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Abstract: Point cloud registration is a crucial technique in photogrammetry, remote sensing, etc. A
generalized 3D point cloud registration framework has been developed to estimate the optimal rigid
transformation between two point clouds using 3D key point correspondences. However, challenges
arise due to the uncertainty in 3D key point detection techniques and the similarity of local surface
features. These factors often lead to feature descriptors establishing correspondences containing
significant outliers. Current point cloud registration algorithms are typically hindered by these
outliers, affecting both their efficiency and accuracy. In this paper, we propose a fast and robust
point cloud registration method based on a compatibility graph and accelerated guided sampling.
By constructing a compatible graph with correspondences, a minimum subset sampling method
combining compatible edge sampling and compatible vertex sampling is proposed to reduce the
influence of outliers on the estimation of the registration parameters. Additionally, an accelerated
guided sampling strategy based on preference scores is presented, which effectively utilizes model
parameters generated during the iterative process to guide the sampling toward inliers, thereby en-
hancing computational efficiency and the probability of estimating optimal parameters. Experiments
are carried out on both synthetic and real-world data. The experimental results demonstrate that
our proposed algorithm achieves a significant balance between registration accuracy and efficiency
compared to state-of-the-art registration algorithms such as RANSIC and GROR. Even with up to
2000 initial correspondences and an outlier ratio of 99%, our algorithm achieves a minimum rotation
error of 0.737◦ and a minimum translation error of 0.0201 m, completing the registration process
within 1 s.

Keywords: point cloud; registration; compatibility graph; accelerated guided sampling; correspondence

1. Introduction

Point cloud registration is a fundamental task in remote sensing [1,2], robot per-
ception [3,4], photogrammetry [5], and other fields, and has been applied to a variety
of technologies such as 3D reconstruction [6], structural health monitoring [7,8], target
recognition and localization [9], simultaneous localization, and mapping [10]. Due to the
fixed limitations of the laser scanner in terms of field of view and viewpoints, a single
data acquisition with fixed viewpoints can only capture part of the point cloud of a scene.
In order to obtain a complete 3D representation of the scene, it is necessary to fuse and
splice the point clouds with different viewpoints. The goal of point cloud registration lies
in estimating the optimal rigid transformation between the two point clouds in order to
accurately align the point clouds under different viewpoints.

The feature-based global registration method is the mainstream method for point
cloud registration [11]. It generally consists of two stages: the feature extraction stage and
the robust transform estimation stage. The feature extraction stage extracts key points
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and generates feature descriptors, and establishes the correspondence between two point
clouds based on the similarity of the feature descriptors between the points. The robust
transform estimation stage estimates the transformation parameters between two point
clouds based on the correspondence. Many well-differentiated point cloud description
methods have been proposed, such as FPFH [12], RoPS [13], SDASS [14], etc. However,
noise is still unavoidable, mainly due to (1) Most of the point clouds partially overlapping,
so the established correspondences may be inliers only if they are located in overlapping
regions, while correspondences in non-overlapping regions introduce a large number of
outliers. (2) The presence of many similar local surfaces in the point cloud, resulting in very
similar corresponding feature descriptors, and forming false correspondences. Since the
correspondences established in the feature extraction stage usually have a large number of
outliers, the reliability of the robust transform estimation is seriously affected. Therefore,
one of the difficulties in feature-based point cloud registration is how to select inliers from
the correspondence containing a large number of outliers and then accurately estimate the
transformation parameters.

In recent years, a large number of robust transform estimation methods have been
proposed. Random sampling consistency (RANSAC) [15] is the most commonly used
method in robust transform estimation. RANSAC solves the transform parameters by
iteratively sampling the minimum subset, and then selects the hypothesis of the maximum
number of inliers as the estimation parameter. RANSAC requires a large number of
iterations and does not guarantee obtaining the optimal solution, and, moreover, it cannot
deal with the situation where the outlier ratio is very high. In order to cope with the
problem of a very high outlier ratio in the correspondence, many methods choose to use the
geometric properties corresponding to the inliers to identify the inliers. GORE [16] utilizes
geometric consistency to exclude outliers. VODRAC [17] and RANSIC [18] establish the
minimum subset by judging the compatibility between the sampled points, and use the
compatible subset to generate the hypothesis transformation matrix. However, pairwise
consistency is not sufficient since outliers are equally likely to occasionally satisfy length
consistency. SC2-PCR [19] is further used to distinguish between inliers and outliers by
computing second-order spatial compatibility. These methods have been shown to be
effective in improving the parameter estimation problem in the case of a high outlier ratio,
but there are still some limitations, such as the extremely low computational efficiency
of RANSIC when the outlier ratio is too high, which limits the practical application of
the algorithm.

Despite the great progress made in current research, it is still a challenging task to
determine the inliers from correspondences containing a large number of outliers. Currently,
feature-based point cloud registration algorithms suffer from the following problems: (1)
Due to the diversity of scenes, the outlier ratio varies in different scenes, which limits the
robustness and adaptability of the algorithms. (2) When the number of correspondences
is high or the outlier ratio is too high, the parameter estimation process becomes very
time-consuming and inefficient. (3) How to select the inliers from a large number of
outliers and estimate the transformation parameters accurately is very difficult. To address
the problem of fast robust point cloud registration containing a large number of outliers,
we propose a fast robust point cloud registration algorithm based on a compatibility
graph and accelerated guided sampling, which can realize the accurate registration of the
corresponding point cloud that is seriously contaminated by the outliers, and, at the same
time, has a high computational efficiency. The contribution of this paper is mainly:

• Constructing a compatibility graph based on the compatibility between inliers and
proposing a minimum subset sampling method combining graph edge sampling and
graph vertex sampling to reduce the influence of outliers on the registration results.

• Introducing a preference-based accelerated guided sampling strategy that utilizes
the hypothetical model generated during the iterative process to guide the subse-
quent samples to be biased toward the inliers, achieving efficient and robust point
cloud registration.
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• Compared to many existing state-of-the-art methods, the proposed algorithm is able
to cope with a very high outlier ratio (outlier ratio > 99%) and strikes a remarkable
balance between registration accuracy and efficiency.

2. Related Works

A key step in feature-based point cloud registration algorithms is to establish the
correspondences between the source and target point clouds based on local feature de-
scriptors. Feature descriptors have been widely studied in the past decades, and tra-
ditional descriptors such as PFH [20], FPFH [12], SHOT [21], and RoPS [13] describe
the local geometric structure of the point cloud from different measurements. In order
to further improve the descriptive performance of descriptors, TOLDI [22], SDASS [14],
and KDD [23], introducing additional information such as local reference frame or point
density features can more effectively describe the local features of the point cloud and
generate more reliable correspondences. With the rapid development of deep learning
technology, learning-based descriptors have received more attention due to their excellent
differentiation and robustness. Learning-based local feature extraction modules usually use
frameworks such as point-pair features [24,25], local reference frame [26], and rotationally
invariant networks [27]. These learning-based feature description methods have good
generalization but are usually computationally inefficient. Recently, Transformer [28] has
also been successfully applied to 3D feature matching with promising results. Predator [29]
introduces an overlap-aware module based on self-crossing and self-attention. CoFiNet [30]
utilizes an attentional mechanism to aggregate the contextual information between two
piece point clouds. GeoTrans [31] employs a geometric Transformer module to encode
rotationally invariant geometric features of point clouds, which generates model assump-
tions using local correspondences and performs model validation using global fitness,
thus accomplishing local-to-global alignment. These algorithms are effective in detecting
overlapping regions and are shown to have the potential to solve the low overlap rate
registration problem. Although current feature-matching methods can establish robust
correspondences, a large number of outliers in the constructed correspondence set still
inevitably exist. Therefore, it is necessary to rely on model-fitting methods for robust rigid
transformation estimation.

