and narrower cloud droplet sizes and distribution, supercooled liquid water at
greater altitude, enhanced cold rain and larger hail, higher cloud tops and stronger updrafts
are effects clearly discernible at the scale of the single cloud. Figure 3 from Fan et al. [58]
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illustrates how an increase in aerosol in polluted environments is reflected in the increase
in cloud-top height, cloudiness, and cloud thickness. Convective cores release a significant
amount of smaller cloud ice particles, resulting in the extensive spread and prolonged
dissipation of anvil clouds, as these smaller ice crystals fall more slowly.

Figure 3. Schematic illustration of the differences in cloud-top height (CTH), cloud fractions, and
cloud thickness for storms in clean and polluted environments. Red dots denote cloud droplets,
light blue dots represent raindrops, and blue shapes are ice particles. In the polluted environment,
convective cores detrain larger amounts of cloud hydrometeors of much smaller size, leading to
larger expansion and much slower dissipation of stratiform/anvil clouds resulting from smaller fall
velocities of ice particles because of much reduced sizes. Therefore, larger cloud cover, higher CTHs,
and thicker clouds are seen in the polluted storm after the mature stage. (Figure and caption from
Figure 9 in Fan et al. [58]).

An increase in INPs can trigger a faster glaciation of the cloud, frequently resulting in
the formation of precipitation via the ice–ice pathway (ice–ice collection and riming) at the
expense of the mixed-phase pathway, thus depressing hail production.

Quantifying the impact of aerosols on a regional scale is more ambiguous, given that
adjustments to the circulation and to the environment in which the cloud systems develop,
are involved. An in-depth review of the interactions between aerosols and deep convective
clouds can be found in [10].

2.4. Cirrus Clouds

These high-altitude ice clouds can be grouped into two types, according to their
different origins and microphysical properties [59]: the first type forms directly as ice (in
situ origin cirrus) within updrafts, nucleating both homogeneously and heterogeneously
from the gas phase. The second type is composed of thick cirrus remnants of mixed-
phase clouds, whose liquid droplets glaciated while lifted to a temperature below 235 K
(liquid origin cirrus), where ice is formed heterogeneously, and possibly, homogeneously
as well. In situ-origin cirrus are often thinner and have lower ice water content (IWC),
while liquid-origin cirrus are mostly thick with a higher IWC and more numerous and
larger ice crystals [60]. As ice formation can occur either from homogeneous nucleation of
supercooled aqueous aerosol and cloud water droplets or heterogeneously from the small
subset of solid aerosol that can act as INPs, the impact of aerosol on those clouds depends
on which is the dominant mechanism. Which one between the two prevails depends on
ambient temperature, relative humidity, and INP abundance. For those in situ-formed
cirrus clouds whose origin can be dominated by homogeneous nucleation, an increase in
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INPs becomes significant if it can shift the prevailing nucleation mechanism towards the
heterogeneous one. If so, the glaciation would involve a few INPs, resulting in larger sized
but less numerous ice crystals [61,62]. For cirrus clouds of liquid origin, in cases where
heterogeneous nucleation prevails, higher aerosol concentration corresponds to a larger
density of smaller droplets, which leads to a greater number of ice particles with smaller
dimensions, i.e., with lower sedimentation speeds, leading to a greater persistence of the
cloud [63]. However, there are indications that the coupling between the amount of CCN
and INPs with the concentration and morphology of ice crystals is weaker than with the
concentration of cloud droplets for the case of warm clouds, and is more dependent on the
meteorological and thermodynamic conditions governing the formation and lifetime of
cirrus clouds [64].

Table 1 summarizes the responses of different cloud types to an increase in CCN
or INPs.

Table 1. Cloud response to an increase in CCN and IN.

Cloud Type Aerosol Impact

Warm clouds CCN
Higher albedo, rain delay or suppression,

increased lifetime. Possible
evaporation–entrainment enhancement. 1

Mixed-phase clouds
CCN

Higher albedo, enhanced WFP, riming
suppression, reduced glaciation and riming,

reduced precipitation, increased lifetime.

IN Enhanced glaciation, lower albedo, rain
enhancement, reduced lifetime.

Deep convective clouds
CCN

Higher albedo, convective invigoration, warm
rain suppression, cold rain enhancement, hail

enhancement, more electrification.

IN Enhanced glaciation, reduced albedo. Ice–ice
pathway to precipitation favored.

Cirrus clouds

CCN Increased albedo and lifetime.

IN
Reduced albedo and lifetime (hom. nucl.

prevailing); increased albedo and lifetime (het.
nucl. prevailing).

1 Possible reduction of lifetime in polluted condition due to evaporation–entrainment feedback.

3. Lidar Techniques for Studying Aerosol–Cloud Interactions
3.1. Lidar Fundamentals

Lidar technology has long been used to improve our understanding of atmospheric
composition and dynamics, particularly for cloud and aerosol detection and atmospheric
composition. The various configurations, including simple elastic lidar, polarization lidar,
multiwavelength lidar, Raman lidar, high-spectral-resolution lidar (HSRL), differential
absorption lidar (DIAL) and dual-field-of-view lidar, endow researchers with a compre-
hensive toolkit for probing atmospheric particulates. In its essence, the lidar emits pulses
of laser light and detects, at a time t after the pulse was emitted, the light backscattered
from the atmosphere at a distance R = ct/2. The factor 1/2 takes into account the double
travel from the emitter to the illuminated volume at distance R and back to the colocated
receiver. The backscattered light is collected with a telescope and detected with suitable
sensors. The basic elastic Rayleigh lidar equation connecting the power received from the
light backscattered from a distance R, P(R) at wavelength λ to the atmospheric optical
parameters at R, formulated under the single-scattering hypothesis, is

P(R, λ) = P0
cτ

2
O(R)η

A
R2 β(R, λ)exp

[
−2

∫ R

0
α(R, λ)dr

]
+ Pbkg (12)
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where P0 is the laser pulse power, and τ is the temporal length of the pulse, so that cτ/2 is
the geometrical length of the volume illuminated by the laser light at a given time. The
term O(R) is a function that represents the overlap of the laser beam and the receiver field of
view, which is unity in the lidar far range (i.e., usually a few hundred of meters from it), and
the solid angle A/R2 is the angle at which the lidar views the light scattered from distance
R. η is the overall system efficiency. The term Pbkg represents a constant contribution from
the light conditions of the atmosphere and increases with the telescope field of view (FOV).
The optical parameters of interest are the volume backscatter coefficient β = βm + βp and
the extinction coefficient α = αm + αp, where the subscripts m and p refer to molecules and
particles. While for their molecular part a link between the two quantities is provided by
molecular scattering theory, resulting in αm/βm = 8π/3, the ratio αp/βp (also known as
the lidar ratio, LR) is not known and depends on the particular aerosol. In general, we
may pose, for a collection of scatterers with particle size distribution (PSD) n(r) (usually
expressed in cm−3µm−1),

βp =
∫ ∞

0
n(r)πr2Qback(r)dr (13)

αp =
∫ ∞

0
n(r)πr2Qext(r)dr (14)

In the case of spherical scatterers, the efficiencies Qback(r), Qext(r) can be computed in
terms of Mie theory [65] and for non-absorbing aerosol their asymptotic values (i.e., for
particle dimensions significantly greater than the lidar wavelenght) are, respectively, 1 and
2. There is no general analytical solution for scatterers of arbitrary shape and different
approaches have been developed for those conditions [66]. Here, we want to underline
how the lidar is essentially sensitive to the second moment of the PSD, i.e., to the averaged
cross-sectional area of the particles.