The main robust estimation methods that have been used to solve the point cloud reg-
istration problem include M-estimation [32], truncated least squares [33], Lp-paradigm [34],
and RANSAC family [15]. Since a large number of outliers will inevitably exist in the initial
correspondence, how to estimate the accurate model parameters from the data containing
a large number of outliers is the difficulty of robust transformation. In order to solve this
problem, many researchers have proposed registration algorithms based on outlier filtering,
and the core of these methods lies in removing the wrong matches in the correspondences,
so as to avoid dealing with outliers in the registration process. Fast global registration
(FGR) [35] is one of the typical algorithms that removes outlier points by geometric tests,
then uses Geman McClure as the objective function and proposes a global method that
combines a line process with robust estimation to optimize the model parameter estimation
process. Similarly, Li et al. [36] constructed a topological graph based on correspondences,
then proposed a side-voting strategy to remove outliers, and proposed a Cauchy-weighted
Lq-paradigm as the cost function to achieve robust registration with a 90% outlier rate. A
guaranteed outlier removal strategy was introduced in GORE [16], which removes outliers
from correspondences by computing a simple geometric consistency test. A cleaner set of
correspondences is obtained, which guarantees a globally optimal solution, but its high com-
putational complexity leads to very low efficiency. CLIPPER [37] incorporated the concept
of geometric consistency into the graph theoretic framework by finding dense subgraphs
to determine the inliers. In order to improve the registration efficiency, Yang et al. [38]
introduced a truncated least squares cost that is insensitive to the outliers to deal with the
transformation parameter estimation problem, and rewrote the problem as a quadratically
constrained quadratic programming problem. They proposed a convex semidefinite pro-
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gramming relaxation for the optimal solution, which can achieve the computation of the
verifiable optimal solution under the condition of 95% outliers while guaranteeing effi-
ciency. Zhang et al. [39] proposed a point cloud registration approach based on a Maximal
cluster (MAC). MAC first constructs the initial correspondence compatibility graph, then
searches for the largest clusters in the graph, and finally selects the largest clusters with
large weights to calculate the transformation assumptions in combination with the SVD
algorithm. While this approach accurately obtains the optimal transformation parameters,
it suffers from low computational efficiency. Li et al. [40] use the correspondence matrix and
the generalized correspondence matrix to seek the corresponding tight upper bounds and
lower bounds, and then combine them with an adaptive Cauchy’s estimator for optimal
parameter estimation. Yao et al. [41] proposed a global-to-local registration method and
introduced a hypergraph consistency module to learn the high-order consistency of guided
sampling to obtain more reliable clusters of inliers. Second-order spatial compatibility was
proposed in SC2-PCR++ [19] to distinguish the inliers from the outliers at an early stage.
GROR [42] introduced the concepts of graph node reliability and graph edge reliability by
constructing a correspondence graph to quickly and accurately remove the inliers from the
outliers. Li et al. [43] proposed a maximum group correspondence selection strategy based
on reliable edges, which combines the adaptive Maxwell–Boltzmann (AMB) algorithm and
confidence intervals to estimate the rotation and translation parameters.

The RANSAC algorithm is another pipeline widely used in correspondence-based
point cloud registration, but the randomness of the algorithm itself leads to its low ac-
curacy and the need for a large number of samples in order to find a relatively correct
solution, which is likely to fail on the data with serious contamination of outliers. Many
improved algorithms have been proposed to address the problems of RANSAC [44–46].
Maximum Likelihood Estimated Sample Consistency (MLESAC) [47] improves the robust-
ness of RANSAC by replacing the cost function from the size of the consistent samples
to maximize the likelihood. Locally Optimized RANSAC (LO-RANSAC) [45] performs
local optimization by deriving solutions from random samples, which improves speed by
two to three times compared to standard RANSAC. Wu et al. [48] introduced a particle
swarm optimization algorithm in RANSAC to directly sample the model parameters and
achieved good results in image alignment. GESAC [49] introduced a graph to enhance
the sample consistency and achieved effective registration even if there are outliers in the
smallest subset of the sampled points. ICOS [50] accelerated the search for inliers by con-
structing a compatibility structure. One-Point RANSAC [32] introduced a scale-annealing
bi-weighted estimator to stepwise optimize the estimation of the transform parameters.
Invariant and compatible random selection of minimum subsets are introduced in RAN-
SIC [18]. Hu et al. [17] proposed a fast robust point cloud registration algorithm based on
election-compatible weighted two-point random sampling (VODRAC), which combines
scale-invariant constraints with a two-point random sampling framework, and can achieve
fast candidate inliers search. Cheng et al. [51] proposed a point cloud registration algorithm
based on local sampling and global hypothesis generation. Gentner et al. [52] proposed
a graph-based maximum consistency alignment algorithm (GMCR), in which a novel
consistency function was introduced specifically to translate the consistency maximizing
objective into the graph domain. The algorithm is robust to various types of outliers.
C-RANSAC [53] introduces a scale histogram-based outlier filtering method and involves
a master–slave handshake mechanism for optimal parameter estimation, which achieves
high-accuracy registration and fast convergence.

3. Methods

In this Section, we propose a novel fast robust point cloud registration based on a
compatibility graph and accelerated guided sampling. We first introduce the problem
formulation of registration and describe the framework of the proposed method. Then, we
introduce in detail the key processes, including the correspondence compatibility graph



Remote Sens. 2024, 16, 2789 5 of 25

construction, the minimum compatible subset sampling, the preference-based guided
sampling strategy, and the complete registration algorithm.

3.1. Problem Formulation

The procedure of the feature-based point cloud registration algorithm is to establish
the correspondences between the source and target point clouds based on the local feature
descriptors, and then estimate the registration parameters based on the correspondences.
We first give the method of the correspondence establishment. Assume that the two
point clouds to be aligned are called source point cloud Ps and target point cloud Pt.
(1) Due to the excessive number of points in the initial point cloud, which contains a
large amount of redundant information, the key point estimation technique is first used
to estimate the key points Ps f = {xi|1 ≤ i ≤ N} and Pt f =

{
yj
∣∣1 ≤ j ≤ N

}
of the source

and target point clouds, respectively. (2) Generate feature description vectors for key
points using feature descriptors, e.g., classical FPFH, learning-based GeoTrans. (3) For each
key point xi in Ps f , the nearest neighbor yi corresponding to xi in Pt f is obtained based
on the feature description vectors using a KD-Tree, so that the initial correspondence set
C = {(xi, yi)|1 ≤ i ≤ N} of Ps and Pt can be established.

Since Ps and Pt are usually partially overlapping, and the feature descriptors cannot
completely and accurately distinguish each point in Ps and Pt, a large number of incorrect
correspondences inevitably exist in C. The purpose of the feature-based point cloud regis-
tration method is to estimate the transformation parameters of the source and target point
clouds based on the correspondence set. The objective function is denoted as

minimize
R,t

N

∑
i=1

||yi − (Rxi + t)||2 (1)

where R∈SO(3) is an orthogonal rotation matrix, t is a 3 × 1 translation vector, (xi,yi) is a
correspondence in the correspondence set C, ∥ · ∥ denotes L2-norm.

Due to the large number of wrong correspondences in the initial correspondences,
the above objective function can be further expressed as a maximizing consensus problem,
denoted as

maximize
R,t,I⊂C

|I|

Subject to ||yi − (Rxi + t)||< ε, ∀(xi, yi) ∈ I
(2)

where I is called the consensus set, |I| denotes the size of the consensus set, ε is an inliers
threshold, and (R, t) corresponding to the consensus set is considered to be the optimal
transformation parameter. In order to search for the maximum consensus set in the initial
correspondences, the commonly adopted approach is to sample a series of minimum subsets
(a subset consisting of three points) from the initial correspondences for estimating (R, t),
and then to compute the correspondences in the initial correspondences that are consistent
with the minimum subset, i.e., correspondences that satisfy ||yi − (Rxi + t)||< ε . Finally,
the set with the most consensus correspondences is selected as the maximum consensus
set. To address the above question, we propose a sampling consistency algorithm that
combines a compatibility graph and accelerated guided sampling. The overall framework
of the algorithm is shown in Figure 1, by constructing the compatibility graph structure of
the initial correspondences, combining graph edge sampling and graph vertex sampling to
obtain the minimum compatible subset, and introducing a preference-based accelerated
guided sampling strategy to search for the optimal minimum subset so as to determine the
maximum consensus set and estimate the transformation parameters.



Remote Sens. 2024, 16, 2789 6 of 25
Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 26 
 

 

 
Figure 1. Overview of the proposed method. First, taking the initial correspondences as inputs, the 
compatibility graph is constructed by calculating the compatibility of each correspondence with 
other correspondences. Then the minimum compatible subset is constructed by combining compat-
ible edge sampling and candidate vertex sampling, model hypotheses are generated, preference 
scores for model hypotheses are computed for each correspondence, and similarity matrices are 
further constructed to select the set of possible inliers to participate in the subsequent iterations. 
Finally, the transformation parameters are calculated based on the maximum consensus set ob-
tained from the iterations, and the registration is completed using the transformation parameters. 

3.2. Correspondence Compatibility Graph Construction 
In our approach, the selection of the inliers of the correspondences will be performed 

on a graph structure, which is a better representation of the compatibility degree between 
correspondences than the Euclidean distance space. Therefore, it is first necessary to con-
struct an undirected graph of the initial correspondences, where each correspondence is 
represented as a graph vertex, and geometrically compatible nodes are connected by 
graph edges. 

For the initial correspondence set C, suppose that two elements in C are 𝑐 = (𝑝௦, 𝑝௧) and 𝑐 = (𝑝௦, 𝑝௧), where 𝑝௦, 𝑝௦ denote two points in the source point cloud and 𝑝௧, 𝑝௧ denote two points in the target point cloud corresponding to 𝑝௦, 𝑝௦. The com-
patibility between 𝑐 and 𝑐 can be quantitatively measured as 

( , )   cmp i j si sj ti tjd c c p p p p= − − − . (3)

When 𝑐 and 𝑐 are ideal inliers, 𝑑(𝑐, 𝑐) = 0. Noise inevitably exists in the point 
cloud, and 𝑑(𝑐, 𝑐) cannot be strictly 0. Therefore, when 𝑑(𝑐, 𝑐) < ε, it indicates 
that 𝑐 and 𝑐 are compatible and considered to be inliers. 

Construct a compatibility graph based on the compatibility between any vertices, 
given an initial set of correspondences C = {𝑐|1 ≤ 𝑖 ≤ 𝑁}, the graph formed by them de-
noted as G = (V, E), with V being the vertices of the graph and V = {𝑐|1 ≤ 𝑖 ≤ 𝑁}, E being 
the edges of the graph and E = {𝑒|1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑁}, where 𝑒 = (𝑐, 𝑐). In the pro-
cess of constructing the graph, for two correspondences 𝑐 and 𝑐, they are considered 

Figure 1. Overview of the proposed method. First, taking the initial correspondences as inputs, the
compatibility graph is constructed by calculating the compatibility of each correspondence with other
correspondences. Then the minimum compatible subset is constructed by combining compatible
edge sampling and candidate vertex sampling, model hypotheses are generated, preference scores
for model hypotheses are computed for each correspondence, and similarity matrices are further
constructed to select the set of possible inliers to participate in the subsequent iterations. Finally, the
transformation parameters are calculated based on the maximum consensus set obtained from the
iterations, and the registration is completed using the transformation parameters.

3.2. Correspondence Compatibility Graph Construction

In our approach, the selection of the inliers of the correspondences will be performed
on a graph structure, which is a better representation of the compatibility degree between
correspondences than the Euclidean distance space. Therefore, it is first necessary to
construct an undirected graph of the initial correspondences, where each correspondence
is represented as a graph vertex, and geometrically compatible nodes are connected by
graph edges.

For the initial correspondence set C, suppose that two elements in C are ci = (psi, pti)
and cj = (psj, ptj), where psi, psj denote two points in the source point cloud and pti, ptj
denote two points in the target point cloud corresponding to psi, psj. The compatibility
between ci and cj can be quantitatively measured as

dcmp(ci, cj) =
∣∣ ∥∥psi − psj

∥∥− ∥∥pti − ptj
∥∥ ∣∣. (3)

When ci and cj are ideal inliers, dcmp(ci, cj) = 0. Noise inevitably exists in the point
cloud, and dcmp(ci, cj) cannot be strictly 0. Therefore, when dcmp(ci, cj) < ε, it indicates that
ci and cj are compatible and considered to be inliers.

Construct a compatibility graph based on the compatibility between any vertices,
given an initial set of correspondences C = {ci|1 ≤ i ≤ N}, the graph formed by them
denoted as G = (V, E), with V being the vertices of the graph and V = {ci|1 ≤ i ≤ N}, E
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being the edges of the graph and E =
{

eij
∣∣1 ≤ i ≤ N, 1 ≤ i ≤ N

}
, where eij = (ci, cj). In the

process of constructing the graph, for two correspondences ci and cj, they are considered
compatible so that eij is in E only when dcmp(ci, cj) < ε, and in this way the compatibility
graph of C is constructed. At the same time, we build an N × N compatibility matrix MC,
and when dcmp(ci, cj) < ε, the corresponding positional element of MC, MC(i, j) = 1, which
indicates that the correspondences ci and cj are compatible, and MC(i, j) = 0, otherwise
denoted as:

MC(i, j) =

{
1, i f dcmp(ci, cj) < ε

0, otherwise
(4)

3.3. Minimum Compatible Subset Sampling

In the traditional RANSAC algorithm, point cloud registration requires randomly
selecting three correspondences to form a minimum subset, and then combining them
with Horn’s triad-based method [54] to estimate the transformation parameters between
two point clouds. Due to the presence of a large number of outliers, the probability of
RANSAC sampling to a minimum subset of all inliers is extremely low. According to [17],
when the outlier ratio in the correspondences is certain, the number of iterations required
for RANSAC to sample a subset of all inliers grows exponentially with the size of the
minimum subset, and a large number of iterations are often required to obtain a more
optimal solution. In order to reduce the influence of the outliers, this paper introduces
a compatible minimum subset sampling method based on the constructed compatibility
graph, and the method consists of two layers, the edge sampling layer, and the vertex
sampling layer.