The elastic Rayleigh lidar serves as the foundation of lidar-based aerosol detection,
interpreting elastically backscattered light to estimate aerosol properties such as concentra-
tion and assess altitude distribution and optical thickness. As stated above, in Equation (12)
two unknown quantities appear, so assumptions on the LR should be made in order to
invert the equation [67,68] and different LRs should be carefully chosen with respect to dif-
ferent types of aerosols. This LR estimate can lead to large systematic errors in the retrieval
of aerosol extinction coefficients [69,70] and should be performed carefully, taking into
account the expected aerosol type, based on the geographical location and meteorological
conditions of the measurement site [71]. The primary limitation of simple elastic Rayleigh
lidar in studying ACI is its inability to differentiate between aerosol particles and cloud
droplets due to their similar backscattering properties, leading to challenges in accurately
characterizing their respective contributions and interactions.

Polarization diversity lidar enhances the aerosol classification capability by exploiting
the polarization state of backscattered light, allowing for discrimination between different
aerosol types based on their distinct polarization signatures. In fact, simple spherical
particles backscatter the radiation with no change in its polarization state, while aspherical
scatterers change the state of the incident polarization. This polarization diversity dis-
crimination enables more accurate characterization of aerosol properties in terms of their
morphology [72]. The parameter used in practice for lidar is the particle depolarization
δp [73,74], defined as the ratio between the particle backscattering coefficients measured in
two reception channels, one which selects the polarization parallel to that of the emitted
light, the other the orthogonal one; with an obvious choice of symbols δp = βcross

p /β
par
p .

δp depends on the size and shape of the particle: it is small for particles with dimen-
sions smaller than the lidar wavelength and, as the particle dimension increases, it grows
non-monotonically towards an asymptotic value that depends on the morphology of the
particle [75]. Particle depolarization measurements are also useful for distinguishing the
thermodynamical phase of cloud particles, as they can differentiate between spherical
liquid droplets and non-spherical ice crystals based on the polarization characteristics of
scattered light [72,76].
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Despite its enhanced capability to differentiate between aerosols and cloud particles
through polarization diversity, such setups still face limitations in accurately quantifying
ACI due to their inability to provide detailed microphysical properties and precise particle
size distributions.

Raman lidar can detect the vibrational Raman scattering from various atmospheric
molecules, such as nitrogen, oxygen, ozone, water vapor, with each one resulting in
distinctive shifts in the scattered wavelength. In the case of nitrogen molecules, Raman
scattering detection offers the advantage of providing an additional, independent equation
for the atmospheric extinction, allowing for a more accurate determination of the extinction
coefficient, hence of the LR, without relying on assumptions about aerosol properties [77].
The spectrally resolved detection of the Raman rotational lines of N2 and O2 also allows
the determination of the temperature of the atmosphere [78].

A different approach to disentangle the backscatter–extinction relationship is the one
provided by the high-spectral-resolution lidar (HSRL), capable of resolving the spectrum
of backscattered radiation at very high resolution, identifying and separating aerosol Mie
scattering from molecular Cabannes–Brillouin scattering by the different amplitude of
their Doppler line broadening, so the aerosol backscatter and extinction coefficient can be
retrieved directly [79].

Raman and HSRL setups significantly enhance lidar’s potential by providing detailed
measurements of aerosol optical properties with the ability to distinguish between different
aerosols with high precision and accuracy [80,81].

Multiwavelength lidars further extend the capabilities of lidar systems by emitting
laser pulses at multiple wavelengths, enabling the characterization of aerosols in terms of
the spectral dependence of their scattering. This approach not only facilitates the differ-
entiation between various aerosol types but provides valuable information about aerosol
microphysics, optical properties, and aerosol size distribution [82,83]. For a typical two-
wavelength lidar with λ1 > λ2, the ratio of the backscattering coefficients βp(λ1)/βp(λ2)
defines the color ratio (CR).

The differential absorption lidar (DIAL) technique utilizes two closely spaced laser
wavelengths to probe the atmosphere, with one acting as a reference and the other being
absorbed by a target gas, such as water vapor, enabling precise measurements of its
concentration and vertical profiles [84].

Doppler lidars can measure the air-mass velocity in the atmosphere by analyzing the
frequency shift (Doppler shift) of the backscattered light; Doppler lidar can determine
the speed and direction of wind and other airborne particles. This technology is widely
used in meteorology for wind profiling, turbulence detection, and studying atmospheric
dynamics [85].

Fluorescence lidars utilize the property of certain aerosols and biological particles to
emit fluorescence when excited by specific wavelengths of light. This technique allows
for the detection and characterization of biological aerosols, organic compounds, and
specific chemical species in the atmosphere. The enhanced capability of fluorescence lidars
lies in their ability to identify and quantify specific aerosol types, such as biogenic or
anthropogenic particles, providing valuable information on the sources and composition of
aerosols within cloud systems [86,87].

Finally, different reception geometries of the backscattered signal, such as different
telescopes at different receiving angles, or the use of different FOVs for the same receiving
telescope, allow the estimation of some properties of the scattering medium, such as
relevant portions of the phase function of the scatterers and other cloud properties as the
extinction coefficient and particle effective radius [71,88].

The diverse capabilities of lidar technology, ranging from simple elastic lidar to more
advanced configurations, allows us to effectively characterize aerosol in its dimensional
component from about 0.1 µm, thin clouds (i.e., with optical thicknesses less than 3), and in
the case of thick clouds, the base of the cloud, and through the analysis of the signal along
the depth of penetration into it, some microphysical characteristics of it.
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The interested reader may refer to books on lidar’s application to atmospheric research,
such as the classical Measures [89] or the more recent Weitkamp et al. [90].