In the edge sampling layer, we first randomly select an edge eij = (ci, cj) in the com-
patibility graph, and search the vertices connected to this edge to form a triangle as the
candidate correspondence set Φ = {ck|0 ≤ k ≤ K}. Then, enter the vertex sampling layer and
randomly select a point ck in Φ, with eij forming a minimal subset sk = {ci, cj, ck}. Next, we
use Horn’s method to compute the rotation and translation parameters, and compute the
consensus set Lk corresponding to the smallest subset sk of the candidate correspondence
set Φ from the estimated transformation parameters. Repeat sampling in Φ until reaching
the set maximum iteration number of vertex sampling MIv to obtain a series of consensus
sets LV = {Lk|0 ≤ k ≤ MIv}, and always retain the largest consensus set in LV as the best
consensus set for the vertex sampling layer, i.e., Lbest = argmax

Lk∈Lv

(|Lk|). To avoid too much

redundant computation, each time we obtain a new Lbest, we update MIv according to
Lbest. After the vertex sampling layer is completed, return to the edge sampling layer and
use Lbest to compute the transformation parameters, and calculate the consensus set Gn
corresponding to the currently sampled edge in the initial correspondence C. Repeat the
edge sampling until reaching the set maximum iteration number MIe of edge sampling,
and the iterative process generates a series of consensus sets GE = {Gn|0 ≤ n ≤ MIe}. Al-
ways retain the maximum consensus set Gbest = argmax

Gn∈GE

(|Gn|) during the iterative process.

Similarly, each time we obtain a new Gbest, we update MIe according to Gbest. Finally,
estimate the registration parameters using SVD [55] based on Gbest. We dynamically adjust
the maximum iteration number MIe of edge sampling and the maximum iteration number
MIv of vertex sampling according to the consensus set size. Similarly to RANSAC [15], the
maximum iteration number is updated by the following rule.

MIv =
log(1 − P1)

log
(

1 − |Lbest |
|Φ|

) (5)

MIe =
log(1 − P2)

log
(

1 −
(
|Gbest |

N

)2
) (6)
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where |·| denotes the set size. P1 and P2 denote the probability of sampling at least one all-
inlier subset for vertex sampling and edge sampling, respectively, and we set P1 = P2 = 0.99.

3.4. Preference-Based Guided Sampling Strategy

For an established compatibility graph, given a vertex cn ∈ G in the graph and cn
denotes a correspondence, define the set of vertices in the compatibility graph that are
compatible with cn as

Ncn =
{

cn′
∣∣MC(n, n′) = 1

}
. (7)

Based on the constructed compatibility graph G, according to the introduced minimum
compatible subset sampling method, compatible edges are sampled in the graph and
combined with compatible vertices to estimate the model, and a locally optimal model
hypothesis can be obtained for each compatible edge sampled. Assuming that M edges
are initially sampled through iterations, M model hypotheses are generated accordingly,
denoted as H = {hm|1 ≤ m ≤ M}, where hm = (Rm, tm), and the M+1th model is generated
by the guided sampling strategy. Specifically, for each data cn = (xn, yn), we compute
the residual distance r(cn, hm) = ||yn − (Rmxn + tm)|| of cn with respect to the mth model
hypothesis based on the Euclidean distance. We then introduce the preference function,
which represents the degree of preference of a correspondence cn over a model hypothesis
hm, as follows:

f n
m =

{
e−r2(cn ,hm)/δ2

, i f r(cn, hm) < τm

0, otherwise
(8)

where τm is an inlier threshold and δ is a regularization constant. Thus, the preferences
of a correspondence cn for M model hypotheses in the set of model hypotheses H can be
expressed as a set fn =

[
f n
1 , f n

2 , · · · , f n
M
]
. For any two correspondences cn and cn′ , whose

preference vectors are computed as fn and fn′
, respectively. We use cosine similarity to

compute the residual correlation between the two correspondences, denoted as

φ(cn, cn′) =

〈
fn, fn′〉∣∣∣∣∣∣fn
∣∣∣∣∣∣×∣∣∣∣∣∣fn′

∣∣∣∣∣∣ (9)

where ⟨·, ·⟩ and ∥ · ∥ denote the inner product and L2 norm, respectively. It is intuitive
that inliers should be compatible with each other, and inliers should share many of the
same modeling assumptions with each other. Thus, if two correspondences cn and cn′ are
inliers, the corresponding similarity scores of them are high. Otherwise, if cn and cn′ are
outliers, they do not have similar preferences for different modeling assumptions, so the
corresponding similarity scores will be low.

Based on the mutual compatibility between inliers, high similarity scores of inliers
should be accompanied by the existence of edge connections, so the similarity between cn
and cn′ is further defined as

w(cn, cn′) =

{
φ(cn, cn′), cn′ ∈ Ncn

0, cn′ /∈ Ncn

(10)

where Ncn donates the set of vertices in the compatibility graph that are compatible with
cn, and satisfies Equation (7). Thus, the similarity scores of the spatially incompatible
correspondences are set to 0, in which case the similarity matrix Ms between the correspon-
dences can be obtained and Ms(n, n′) = w(cn, cn′). Assuming that cn is fixed, the similarity
score between cn and the jth corresponding cj in C is Dnj = Ms(n, j). Finally, the similarity
between cn and the rest of the data in C constitutes an association vector Dn
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Dn = [Dn1, Dn2, . . . , Dnj, . . . , DnN ]. (11)

As in [56], define the gap γj as the difference between the maximum value of Dn
and Dnj

γj = max(Dn)− Dnj (12)

γj is not less than 0, the smaller γj is, the more similar cn is to cj. Define the probability
of γj as

η(γj) = γj

/
N

∑
k=1

γk (13)

According to [57], the information provided by the jth correspondence is denoted as

ej = − log(η(γj) + ξ) (14)

where ξ is a small positive value, and the sum of the information entropies of the remaining
points in C on cn is

EPn =
N

∑
j=1

η(γj)ej. (15)

The information entropy is computed for each vertex in G to form the vector EP =

[EPn]
N
n=1. The smaller EPn indicates that cn is more likely to be an inlier, so the vertex with

smaller information entropy is selected according to EP as the set of vertices participating
in the subsequent sampling of the compatible edges for the next model estimation. The
vertex selection strategy is denoted as follows.

χ = {cn|EPn < mean(EP)}. (16)

Using this method to select significant vertices that are more likely to be inliers, and
sampling compatible edges in the set of significant vertices in the next iteration, effectively
increases the probability of sampling the smallest subset of all inliers and speeds up the
estimation of the optimal model.

3.5. Complete Registration Algorithm

Based on the compatibility graph and preference-guided sampling, we further propose
a complete correspondence-based point cloud registration algorithm for clouds with a high
outlier ratio. In order to control the selection process of significant vertices, we define a
batch size b as well as a maximum inlier update time max_up. b controls the frequency of
vertex information entropy computation; i.e., we perform the vertex information entropy
computation only for every b model hypothesis generated. And max_up is used as the end
condition of the algorithm; i.e., after significant vertices have been selected max_up times,
it is considered that the inliers have been involved in enough iterations to have obtained
the exact transformation parameters; i.e., it is considered that the optimal solution has
been obtained and the iteration is ended. The flow of the algorithm is shown in Algorithm 1.
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Algorithm 1. Proposed Method
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4. Experimental Results

To validate the effectiveness of the proposed algorithm, we conducted a series of
experiments on several datasets, including the synthetic dataset Stanford 3D Scanning
Repository dataset, the indoor dataset 3DMatch, the low-overlap indoor dataset 3DLo-
Match, and the outdoor dataset KITTI. The addresses of all datasets can be seen in the Data
Availability Statement.

The Stanford 3D Scanning Repository dataset contains several mesh models, which
were obtained by scanning with a range scanner, followed by registration and surface
reconstruction techniques. In order to verify the basic performance of our algorithm, we
constructed test data pairs by randomly generating rotation matrices and translation vectors
as ground truth transformations. 3Dmatch [58] is a point cloud dataset of eight indoor
scenes obtained from RGBD sequences, containing a total of 1623 test pairs, each with a
real camera pose and an overlap of more than 30%. 3DLoMatch [29] is a dataset of the
same eight scenes with an overlap of between 10% and 30%, containing a total of 1781 pairs.
KITTI [59] is a large-scale outdoor LIDAR dataset, which provides 11 sequences with pose
annotations. Its ground truth transformations are obtained by GPS with refinement by the
standard iterative closest point (ICP) algorithm [60]. This dataset contains several thousand
frames of data in each sequence, and data in the same sequence have a high overlap rate.

4.1. Synthetic Data Experiment

We use the armadillo [61] point cloud model from the Stanford 3D Scanning Repository
dataset for basic performance validation of the algorithm. First, 1000 points are sampled in
the initial point cloud model as key points Ps, then its scale is changed so that the point
cloud is inside a 1m×1m×1m enclosing box. And then rigid transformation R∈SO(3)
and t∈R3 are randomly generated and the initial point cloud model is transformed to
obtain the transformed point cloud, where the transformed key points are Pt. To make the
experiment closer to the real situation, we add Gaussian noise with a mean value of 0 and
a standard deviation σ = 0.01 to the transformed key points Pt to simulate the noise present
in the actual collected data, and obtain an inlier set Cin = (Ps, Pt). To obtain the outliers,
we generate Nout random points Qout in a spherical space with the center of gravity of
Pt as the spherical center and the length of the diagonal of the bounding box of Pt as the
radius. Then, randomly select Nout points Pout in Ps and release Pout from matching with
the corresponding points in Pt. Next, establish the correspondence between Pout and Qout
to form the outlier set Cout = (Pout, Qout), and the corresponding set C containing outliers is
obtained by replacing the positions in Cin with the same index as Cout. In order to simulate
the case of different outlier ratios, by changing the value of Nout, set the outlier ratio at {20%,
40%, 60%, 80%, 90%, 92%, 94%, 96%, 98%, 99%}. Figure 2 shows the key points obtained
by subsampling the point cloud and the initial correspondences of different outlier ratios,
respectively. Due to the randomness of the noise distribution, each experiment is repeated
50 times to ensure the stability of the results.

In order to quantitatively assess the performance of the registration algorithms, the
widely used rotation error (ER) and translation error (Et) are used as evaluation criteria [62],
which are respectively {

ER = |arccos tr(RT
GTRe)−1

2 | · 180◦
π

Et =||tGT − te||
(17)

where RGT and tGT denote the true values of the rotation and translation matrices, re-
spectively. Re and te denote the estimated values of the rotation and translation matrices,
respectively, computed by the registration algorithm. tr(·) denotes the trace of the matrix.
ER is used to measure the angular difference between RGT and Re, and Et is used to mea-
sure the Euclidean distance between tGT and te. In addition, we evaluate the efficiency of
the algorithm by comparing the running time (Tc) required for the registration.
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Figure 2. The generation of simulation data, where green lines denote the inliers while red lines
denote the outliers, and the bolded points indicate key points: (a) Key points, (b) 20% outliers are
added, (c) 60% outliers are added, (d) 90% outliers are added, and (e) 99% outliers are added.

In order to test the influence of the algorithm parameters on the experimental results,
parameter analysis experiments are carried out. The main parameters involved in the
proposed algorithm are the batch size b and the maximum number of updates of the inliers
set max_up. For b, we first set max_up = 3, and increase b from 10 to 50 in steps of 10. Then
we fix b to 20, and increase max_up from 2 to 6 in steps of 1. Experiments were carried out
on data with different outlier ratios, and each parameter condition was run 50 times to
record the mean rotation error, mean translation error, and mean time cost. The results of
the experiments are shown in Figure 3.

According to the results, it can be seen that when b = 10, the rotation error and
translation error are large; this is because at this time it is not possible to fully sample
the inliers, resulting in the results having a larger error. When b = 20, the rotation and
translation errors are relatively small, while the computational efficiency is high, and the
accuracy and efficiency are in good balance. The time cost will increase significantly if b
continues to increase. For max_up, when the outlier ratio is less than 98%, max_up has less
influence on the experimental results. When the outlier ratio is 99%, max_up = 3 corresponds
to a small mean rotation error and mean translation error. At the same time, the time cost is
very little, which achieves a good balance in terms of accuracy and efficiency. Therefore, in
this paper, b and max_up are set to 20 and 3, respectively.

In order to verify the performance of our algorithm equivalent to advanced robust
point cloud registration algorithms, we compare the proposed method with six state-of-the-
art algorithms, namely, RANSAC [15], GORE [16], One-Point RANSAC [32], GROR [42],
RANSIC [18], and VODRAC [17]. Among these algorithms, RANSAC is the widely used
initial registration algorithm, GORE and GROR are the most recently proposed provable
and have good outlier filtering performance. One-Point RANSAC, RANSIC, and VODRAC
are recently proposed state-of-the-art algorithms and show excellent performance in point
cloud registration tasks heavily contaminated by outliers. Specifically, we set the maximum
number of iterations to 105 for all RANSAC-type algorithms and set the inlier threshold
to 6pr for all algorithms, where pr denotes the resolution of the input point cloud [63]. pr
is obtained by summing and averaging the distances between each point and its nearest
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neighbor. The parameters of the different algorithms are shown in Table 1 and are the same
for the rest of the experiments.
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Figure 3. Influence of the parameters b and max_up on the performance of proposed method:
(a) Rotation error for sensitivity test of b, (b) translation error for sensitivity test of b, (c) running
time for sensitivity test of b, (d) rotation error for sensitivity test of max_up, (e) translation error for
sensitivity test of max_up, (f) running time for sensitivity test of max_up.

Table 1. Detailed Settings of the Compared Algorithms.

Method Parameters

RANSAC Maximum number of iterations: 105; inlier threshold: 6pr
GORE Lower bound: 0; repeat: true; consistent threshold: 6pr

One-Point RANSAC Confidence: 0.99; subset size: 1;
Maximum number of iterations: 105; step size: 1.3

GROR reliable set size: 800; inlier threshold: 6pr
RANSIC Maximum number of iterations: 105; Confidence: 0.99

VODRAC Maximum number of iterations: 105; Confidence: 0.99; inlier threshold: 6pr

Ours Maximum number of iterations: 105; inlier threshold: 6pr
P1 = P2 = 0.99; b = 20; max_up = 3; δ = 10pr; ξ = 10−6