3.2. Aerosol Characterization
3.2.1. Aerosol Classification

Basic lidar parameters for describing the particulate are the backscattering and extinc-
tion coefficients, extensive quantities dependent on the amount of particulate present in
the investigation volume, its optical depth τ, and the particle linear depolarization ratio δp,
with the lidar ratio LR and the color ratio CR as intensive quantities. These parameters are
used to classify different aerosol types [91,92]. An example of aerosol classification is shown
in Figure 4 from Groß et al. [93], where different types of aerosols are reported with respect
to their δp, LR, and CR (in this case ratio of aerosol backscatter coefficient at 532 nm and
1064 nm). In their work, the authors report results from airborne measurement campaigns
where a two-wavelength, polarization-diversity HSRL lidar was deployed from an aircraft,
and the characterization results were validated by concomitant in situ measurements and
Lagrangian analysis of the air masses being measured. From panel (a) in Figure 4 one
can see that even a simpler single-wavelength polarization diversity lidar with the ability
to measure LR either with HSRL or Raman approach is already effective in discerning
different aerosol types. Basic elastic Rayleigh lidar with polarization diversity still allows
aerosol classification if additional information is introduced in the classification algorithm,
such as altitude, location, or surface type, suggesting the expected aerosol, as in the aerosol
classification in the case of the satellite borne CALIOP lidar [94,95].

Figure 4. Characteristic lidar quantities of various atmospheric aerosol types (a–c) with frequency
distributions (d–f), as well as the total number of measurement points (n) for each aerosol type.
Each point in (d–f) represents a single lidar observation. (Figure and caption from Figure 5 in
Groß et al. [93] licensed under CC BY 3.0).

3.2.2. Aerosol Quantitative Specification

Of interest is estimates of quantities characterizing the aerosol distribution, such as
particle mass density, SAD, volume density, particle mean, and effective radius. Such
estimation has been carried out either by means of numerical simulations [96–98] or by
comparing the lidar measurements with in situ measurements carried out in the same air
mass probed by the lidar [99–101] to derive heuristic relationships.

A reconstruction of the aerosol PSD is possible starting from multiwavelength Ra-
man/HRSL with polarization diversity lidars that can provide sets of extinction and
backscattering coefficients [102]. In 2002, Veselovskii et al. [103] presented an inversion
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algorithm for the retrieval of particle size distribution parameters, i.e., mean or effective
radius, number, surface area, and volume densities, and complex refractive index, from
multiwavelength lidar data, and successively, Veselovskii et al. [104] used the extinction
and backscattering coefficients at 355, 532, and 1064 nm to retrieve the parameters of a
PSD expressed as a sum of two lognormals. Such kinds of retrievals, deriving the PSD
in size ranges from fractions to a few tens of µm, have been extensively used and have
been validated with comparison to other independent remote sensing retrievals (i.e., inver-
sions of spectral measurements of sky radiance and atmospheric transmittance from sun
photometers) or colocated in situ data [105–110].

3.2.3. Aerosol Hygroscopicity

The aerosol’s hygroscopicity is an important factor determining its ability to act as a
CCN. Lidars can detect changes in aerosol optical properties as they absorb water and grow.
By monitoring these changes we can deduce hygroscopic scattering enhancement factors of
different aerosol types. Ferrare et al. [111] used water vapor Raman lidar to simultaneously
measure aerosol backscatter and RH and demonstrated how the increase in backscattering
measured by the lidar can be correlated to RH, and Pahlow et al. [112] showed good
correlations between a lidar-derived enhancement factor (measured over the range 85% RH
to 96% RH) with the same parameter measured by a nephelometer (over the RH range 40%
to 85%). More recently, Fernández et al. [113] investigated the hygroscopic characteristics
using a multiwavelength water vapor Raman lidar and in situ aerosol observations. They
inferred profiles of RH from water vapor Raman lidar data and described changes in aerosol
optical properties under varying humidity conditions in terms of extinction enhancement,
CR, and LR. Specifically, they found that increasing RH leads to aerosols absorbing water
vapor, which increases their size, and consequently, decreases the CR while increasing the
LR. They also estimated the RH-related scattering enhancement factor for the backscatter
coefficient at 532 nm, which characterizes aerosols from a hygroscopic perspective. A
similar study was conducted by Navas-Guzmán et al. [114] using continuous observations
of aerosol backscatter coefficient, temperature, and water vapor mixing ratio from a water
vapor Raman lidar system at the aerological station of MeteoSwiss in Payerne, Switzerland,
since 2008.

Lv et al. [115] studied the extinction and backscattering coefficients at 355, 532, and
1064 nm to infer aerosol hygroscopicity according to an aerosol hygroscopic scattering en-
hancement factor f (RH(z)), defined as the ratio between the particle backscatter coefficient
when RH varies and that at a fixed RH, and using colocated lidar for backscatter coefficient
profiles, and radiosondes for RH profiles. The homogeneity of the aerosol along the vertical
was guaranteed by well-mixed conditions, assessed by concomitant measurement of poten-
tial temperature and water mixing ratio. Concurrent increases in the aerosol backscattering
coefficient and RH were used to derive f (RH(z)), then fitted to derive the parameters of the
Kasten model [116]. Such derivations and comparison were performed for different types
of aerosol and conditions. The lidar f (RH(z)) results were then compared to ground-based
in situ data from a humidified nephelometer, showing good agreement. The relationship
between the nephelometer-derived f (RH), which is based on the particle total scattering,
and the one derived from a backscatter lidar was extensively addressed by Feingold and
Morley [117], who compared lidar data with optical computations from airborne in situ
measurements of aerosol size and composition. Lidar-derived enhancement factors may
differ from the commonly used f (RH) based on humidified nephelometers at RH greater
than 95%. In such high-RH conditions, the lidar-derived enhancement factor is greater
than the one from the computed extinctions that a nephelometer would measure. The
disagreement is dependent on the PSD and aerosol composition. However, over the range
85% < RH < 95% the two factors were in reasonable agreement. Recently, other aerosol
hygroscopic studies based on lidar measurements have been carried out, where backscatter
and extinction enhancement factors are derived from lidar measurements and RH profiles
are provided from radiosoundings or from water vapor lidar [118–120]. The amount of
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water vapor absorption by aerosols can also be inferred from the use of DIAL lidar, which
simultaneously measures water vapor concentration and aerosol backscatter. In particular,
this technique has proven effective in deriving the enhancement factor f (RH(z)) in a well
mixed boundary layer capped by clouds [121]. We should stress the fact that lidars are
useful tool for measuring aerosol growth not only because of their remote sensing capa-
bility, but also for conditions when RH > 85%, such as those encountered close to cloud
bases, since for such elevated RH humidified nephelometers work poorly. It should be
noted, however, that the hygroscopicity scattering enhancement factors measured with a
nephelometer or a lidar and the growth factor measured with, for instance, a humidified
tandem differential mobility analyzer (HTDMA) are both characterizing aerosol hygro-
scopic properties, but they are not identical. They represent different aspects of how aerosol
particles interact with water vapor and how these interactions affect their optical properties
(scattering) and physical properties (size) [122].

3.3. Cloud Characterization
3.3.1. Semi-Transparent Clouds

The semi-transparent clouds sampled by lidars predominantly belong to the cirrus
cloud category, and it is on them that we focus. Cirrus clouds [123], characterized by their
thin, wispy appearance and high altitudes, often exhibit optical transparency to varying
degrees, allowing lidar systems to effectively penetrate entirely into these clouds, making
them a primary focus of lidar-based research in atmospheric science. Given the extensive
body of literature on cirrus lidar studies, we do not delve into exhaustive details on each
aspect. Instead, we summarize lidar’s key capabilities in detecting and characterizing these
clouds through various optical techniques. Readers interested in more comprehensive
insights are encouraged to explore the rich literature of research in this field.