The registration results of different algorithms are shown in Figure 4 and some visual-
ization results are shown in Figure 5. From the results, it can be seen that RANSAC can be
useful when the outlier ratio is lower than 80%. The algorithm fails when the outlier ratio
continues to increase, and the rotation and translation errors of the parameters estimated
by RANSAC are large. GORE maintains a stable performance under different outlier ratios
due to its ability to reliably remove the outliers and its robustness to noise. However, it
exhibits limited registration accuracy, and the computational complexity of GORE is high.
The time it takes to complete registration is usually several orders of magnitude higher
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compared to the other algorithms. When the outlier ratio is lower than 98%, One-Point
RANSAC shows competitive performance in terms of registration accuracy and registration
efficiency, but when the outlier ratio is 99%, the registration accuracy of the algorithm
decreases rapidly, and the algorithm usually fails to estimate the correct registration pa-
rameters. GROR maintains good registration accuracy at different outlier ratios. While the
registration efficiency decreases with the increase in the outlier ratio, the algorithm takes a
long time to complete the registration. Both RANSIC and VODRAC have good robustness
to outliers, and maintain high registration accuracy even when the outlier ratio is very high.
When the outlier ratio is as high as 99%, the rotation and translation errors of the parameter
estimated by RANSIC are about 1.221◦ and 0.0061 m, respectively, and the rotation and
translation errors of the parameter estimated by VODRAC are about 1.655◦ and 0.0075 m.
The registration efficiency of VODRAC increases first and then decreases with the increase
in the outlier ratio. When the outlier ratio is 80%, the registration efficiency is highest, and
it takes about 0.085 s to complete the registration. When the outlier ratio is lower than 96%,
the registration efficiency of RANSIC is very high, and is higher than that of VODRAC.
When the outlier ratio is higher than 96%, the time required for RANSIC to complete the
registration increases significantly, and when the outlier ratio is 99%, RANSIC takes about
20.46 s to complete the registration.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 26 

The registration results of different algorithms are shown in Figure 4 and some 

visualization results are shown in Figure 5. From the results, it can be seen that RANSAC 

can be useful when the outlier ratio is lower than 80%. The algorithm fails when the outlier 

ratio continues to increase, and the rotation and translation errors of the parameters 

estimated by RANSAC are large. GORE maintains a stable performance under different 

outlier ratios due to its ability to reliably remove the outliers and its robustness to noise. 

However, it exhibits limited registration accuracy, and the computational complexity of 

GORE is high. The time it takes to complete registration is usually several orders of 

magnitude higher compared to the other algorithms. When the outlier ratio is lower than 

98%, One-Point RANSAC shows competitive performance in terms of registration 

accuracy and registration efficiency, but when the outlier ratio is 99%, the registration 

accuracy of the algorithm decreases rapidly, and the algorithm usually fails to estimate 

the correct registration parameters. GROR maintains good registration accuracy at 

different outlier ratios. While the registration efficiency decreases with the increase in the 

outlier ratio, the algorithm takes a long time to complete the registration. Both RANSIC 

and VODRAC have good robustness to outliers, and maintain high registration accuracy 

even when the outlier ratio is very high. When the outlier ratio is as high as 99%, the 

rotation and translation errors of the parameter estimated by RANSIC are about 1.221° 

and 0.0061 m, respectively, and the rotation and translation errors of the parameter 

estimated by VODRAC are about 1.655° and 0.0075 m. The registration efficiency of 

VODRAC increases first and then decreases with the increase in the outlier ratio. When 

the outlier ratio is 80%, the registration efficiency is highest, and it takes about 0.085 s to 

complete the registration. When the outlier ratio is lower than 96%, the registration 

efficiency of RANSIC is very high, and is higher than that of VODRAC. When the outlier 

ratio is higher than 96%, the time required for RANSIC to complete the registration 

increases significantly, and when the outlier ratio is 99%, RANSIC takes about 20.46 s to 

complete the registration. 

(a) (b) (c) 

Figure 4. Registration performance on simulated data. In the figure, ▌ indicates data between 25% 

and 75% of all data in the result in descending order of magnitude; I indicates maximum and 

minimum values; - indicates average value; ◆ denotes outliers: (a) Box-plot of rotation error. (b) 

Box-plot of translation error. (c) Box-plot of time cost. 

20 40 60 80 90 92 94 96 98 99

10-2

10-1

100

101

102

Outlier ratio[%]

R
o

ta
ti

o
n

 e
rr

o
r[

d
eg

]

 RANSAC  GORE  One-Point RANSAC  GROR

 RANSIC  VODRAC  Ours

20 40 60 80 90 92 94 96 98 99

10-4

10-3

10-2

10-1

Outlier ratio[%]

T
ra

n
sl

at
io

n
 e

rr
o
r[

m
]

 RANSAC  GORE  One-Point RANSAC  GROR

 RANSIC  VODRAC  Ours

20 40 60 80 90 92 94 96 98 99

10-3

10-2

10-1

100

101

102

Outlier ratio[%]

T
im

e[
s]

 RANSAC  GORE  One-Point RANSAC  GROR

 RANSIC  VODRAC  Ours

Figure 4. Registration performance on simulated data. In the figure, indicates data between 25% and
75% of all data in the result in descending order of magnitude; I indicates maximum and minimum
values; - indicates average value; ■ denotes outliers: (a) Box-plot of rotation error. (b) Box-plot of
translation error. (c) Box-plot of time cost.
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Figure 5. Visualization results on synthetic dataset, where blue points indicate source point cloud.
green lines and green points denote the inliers while red lines and red points denote the outliers:
(a) Correspondences with 60% outliers, (b) Registration result of (a), (c) Correspondences with 99%
outliers, (d) Registration result of (c).

As can be seen from the results, the proposed algorithm has excellent performance in
terms of rotation error, translation error, and time cost. When the outlier ratio is lower than
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96%, compared with other algorithms, the proposed algorithm exhibits remarkably low
levels of both rotation and translation errors, and its time cost remains consistently stable
at 0.035 s. When the outlier ratio is higher than 96%, the proposed algorithm still maintains
a very high registration accuracy. When the outlier ratio is 96% and 98%, the proposed
algorithm efficiency is significantly higher than the RANSIC and VODRAC algorithms.
When the outlier ratio is 99%, One-Point RANSAC is no longer able to accurately estimate
the registration parameters despite its low time cost, while the proposed algorithm still
has a high accuracy. The excellent performance of the algorithm proposed in this paper
can be attributed to the following factors: (1) The compatibility graph is constructed with
full consideration of the compatibility relationship between the inliers, which can avoid
the influence of the outliers on the registration results and ensure the accuracy of the
algorithm. (2) The minimum subset sampling is split from three-point random sampling
into compatible edge sampling and candidate subset sampling, which effectively reduces
the computational complexity. (3) A guided accelerated sampling strategy is introduced,
by calculating the preference between the correspondence and the estimated parameter to
determine the inliers faster, which effectively improves the speed of convergence of the
parameter estimation.

4.2. Challenging Real-World Data Experiments

To evaluate the registration performance of the proposed algorithm on real-world data,
we conduct registration experiments using the 3DMatch dataset [58], which contains a total
of 8 scenes, namely, Kitchen, Home1, Home2, Hotel1, Hotel2, Hotel3, Studyroom, and Lab. In
each scene, we select 20 data pairs that overlap as test data. For each data pair, we adopt the
Harris3D key point detection algorithm [64] to sample about 2000 key points in the source
and target point clouds, respectively. Then, we use the FPFH [12] descriptor to obtain the
feature vectors of the key points, and then further establish the initial correspondences
between the two point clouds based on the feature descriptors. A pair of data is selected
from each scene, and the initial correspondences are shown in Figure 6, where the red
lines indicate the wrong correspondences, i.e., the outliers, and the green lines indicate the
correct correspondences, i.e., the inliers. It can be seen that the initial correspondence set
is contaminated by a large number of outliers, which makes it extremely challenging to
align accurately.