Basic backscatter lidars can identify cloud boundaries and reveal internal cloud struc-
tures [124–126]; scanning polarization diversity lidars provide insights into cloud particle
phase [72], shape [127,128], orientation [129,130], and associated aerosols [131], with this
capability being improved by the simultaneous use of more than one wavelength [132,133];
Raman or HSRL can provide calibrated data on ice water content, optical attenuation
coefficient, and optical depth [134–136]. Ice water content can be also retrieved from optical
extinction [137–140] and possibly validated by comparison with colocated in situ mea-
surements [101,141]. Differential absorption lidar (DIAL) analyzes particle backscattering
and determines water vapor density/relative humidity within the cirrus cloud environ-
ment [142]. Interestingly, information on the effective size of ice crystals in cirrus clouds can
also be retrieved by measuring the fall speed that can be derived from lidar data [143,144].

3.3.2. Opaque Clouds

In lidar jargon, opaque clouds are those whose optical thickness exceeds 3. Lidars are
not capable of probing them entirely; however, a penetration length within them can be
defined in which the lidar is still able to produce a signal not totally attenuated for several
tens of meters, and information can be obtained. Here, we focus predominantly on warm
clouds, for which we can assume the cloud droplets to be spherical. This simplifies the
treatment of multiple scattering within the cloud. The angular distribution of the light
scattering from cloud droplets is a function of the effective size re, and the forward scattering
increases monotonically with the droplet dimension. Moreover, in such an optically dense
medium, a significant amount of the backscattered light comes from multiple scattering.

Due to the lidar’s receiving geometry, most of the multi-scattered photons received
come from small-angle forward scatterings plus a single backscattering at an angle close to
180°. Bissonnette et al. [145] describes an algorithm that uses multiple-field-of-view (FOV)
lidar measurements between 1 and 12 mrad to retrieve the extinction coefficient at the lidar
wavelength and the effective particle diameter, from which secondary products such as
the LWC can be derived. These techniques have been used to characterize the structure of
dense low-level water clouds [146].
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Schmidt et al. [147] use two coaxial FOVs to detect the nitrogen Raman signal of light
scattered in the forward direction by cloud droplets but backscattered inelastically by nitro-
gen. As the phase function for Raman scattering by nitrogen molecules is nearly isotropic
in the backward direction, the scattering computation effort is significantly relieved as the
angular distribution of the received light depends only on the scattering phase function
of the droplets. In this way, the complication arising from the droplet size dependency of
multiply-scattered light is eliminated, and this is an advantage with respect to the detection
of multiple elastic scattering from droplets.

For cloud droplets, single-scattered light in the backward direction does not change
its polarization state, while scattering events at different angles, which overall lead to
backward scattering, change the polarization. So the profile of the polarization is related
to the intensity of multiple scattering, in turn depending on particle size and concentra-
tion. Research has also explored the correlation between light depolarization induced by
multiple scattering, measured across various fields of view (FOVs), and the characteris-
tics of cloud droplet sizes [148,149]. Jimenez et al. [150] use lidar depolarization ratios
at two different FOVs to retrieve microphysical properties of liquid-water clouds (cloud
extinction coefficient, droplet effective radius, liquid water content, cloud droplet number
concentration) in a cloud penetration depth of 100 m above the cloud base.

Donovan et al. [151] proposed a method that uses single-FOV observations of depo-
larization, under the assumption of a linear LWC increase with height (an assumption
that corresponds to fixing the degree of non-adiabaticity of the cloud development) and
constant cloud droplet number density Nd at the cloud base. They used Monte Carlo
multiple scattering modeling on a modified gamma function PSD to create a database for
various values of LWC lapse rate, re, different cloud-base heights, and different lidar FOVs.
An optimal estimation Bayesian scheme was then used to infer profiles of re and LWC as
well as mean values of Nd and the LWC lapse rate (from which the cloud subadiabaticity
can be retrieved) within the cloud penetration length. Relatively few studies are available
that exploit penetration depth in opaque cirrus clouds, due to the lack of knowledge of the
phase function for ice crystal scattering [152].

It may seem limiting to only be able to sample the base of the cloud for only a few
tens or hundreds of meters. However, the maximum supersaturation (above which no
new CCN are activated) lies typically only a few tens of meters above the cloud base [153],
so this is the region dictating the cloud droplet condensation, up to the level where colli-
sion/coalescence processes begin to take place. It is thus a region of utmost importance for
cloud microphysical studies.

In cases where the LWP can be retrieved independently, from radars [154], microwave
radiometers [155], or IR [156] and visible spectrometers [157], different approaches become
viable. Grosvenor et al. [158] reviewed how passive satellite remote sensing retrieves cloud
droplet number concentration (Nd) using cloud optical depth, cloud droplet effective radius
(re), and cloud-top temperature. Ground-based active remote sensing, on the other hand,
relies on cloud radar reflectivity factor (Z) or the lidar extinction (backscatter) coefficient (α,
β), along with the microwave radiometer-retrieved liquid water path (LWP). To connect
these retrievals, a droplet size distribution (DSD) assumption is necessary. For semi-
transparent clouds, lidar-based retrievals offer an advantage because the optical parameters
they measure depend on the second moment of the DSD, rather than the sixth moment as
with radars. This sensitivity to Nd makes lidar retrievals less dependent on the effective
shape of the DSD. An empirical parameter k that equals the ratio of the mean volume
radius to the mean effective radius [159] can be defined which implicitly incorporates the
dependence on the DSD in the relation between Nd, re, and LWC, which, from (14), (5),
and (6), we can write as

Nc =
2ρ2

w
9πk

α3

LWC2 (15)

at any given level in the cloud, thus linking Nc to the lidar extinction α [160]. Brenguier
et al. [161] reported k parameter values ranging from 0.7 to 0.9 for stratiform clouds in vari-



Remote Sens. 2024, 16, 2788 18 of 35

ous atmospheric conditions and cloud systems. In the absence of ancillary measurements
for LWC, its profile can be guessed from the cloud-base temperature and pressure measure-
ments by assuming an educated value for the adiabatic fraction fad, as in Equation (9).

4. Observational Results
4.1. Detection of CCN and INPs

Estimating concentrations of cloud condensation nuclei (CCN) is crucial for compre-
hending ACI. However, in situ observations of CCN are scarce, and many passive remote
sensing methods can only offer proxies like total aerosol optical depth (AOD) for column-
effective CCN assessments [162]. The potential of lidars in the study of ACI should be clear,
and in this section we present some findings from observational studies using lidars to
characterize the presence of CCN and INPs.

A method to extend the CCN spectrum measured at the surface to high altitudes was
proposed by Ghan and Collins [163]. The lidar-measured value β(z) at altitude z where
aerosol is exposed to the RH(z) is recalculated to the value it would have in dry conditions
using an independent measurement of the vertical profile of RH and surface measurements
made with a humidified nephelometer, providing the dependence of the extinction on
relative humidity. A light-scattering hygroscopic growth factor f (RH) is defined as the
ratio between the extinction coefficient at various RHs and the extinction coefficient at dry
conditions. The same factor is used also to quantify the amount of change in the particle
backscattering coefficient due to water uptake: βdry(z) = β(z)/ f (RH(z)). Then, surface
measurements of the CCN spectrum CCN(z0) are scaled by the ratio of the backscatter (or
extinction) profile βdry(z) to the backscatter (or extinction) retrieved at or near the surface,
βdry(z0). This method assumes that the hygroscopic growth factor f (RH) measured at the
surface is the same as the one f (RH(z)) measured at z, and this implies the assumption
that the vertical structure of CCN concentration is identical to the vertical structure of dry
extinction or backscatter. These assumptions are equivalent to requiring that both the PSD
shape (but not the total aerosol number) and the aerosol composition and particle shape are
independent of altitude. In fact, Ghan et al. [164] showed that vertical inhomogeneity in
the PSD, and presumably in particle shape and composition, are the main sources of error
in such CCN retrievals, as near-surface CCN properties could be significantly different
from CCN properties near the cloud base.

The ability of aerosols to act as CCN depends more on their size rather than chemical
composition or mixing state [165]. This allows us to give an assessment on CCN through
a determination of the aerosol PSD and an assessment of the number of particles whose
dimension is above a certain threshold. It follows that in order to derive CCN concentration
one should first use lidar-derived optical parameters to retrieve the aerosol PSD. Then, an
assessment of particle hygroscopicity for different types of aerosol is needed to assess the
ability of particles to act as CCN. In should be noted that high RH near clouds can change
the aerosol optical properties and complicate the CCN retrieval.

Lv et al. [166] developed a method for profiling CCN concentrations that uses backscat-
ter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm.
Three types of aerosols (urban industrial, biomass burning, and dust) were considered,
each with a different bimodal PSD. This PSD was inferred by using look-up tables de-
veloped based on the aerosol PSD database of the Aerosol Robotic Network (AERONET)
database [167]. The best bimodal size distribution parameters were selected by compar-
ing lidar observations and Mie optical computation [65] on the aerosol PSD, varying the
PSD parameters through typical ranges for the three types of aerosols, until an agree-
ment between measurement and calculations was reached. This “wet” PSD, measured
at ambient RH, was then corrected to its “dry” version by using a hygroscopic scattering
enhancement factor obtained from a humidified tandem differential mobility analyzer
(HTDMA) or Water Vapour Raman lidar data. Then, the aerosol critical radius (rc) for CCN
activation at selected critical supersaturation was computed from the maximum of the
κ-Köhler curve [28]. As, according to κ-Köhler theory, rc depends on the hygroscopicity
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parameter κ, which changes according to aerosol type, such that the critical radius (rc)
depends on the aerosol type, and for the three types of aerosols in the study it is taken
from the literature [168–170]. CCN number concentrations are then determined from the
integration of the retrieved PSD, from rc upward.

In 2019, Tan et al. [171] similarly proposed retrieving CCN concentrations from mul-
tiwavelength Raman lidar measurements, but instead of using the AERONET datasets
and estimations of hygroscopicity according to aerosol classification, they relied on in
situ-measured PSD, mixing states, and chemical composition data to define the relation-
ship between CCN concentrations and lidar-derived optical properties. Hygroscopic
enhancements of backscatter and extinction with relative humidity were used to create
humidograms, to derive both dry backscatter and extinction and hygroscopicity at dif-
ferent wavelengths. These, together with lidar color ratios, extinctions, and backscatter
data were used as input to a random forest regression machine learning algorithm that
produced the best estimate for the ratio CCN-to-extinctions. Optical data simulated with
Mie computations on in situ-measured PSD and the κ-Köhler curve from in situ-measured
chemical composition were used as the training data. A similar in situ dataset was used as
the test data.

Lenhardt et al. [172] explored the connections between aerosol backscatter and extinc-
tion coefficients using the airborne High-Spectral-Resolution Lidar 2 (HSRL-2) in biomass
burning aerosol (BBA)-influenced air masses over the southeast Atlantic. They also ex-
amined in situ measurements of cloud condensation nuclei (CCN) concentrations that
were spatiotemporally colocated. To ensure accuracy and avoid detecting swollen, highly
hygroscopic aerosols that could artificially inflate backscatter and extinction values without
corresponding increases in CCN concentration, observations taken at relative humidities
(RHs) greater than 40% were filtered out. Their findings, illustrated in Figure 5, demonstrate
robust linear relationships between lidar-derived backscatter and extinction coefficients
and CCN concentration.

Figure 5. CCN concentration versus HSRL−2 (a) backscatter and (b) extinction coefficients, with
blue scatter points representing 355 nm and red scatter points representing 532 nm. This combined
dataset represents 10 d of observations and 80 total colocated data points (per coefficient), covering
all 3 years of ORACLES. Supersaturation for these observations ranges between 0.22% and 0.4%.
The Pearson correlation coefficient is shown, with the Spearman rank correlation coefficient given in
parentheses. Error bars are given for a CCN relative uncertainty of 10% and for calculated HSRL−2
uncertainties. Lines of best fit are forced through the origin to represent the practicality of using
linear regression equations to quantitatively obtain CCN concentrations using HSRL−2 observables.
(Figure and caption from Figure 3 in Lenhardt et al. [172] licensed under CC BY 4.0).

These studies employ multiwavelength Raman or HRSL lidars, commonly called
3β + 2α lidars, systems of a certain complexity, coupled with in situ measurements and
RH profiling by means of radiosoundings or remote sensing. A simplified approach was
suggested by Mamouri and Ansmann [173], who proposed an inversion algorithm for
data from a more manageable single-wavelength polarization diversity lidar. This lidar
is still able to specify aerosol classes (desert, non-desert continental, and marine). The
possible presence of external mixing in the aerosol is handled by the procedure outlined in
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Tesche et al. [174]. Following a methodology proposed by Shinozuka et al. [175], extensive
datasets from AERONET and lidar-correlated observations are then used to connect lidar-
derived extinction to total particle number concentrations (for dry particle dimensions
above defined thresholds depending on aerosol class) for the three aerosol classes. An
evaluation of the correction for water uptake [28,176] is performed, this time assuming
fixed RH values for the typical conditions of observation. Finally, a simple parametrization
is used to connect the particle concentrations to the CCN concentrations, obtained from
the former, with scaling factors dependent on supersaturation and aerosol class. Thus,
height profiles of CCN concentrations can be retrieved from lidar-derived ambient aerosol
extinction. This approach has lent itself to deriving global climatologies of CCN from
the analysis of the satellite-borne lidar CALIOP [177]. A similar approach was also used
by Choudhury and Tesche [178]. In their study, they employed normalized volume size
distributions and refractive indices based on the CALIPSO aerosol model [94] for six
aerosol types identified by the CALIPSO lidar. These size distributions were adjusted
until agreement was reached between the extinction coefficient inferred from CALIPSO
measurements and that calculated through light-scattering computations. These modified
size distribution were then used to compute the aerosol number concentration for particles
with dimension above defined thresholds depending on aerosol type. Again, the CCN
concentration at a certain set of supersaturations was estimated by multiplying the aerosol
number concentration by scaling factors, which depend on the aerosol type and on the
level of supersaturation.