The registration experiments on the 3DMatch dataset also compare six registration
algorithms, including RANSAC, GORE, GROR, One-Point RANSAC, RANSIC, and VO-
DRAC. We compare the rotation error, translation error, and time cost of the different
algorithms. In order to qualitatively demonstrate the performance of the different algo-
rithms, we select a pair of data pairs with low overlap between the source and the target
point clouds from each scene for visualization, and the results of the different algorithms are
shown in Figure 7. Visually, RANSAC can only roughly align the Lab scene, and similarly,
GORE performs poorly, One-Point RANSAC performs slightly better and can effectively
align two scenes, and GROR has a large improvement in performance, effectively aligning
six scenes, but the algorithm fails for Home2 and Hotel3. Both RANSIC and VODRAC
can complete the registration of all scenes, but RANSIC takes a lot of time to align each
scene, and VODRAC is more efficient but still less efficient when the initial number of
correspondences is very large. Our algorithm efficiently completes the registration of all the
scenes, and the registration efficiency is very high in all cases, which proves the robustness
and efficiency of the proposed algorithm.

Since FPFH is a manually designed feature descriptor, the correspondences established
by it usually contain a large number of outliers with an outlier ratio of up to 99%. We
record the rotation error, translation error, and time consumption of different algorithms.
The experimental results are shown in Figure 8. The average outlier ratios and registration
results of the experimental data for different scenarios are shown in Table 2.

Registration Accuracy Analysis: As shown in Table 2, the initial correspondences
contain a large number of outliers, and the average outlier ratio of each scene is close to
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99%. RANSAC can only achieve approximate registration for a few scenes, and the rotation
and translation errors of most of the scenes are very large. This limitation is due to the
fact that RANSAC needs to sample randomly in a large number of initial correspondences,
which results in its inability to achieve effective registration within the set number of
iterations. Its rotation and translation errors reach a maximum of 86.584◦ and 2.116 m.
According to Figure 8a,b, under this condition of the number of correspondence sets and
the outlier ratio, GORE and One-point RANSAC are also ineffective for most of the data
pairs. They can only achieve accurate registration for a small portion of pairs, and the
robustness of the algorithms needs to be further improved. In contrast, the performance of
GROR is greatly improved. For most of the correspondences that are heavily contaminated
by outliers, GROR can achieve accurate registration. As can be seen, many of the GROR
registration results have a rotation error of less than 1◦, and a translation error of less than
0.05 m. However, GROR still faces failures for individual data pairs. We speculate that
this is due to the fact that an excessive number of outlier points affect the reliability of
the algorithms in terms of graph node reliability and graph edge reliability, which leads
to inaccurate final registration results. Under the condition that the correspondence set
is heavily contaminated, RANSIC and VODRAC show excellent performance. Both of
them can achieve accurate registration for each scene, in which the mean rotation error of
RANSIC reaches a minimum of 0.984◦, and the mean translation error reaches a minimum
of 0.041 m. The mean rotation error of VODRAC reaches a minimum of 0.842◦ and the
mean translation error reaches a minimum of 0.0302 m, which are significantly better than
those of RANSAC, GORE, and One-Point RANSAC. According to the experimental results,
the registration algorithm proposed in this paper reaches the advanced level in terms of
registration accuracy, and can complete the accurate registration of all data pairs. The
algorithm has good robustness to outliers, the mean rotation error of the registration results
reaches 0.737◦ at the lowest level, and the mean translation error reaches 0.0201 m at the
lowest level, which has a very high accuracy.
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Figure 8. Registration performance on 3DMatch dataset. In the figure, indicates data between
25% and 75% of all data in the result in descending order of magnitude; I indicates maximum
and minimum values; - indicates average value; ■ denotes outliers: (a) Box-plot of rotation error.
(b) Box-plot of translation error. (c) Box-plot of time cost.

Table 2. Quantitative results on 3DMatch dataset.

Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Studyroom Lab

Mean outlier ratio 98.55% 98.74% 98.70% 98.96% 98.93% 98.83% 98.69% 98.74%

Mean Rotation Error (◦)

RANSAC 60.854 70.984 86.465 60.237 72.172 70.028 86.584 71.358
GORE 56.389 62.745 65.342 42.885 38.998 47.645 42.732 89.329

One-Point RANSAC 50.128 65.939 79.379 44.533 45.151 45.930 45.533 72.256
GROR 14.382 6.920 19.685 9.135 0.943 7.842 24.886 12.356

RANSIC 1.794 1.173 1.189 1.133 0.984 1.029 1.079 1.022
VODRAC 1.395 1.040 1.004 0.842 0.949 1.047 1.194 1.142

Ours 1.147 0.909 0.999 0.737 0.933 0.931 1.122 0.921

Mean Translation Error (m)

RANSAC 1.4804 1.8729 1.9635 1.8119 1.7625 1.7233 2.1161 2.8324
GORE 1.5556 2.1000 2.1068 1.7491 1.8869 1.8829 1.4261 2.5204

One-Point RANSAC 1.1090 1.6728 2.1970 1.1921 0.9329 1.0032 1.4640 1.8214
GROR 0.2562 0.2826 0.5506 0.2687 0.0316 0.2386 0.6235 0.3536

RANSIC 0.0472 0.0469 0.0494 0.0490 0.0406 0.0417 0.0463 0.0540
VODRAC 0.0327 0.0321 0.0333 0.0302 0.0315 0.0357 0.0386 0.0461

Ours 0.0201 0.0327 0.0339 0.0304 0.0326 0.0327 0.0362 0.0407

Mean Time Cost (s)

RANSAC 3.398 4.967 6.426 8.389 7.457 8.276 4.134 11.439
GORE 0.469 1.697 1.867 0.921 0.494 1.370 1.618 2.154

One-Point RANSAC 0.299 0.354 0.364 0.434 0.432 0.430 0.283 0.446
GROR 2.778 3.554 3.332 4.069 3.828 3.857 2.829 3.494

RANSIC 69.001 57.093 151.787 182.039 183.542 119.140 116.414 326.279
VODRAC 1.983 2.643 2.773 3.300 3.246 3.260 2.013 2.989

Ours 0.759 1.129 1.121 0.948 1.155 0.826 0.804 2.001

Registration efficiency analysis: Figure 8c shows the registration time distribution
of different algorithms on eight scenes, and Table 2 records the average registration time
of different algorithms for each scene. According to the results, it can be seen that the
registration efficiency of RANSAC is low, and its running time is mainly related to the
preset number of iterations, which requires a large number of iterative calculations to
obtain relatively better results. The running time of GORE is very short because there
are too few inliers in the correspondence. The algorithm cannot efficiently compute the
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upper and lower bounds, and it skips the computation of the parameter updating process.
One-Point RANSAC has high running efficiency, which is due to the fact that the algorithm
decomposes the registration problem, and the parameter space is drastically reduced,
allowing it to quickly find what it considers to be the optimal solution. GROR has a
high registration efficiency, generally taking 2~4 s to complete the registration. VODRAC
has a slightly higher registration efficiency than that of GROR, which is due to the fact
that it has the step of random sampling consistency decomposition. In the case of high
outlier ratios, despite achieving accurate registration, the registration efficiency of RANSIC
is very low, usually requiring tens or hundreds of seconds to complete the registration.
In contrast, our algorithm has very high registration efficiency, and even if the initial
number of correspondences reaches 2000 and is heavily contaminated by outliers, it can
still compute very accurate registration results in less than 1 s in most cases.