Lidars have been utilized to retrieve profiles of INP concentrations. This is achieved by
integrating particle concentration profiles derived from lidar measurements with parameter-
izations of INP efficiency specific to different aerosol types and freezing mechanisms (such
as immersion, condensation, deposition, or contact freezing). Mamouri and Ansmann [173]
apply a regression of lidar-derived extinction vs. SAD to retrieve the INP concentration
from the latter. Indeed, precise knowledge of aerosol type is crucial for using lidar retrievals
to estimate INP concentrations. This is because INP concentrations are inferred solely from
physical properties such as particle number concentration and/or size distribution (SAD),
using parameterizations that have been developed for specific aerosol types. Examples
include dust [179–182], marine aerosols [183], soot [181], and global aerosols [184]. There-
fore, studies of INPs have typically focused on estimating INP concentrations within these
specific aerosol classes.

Using a similar methodology, Haarig et al. [185] presented vertical profiles of cloud
condensation nuclei (CCN) number concentration, particles with diameter greater than
500 nm, size distribution, mass, and INP concentration. These profiles were derived
from measurements of 3β + 2α Raman lidar with polarization diversity. They compared
these measurements with in situ CCN concentrations and INP-relevant aerosol properties
collected by aircraft in the Saharan Air Layer (SAL) over the Barbados region.

Extinction coefficient profiles were separately retrieved for mineral dust, marine, and
continental aerosols. Empirical conversion factors [186] were applied to convert these
extinction coefficients into particle number concentrations (for particles above a threshold
size dependent on aerosol type) and size distributions (SADs). Subsequently, various INP
parameterizations [180,184] were tested, using particle number concentration and SAD
as inputs.

Comparisons with in situ data of mass concentrations and particle number con-
centrations, which were used as inputs for the INP parameterizations, demonstrated
good agreement.

Similarly, Marinou et al. [187] retrieved cloud-relevant particle number concentrations
(i.e., particles whose linear dimensions in dry conditions are above 250 nm) and SADdry
using lidar measurements from a β + 2α Raman lidar with polarization diversity. INP
concentration profiles were estimated using various ice nuclei parameterizations. These
lidar-derived results were subsequently compared with direct INP measurements obtained
by sampling aerosols along the lidar profile using two UAVs equipped with INP samplers.
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The collected samples were then analyzed offline using the FRIDGE (Frankfurt Ice Nucle-
ation Deposition Freezing Experiment) INP counter [188]. This approach allowed them to
evaluate the effectiveness of different INP parameterizations across different temperature
ranges and types of particles.

Wieder et al. [189] also provided a direct validation of the INP concentration retrievals.
They tested INP retrievals based on data from a β + 2α Raman lidar with polarization
diversity by comparing them with in situ observations of aerosols and INPs taken at a
nearby mountain site in the Swiss Alps. The sampled air masses predominantly contained
Saharan dust and continental aerosols. Various INP parameterizations were also evaluated
in this study.

4.2. Impact of Aerosol on Mixed and Cirrus Clouds

Lidars are very effective in studying the impact of particular types of aerosols on
the microphysics of clouds. Choi et al. [190] demonstrated the ability to distinguish su-
percooled liquid clouds from ice clouds for the satellite-borne lidar CALIOP from the
layer-integrated particle depolarization ratio and backscatter coefficient at 532 nm, together
with the cloud-top and -bottom temperatures, and demonstrated an inverse correlation
between supercooled cloud presence and dust presence. Utilizing its capability to dis-
criminate cloud phases, Tan et al. [191] directly investigated the ice-nucleating potential of
dust, polluted dust, and smoke aerosols in mixed-phase clouds. They analyzed vertically
resolved profiles of the cloud thermodynamic phase and aerosols from global spaceborne
lidar data spanning 5 years. Their findings revealed that the presence of dust aerosols, both
in their clean and polluted forms, in various regions globally, at temperatures conducive to
mixed-phase clouds, reduces the fraction of supercooled clouds compared to total cloud
cover in those regions. This reduction was attributed to the ability of dust aerosols to
nucleate ice crystals.

The influence of desert dust aerosols on cirrus microphysical properties was inves-
tigated using concurrent and colocated datasets from CALIOP, CloudSat, and MODIS
over the Taklimakan Desert [192]. The study highlighted the negative “Twomey effect”
under arid conditions [62], where cloud albedo decreases due to increased heterogeneous
nucleation. This process results in fewer but larger ice crystals, with higher fall velocities.

The role of wildfire smokes on cirrus formation was investigated by Mamouri et al. [193],
who showed strong evidence that long-range transport of aged smoke (organic aerosol par-
ticles) originating from wildfires triggered significant ice nucleation, causing the formation
of extended cirrus layers, upon gravity wave activity close to the tropopause.

The impact of aerosols on the cloud thermodynamic phase was also addressed by
Zhang et al. [194] over east Asia by combining the 4-year datasets of CloudSat radar and
CALIOP lidar measurements. Although temperature differences at the cloud top were
shown to be the most important drivers of the cloud thermodynamic phase, regional
differences and seasonal anomalies of glaciated and mixed-phase relative cloud fractions
correlated well with variations in dust occurrence frequency. Moreover, the relative fre-
quency of glaciated clouds associated with the concomitant presence of mineral dust was
higher than the frequency of glaciated clouds associated with the presence of polluted dust,
smoke, and background aerosols at any given cloud-top temperature.

Hofer et al. [195] investigated the efficiency of heterogeneous ice formation across
stations located in New Zealand (Lauder), Germany (Leipzig), and southern Chile (Punta
Arenas), as influenced by cloud-top temperature. They observed that Lauder and southern
Chile, which typically experience low concentrations of free-tropospheric aerosols, exhibit
lower ice formation efficiency compared to polluted mid-latitude regions like Germany.
This suggests that the reduced ice formation efficiency at Lauder and Punta Arenas is linked
to low concentrations of INPs. Additionally, episodes of continental aerosol outbreaks, more
frequent at Lauder than Punta Arenas, moderately enhance the ice formation efficiency at
Lauder relative to Punta Arenas.
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The diurnal cycle of the supercooled water cloud fraction was investigated by
Wang et al. [196] using 33 months of lidar observations from the Cloud–Aerosol Transport
System aboard the International Space Station. This system provides cloud-top phase
information at various local times within specific grid and isotherm parameters. The study
revealed a strong and statistically significant negative correlation between the dust aerosol
extinction coefficient near the location and time of liquid/ice cloud footprints, and the
fraction of supercooled water clouds. Specifically, higher dust aerosol extinction coefficients
corresponded to lower supercooled water cloud fractions in the observed regions.

4.3. Impact of Aerosol on Warm Clouds

Studies investigating the influence of aerosols on liquid clouds predominantly employ
dual-FOV lidar techniques. These techniques allow for simultaneous measurement of cloud
droplet size and number concentration. By capturing backscattered light at two different
fields of view, this approach provides detailed vertical profiles of cloud microphysical
properties, generally for several tens of meters up from the cloud base. The cloud base
is a crucial region for the development of the cloud because it marks the altitude where
rising air parcels reach their highest saturation levels and condensation begins. This
initiation of condensation leads to the formation of cloud droplets, whose concentration
remains essentially constant until the collision–coalescence process begins higher up in
the cloud. So the processes occurring at the cloud base, including the activation of cloud
condensation nuclei (CCN) and the subsequent formation of droplets, set the stage for
the cloud’s microphysical properties. These initial conditions influence the cloud’s optical
properties, precipitation potential, and overall dynamics.

Schmidt et al. [197] utilized colocated dual-FOV Raman lidar observations to examine
aerosol and cloud optical and microphysical properties beneath and within thin-layered
liquid-water clouds. They complemented these observations with Doppler lidar measure-
ments of updrafts and downdrafts at the cloud base to explore the relationship between
aerosol concentrations near the cloud base and cloud characteristics and dynamics.

The dual-FOV lidar setup enabled the use of two multiple-scattering channels (elastic
and nitrogen Raman multiple-backscatter channels) to profile single-scattering extinction
coefficient, effective radius, cloud droplet number concentration, and liquid water con-
tent [147]. The study included two case studies that tracked the evolution of altocumulus
clouds in clean and moderately polluted conditions.

The impacts of updrafts, downdrafts, turbulent mixing, and entrainment of dry air
on the microphysical properties of layered clouds were investigated using a combina-
tion of Doppler lidar and cloud radar. Significant differences in cloud properties were
documented during updraft and downdraft episodes, particularly in droplet extinction,
number concentration, and effective radius. Updraft episodes showed a notable increase in
extinction coefficient and droplet number concentration, accompanied by lower droplet
effective radii attributed to new droplet formation. The liquid water content (LWC) profile
retrieved during updraft periods closely resembled the adiabatic LWC profile, whereas
during downdraft episodes, higher LWC values indicated an absence of dry intrusions.

Conversely, signs of dry entrainment during downdrafts—such as lower effective radii
and reduced LWC values observed around the cloud center—were documented in another
case study. This scenario occurred when weaker vertical motions facilitated downward
mixing of dry air from above the shallow cloud layer.

Various studies highlight the challenges of studying ACI in turbulent environments,
where turbulent motions can influence processes like evaporation, drop collision, and new
droplet formation, leading to opposing effects on cloud microphysical parameters [198].
Schmidt et al. [199] conducted a statistical analysis spanning two years, demonstrating a
clear aerosol impact on cloud evolution and cloud droplet number concentration in the
lower portions of altocumulus layers during updrafts. Their analysis underscored the
importance of considering cloud dynamics in assessing ACI parameters, emphasizing the
need to incorporate vertical wind information.
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Furthermore, a comprehensive review of contemporary field studies on ACI in warm
clouds (depicted in Figure 6) supported findings that Aitken- and accumulation-mode
particles are activated at the cloud base when rapidly uplifted, irrespective of whether
clouds form over oceans or continents. This dynamic contrasts with passive satellite remote
sensing, which typically yields lower estimates of ACIN compared to ground-based lidar
and airborne observations, potentially due to differences in cloud-top dynamics.

Figure 6. ACIN values as published in the literature (see references to the right). Different methods
(in situ measurements, remote sensing) and observational platforms (aircraft, satellite, ground based)
are used. (Figure and caption from Figure 7 in Schmidt et al. [199] licensed under CC BY 4.0).

Jimenez et al. [200] conducted cloud measurements in pristine marine conditions at
Punta Arenas in southern Chile using a multiwavelength polarization Raman lidar with
a dual field of view (FOV), coupled with a Doppler lidar for vertical wind component
measurements. They performed a detailed study on ACI, resolving updrafts and down-
drafts. The study utilized profiles of aerosol-related parameters near the cloud base, cloud
microphysical properties just above the cloud base, and 1-minute-resolution vertical wind
data. CCN number concentration was derived from lidar-measured aerosol extinction
following Mamouri and Ansmann [173]. They observed high ACIN values ranging from
0.8 to 1.0. The study highlighted the impact of aerosol water uptake on ACI, noting that the
highest ACIN values were obtained when considering aerosol extinction measurements
taken approximately 500 m below the cloud base (indicating dry aerosol conditions) in
ACI computations.

Wang et al. [201] utilized a dual-FOV HSRL to simultaneously profile aerosols and
liquid-water clouds, focusing on assessing the adiabaticity of these low-level clouds. They
found in some cases that observed profiles of microphysical properties in these clouds
are not perfectly adiabatic, contrary to common assumptions in current retrieval meth-
ods [202–204]. Additionally, the study confirmed that increased aerosol loading leads to
higher droplet number concentrations and reduced droplet effective radius, although no
discernible increase in liquid water path (LWP) was detected. This suggests that aerosol-
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induced water reduction through enhanced evaporation may offset increases caused by
suppressed rain formation. The lidar observations were validated through concurrent
measurements with cloud radar, Raman lidar, and sun photometer instruments.

5. Challenges and Future Directions

Up-to-date Earth System Model simulations that include a realistic description of
microphysical properties and processes suggests that the equilibrium climate sensitivity
(ECS) has been underestimated so far [205]. There are indications that the main reason for
the increase in the current estimation of the ECS depends on the representation of processes
involved in the formation of clouds and, specifically, on mixed-phase cloud microphysics
and ACI [206,207].

Lidar techniques have significantly advanced our understanding of the complex
interactions between aerosols, clouds, and the atmosphere; however, several challenges
remain. Technological progress may partially increase the lidar capability demonstrated
so far. The increasingly stringent demands of topographic mapping have led to lidar
instruments whose vertical resolutions are well below one meter, and high-repetition laser
systems allow temporal resolutions below one second. Enhancing the spatial and temporal
resolution of lidar observations enables the detection of smaller-scale features within aerosol
and cloud layers. High-resolution lidar systems allow for detailed mapping of aerosol and
cloud properties with fine spatial granularity. Additionally, advancements in temporal
resolution enable the study of rapid atmospheric processes, such as cloud evolution and
aerosol transport, which can vary on short timescales. Lidars with a resolution at the
submeter scale have been recently employed to sample the depth of the droplet activation
layer of stratiform clouds with unprecedented accuracy [208].

Furthermore, we have limited our review mainly to works in which lidar could
operate as an isolated instrument, but clearly the integration of multi-platform observations
greatly increases its capacity. Combining data from various remote sensing instruments
offers a more holistic view of ACI. By combining weather radars in the millimeter range
and lidars, it is possible to detect a wider range of particle sizes and to more accurately
determine cloud boundaries. Lidars, due to their shorter wavelength emissions, are capable
of detecting particles from a few nanometers up to a few micrometers in size, but they may
miss cloud droplets that are in the tens of micrometers range when their concentration
is low. Conversely, radar backscatter is basically dependent on the sixth power of the
droplet diameter, making it insensitive to small particles [209,210], hence the synergy
between lidars and cloud radars enhances atmospheric observations by combining lidar’s
high-resolution profiling of aerosols and cloud particles with cloud radar’s ability to
detect larger hydrometeors and cloud structures, providing a comprehensive view of
cloud microphysics and dynamics. IR [211], visible spectrometers [212], and microwave
radiometers [213] further enhance such synergy, allowing a seamless retrieval between
regions of the cloud detected by both radar and lidar and regions detected by just one
of these two instruments, or having separate cloud and drizzle modes, or profiling the
environmental temperature and LWC. Furthermore, the integration of remote sensors with
in situ measurements within and around clouds, either airborne [214,215] or from high
mountain research stations [189,216], greatly supports the study of ACI.

Satellite observations provide global coverage, aiding in the understanding of large-
scale phenomena and their long-term evolution [217]. Leading the way was the CALIOP
lidar, which operated in the A-Train and C-Train sun-synchronous orbits at an altitude
of around 700 km for 17 years (2006–2023). The Cloud-Aerosol Transport System (CATS)
followed, operated from the International Space Station for two and a half years (2015–2017),
showcasing innovative technologies such as high-repetition frequencies. In 2022, China
launched the Atmospheric Environment Monitoring Satellite (AEMS), equipped with its
first space-borne atmospheric lidar, known as the Aerosol and Carbon Detection Lidar
(ACDL), which operates in a 705 km solar-synchronous orbit, and includes two lidar
instruments on a single platform. One of these instruments is the aerosol–cloud high-
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spectral-resolution lidar (ACHSRL) [218,219]. The now operational EarthCARE mission by
ESA and JAXA includes the 355 nm HSR lidar ATLID, planned to operate for three or more
years (2024–2027), and lastly, NASA’s AOS initiative, launched in 2022, aims to deploy at
least one lidar on orbital platforms, scheduled for launch around 2030. Additionally, the
Cloud and Aerosol Lidar for Global Scale Observations of the Ocean–Land–Atmosphere
System (CALIGOLA), an advanced multi-purpose space lidar mission developed by the
Italian Space Agency (ASI), is anticipated to launch around 2031 [108,220]. These ongoing
and future space-based lidar missions will significantly enhance our understanding of ACI
by providing high-resolution, three-dimensional measurements of aerosol distribution and
cloud properties on a global scale.

At the same time, ground-based observation with large multiwavelength lidar systems
with Raman or HSRL capabilities, innovative use of multiple FOV systems, possibly aided
by radars and radiometers, will remain crucial for formulating and validating inversion
techniques. These techniques, once validated, can then be applied to less advanced but
more widely deployable systems and measurement stations. The detailed, continuous, and
high-resolution vertical profiles provided by these systems are invaluable for distinguishing
different types of aerosols, measuring the optical and microphysical properties of clouds
and aerosols, and assessing their vertical distribution and temporal evolution.

Innovative unconventional algorithms are starting to be applied to large datasets.
Machine learning (ML), for instance, can significantly enhance our capability to extract
useful information from data. ML algorithms can automate the extraction of complex fea-
tures such as cloud boundaries, aerosol layers, and cloud optical properties. Classification
algorithms, such as support vector machines (SVMs) and convolutional neural networks
(CNNs), can distinguish between different types of aerosols and cloud particles, improving
the understanding of their interactions [221,222].

Supervised learning models can be trained on historical lidar data to predict the impact
of aerosols on cloud properties like droplet size distribution and liquid water content [223],
and regression models can estimate key parameters such as AOD and cloud droplet number
concentration from lidar backscatter profiles. Unsupervised learning methods, such as
clustering and anomaly detection algorithms, can identify unusual patterns or events
in lidar data, such as unexpected changes in aerosol concentrations or cloud formation
processes [224]. These anomalies can provide insights into rare or extreme ACI events,
improving the understanding of their mechanisms.

Techniques like principal component analysis (PCA) [225,226] and t-distributed stochas-
tic neighbor embedding (t-SNE) [224] can reduce the complexity of high-dimensional
lidar data, making it easier to visualize and interpret aerosol and cloud interaction pat-
terns. Improved visualization aids in hypothesis generation and data-driven discovery of
ACI phenomena.

By applying these innovative methods of analysis to lidar data, researchers can en-
hance the precision, efficiency, and scope of ACI studies, leading to a deeper understanding
of how aerosols affect cloud formation, development, and climate impacts.

6. Conclusions

This paper has presented a survey of diverse lidar techniques utilized to study ACI,
emphasizing the capabilities and advancements in multiwavelength, Raman, and HSRL
systems. Both ground-based and satellite lidar platforms have been discussed, highlighting
their respective contributions to our understanding of aerosol properties and their role in
cloud formation and dynamics. Multiwavelength lidar provides critical insights into the
size distribution and optical properties of aerosols, allowing for detailed characterization of
different aerosol types and their potential as cloud condensation nuclei (CCN). HSRL and
Raman lidars enable precise separation of aerosol and molecular scattering components,
delivering accurate AOD and backscatter profiles, as well as accurate aerosol classification.
Raman water vapor lidar, by measuring water vapor and other gas profiles with high
sensitivity, enhances our understanding of the humidity conditions under which aerosols
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interact with clouds, offering valuable data for modeling cloud microphysical processes.
Dual-FOV depolarization lidars allow continuous measurements not limited to low-light
background conditions and deliver precise characterization of aerosols and droplets within
clouds, thus providing insights into the processes of aerosol-induced cloud nucleation.

The implementation of these lidar techniques has significantly advanced our knowl-
edge of ACI, and, while ground-based lidar systems provide high-resolution, localized
observations, which are critical for process-level studies, model validation and tests of new
data interpretation schemes, satellite-based lidar extends the observation capability to a
global scale, offering comprehensive coverage and the ability to monitor long-term trends
and variability in ACI.

In conclusion, lidar technology has proven to be an indispensable tool in ACI studies.
The advancements in multiwavelength, Raman, and HSRL techniques, combined with
comprehensive ground-based and satellite observations, more accurate inversion, and
innovative interpretation schemes for the data, provide a robust framework for addressing
critical scientific questions about the role of aerosol in climate. Continued innovation and
collaboration in this field will undoubtedly lead to deeper insights and advancements that
enhance our ability to understand, model, and predict the complex interactions between
aerosols, clouds, and climate.
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