4.3. Low-Overlap Point Cloud Registration Experiments

In order to verify the ability of the proposed algorithm to handle point cloud pairs
with low overlap rate, we carried out experiments on 3DLoMatch, which contains 1781 test
point cloud pairs and has a low overlap rate between point cloud pairs, with the overlap
rate ranging from 10% to 30%. It is difficult to establish correspondences between these
point cloud pairs by handcrafted descriptors. Recently, Transformer-based correspondence
estimators have shown excellent performance on point clouds with low overlap rates to
establish reliable correspondences between point cloud pairs. We use GeoTrans [31] to
establish the correspondences of 3DLoMatch data and incorporate the proposed parameter
estimation method to improve the registration performance. We evaluate the performance
of the algorithm by using ER, Et and registration recall (RR) [65]. RR is the proportion of
the results with ER, Et under the error threshold to the total number of test samples, i.e., the
rate of successful registration, and we set the threshold to (15◦, 0.3 m). As correspondences
established using GeoTrans usually contain enough inliers, most data pairs can be success-
fully aligned. Following [65], since part of the failed registration can generate large rotation
and translation errors, we only computed the mean rotation error (ER) and translation error
(Et) of successfully registered point cloud pairs of each method to avoid unreliable metrics.
A local-to-global (LGR) parameter estimation method is proposed in GeoTrans, and the
experiments are compared with this method. The basic RANSAC algorithm and advanced
algorithms including GROR and RANSAIC are also compared.

The experimental results obtained are shown in Table 3, and some qualitative results
are shown in Figure 9. According to the experimental results, it can be seen that the
proposed algorithm can effectively improve the registration recall by 3.41% compared
to LGR, due to the more effective handling of the case of fewer inliers within the corre-
spondences. As GROR and RANSIC are able to detect inliers in the correspondences,
both of them provide some performance gains, while RANSAC has a poorer performance.
The experiments illustrate that the proposed algorithm can effectively align point cloud
pairs with very low overlap and achieve significant performance in conjunction with the
learning-based descriptor.

Table 3. Registration results on 3DLoMatch with learning-based correspondences.

Method ER (◦) Et (m) RR (%)

LGR 2.992 0.0867 77.50
RANSAC 4.516 0.1385 61.93

GROR 3.186 0.1012 80.85
RANSIC 3.549 0.1143 79.79

Ours 2.967 0.0962 80.91
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Figure 9. Visualization of two groups of point cloud registration results on the 3DLoMatch, where
yellow and cyan indicate the source and target data. The upper group has an overlap rate of 11.14%
and the lower group has an overlap rate of 11.98%. From left to right: results of LGR, RANSAC,
GROR, RANSIC, ours, and ground truth. RANSAC fails for the data pair in the first row, while other
algorithms successfully align these data pairs.

4.4. Outdoor Scene Registration Experiments

To further validate the ability of the proposed algorithm to handle more complex
scenarios, we conducted experiments on the outdoor LIDAR dataset KITTI, where the data
scale of the outdoor scene is much larger than that of the indoor scene. As in [66], we
selected scenes 8 to 10 as the test dataset and obtained a total of 555 test data pairs. Again,
we used GeoTrans to establish the correspondences between the point cloud pairs and
then combined the parameter estimation methods to estimate the registration parameters
between the point cloud pairs. ER, Et, and RR are used to evaluate the experimental results,
and the error threshold of RR is set to (5◦, 0.6 m). LGR, RANSAC, GROR, and RANSAIC
are used as comparison algorithms.

The experimental results are shown in Table 4, and some visualized results are shown
in Figure 10. From the experimental results, it can be seen that LGR, RANSAIC, and the
proposed algorithm obtain the highest registration recall with high parameter estimation
accuracy, and the proposed algorithm reaches the optimum in terms of rotation error.
RANSAC achieves high registration recall, although the estimated parameters are usually
sub-optimal but mostly within acceptable range. GROR performs slightly worse on the
KITTI dataset compared to the other algorithms. It is experimentally verified that the
proposed algorithm has excellent performance in estimating registration parameters and is
common across different scenarios.
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Table 4. Registration results on KITTI with learning-based correspondences.

Method ER (◦) Et (m) RR (%)

LGR 0.378 0.0693 99.10
RANSAC 0.803 0.1861 98.38

GROR 0.505 0.1287 97.84
RANSIC 0.385 0.0872 99.10

Ours 0.341 0.0804 99.10

5. Discussion

In this paper, we propose a method for solving the problem of estimating transforma-
tion parameters in feature-based point cloud registration algorithms. For feature-based
point cloud registration, high outlier ratios in correspondences established by feature
descriptors are a common problem. The outlier ratio in correspondences established by
classical handcrafted descriptors such as FPFH is usually higher than 90%. In this case, the
proposed algorithm still obtains a high registration accuracy and maintains the optimal
accuracy compared to algorithms such as RANSAC, GORE, and One-Point RANSAC.
Meanwhile, the proposed algorithm has high registration efficiency, which is tens times
faster than RANSIC and several times faster than GROR and VODRAC under the condition
of a very high outlier ratio. In conclusion, our algorithm has superior robustness, accuracy,
and computational efficiency compared with other state-of-the-art methods.

In terms of algorithm generality, the proposed algorithm takes correspondences as
input and outputs the final registration parameters. Point cloud registration can be accom-
plished by combining any feature matching and correspondence establishment methods,
such as handcrafted descriptors and learning-based descriptors. Due to the advanced
feature description performance of the learning-based descriptors, combining them with
the proposed method can be used for point cloud registration in low-overlap and complex
scenarios, and a remarkable registration performance can be obtained. Combining the
proposed algorithm with GeoTrans achieves a 3.41% improvement in registration recall
on low-overlap point cloud datasets compared to LGR. The algorithm can also be applied
to the registration of large-scale scenarios, and the proposed algorithm combined with
GeoTrans for large-scale point cloud data registration also obtains the optimal performance.

Although the proposed algorithm is able to achieve fast and robust point cloud
registration, it still has some limitations. Firstly, the proposed algorithm still relies on
the initial correspondences. If the number of inliers in the correspondences is too small,
the proposed algorithm may not be able to find enough correct inliers for parameter
estimation, leading to the failure of the algorithm. Secondly, the algorithm relies on the
Euclidean distance to determine the compatibility between the correspondences. However,
the Euclidean distance has an inherent ambiguity in 3D space; i.e., the Euclidean distances
from the surface of the sphere to the center of the sphere are all equal. This property may
lead to a lack of stability in the compatibility calculation, thus affecting the performance of
the algorithm.

6. Conclusions

In this paper, we present an efficient and robust point cloud registration method that
directly outputs the final alignment registration based on correspondences and excels in
terms of accuracy, efficiency, and robustness. Compared to many existing techniques,
the algorithm in this paper operates efficiently under very high outlier conditions and
strikes an excellent balance between efficiency and accuracy. In order to minimize the
influence of the outliers, this paper introduces the concept of the compatibility graph, and
proposes a minimum subset sampling method for the combination of compatible edges
and compatible vertices, which effectively avoids the participation of a large number of
outliers in the computation. A preference-guided accelerated sampling strategy is further
proposed to effectively utilize the estimated transformation parameters at the initial stage,
calculate the preference score of each vertex based on the transformation parameters, and
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then guide the execution of the sampling in the direction of more likely to be an inlier to
improve the efficiency of registration. Finally, the transformation parameters are estimated
based on the maximum set of compatible vertices to complete the accurate registration.
Based on a synthetic and real dataset, the proposed registration algorithm is compared and
analyzed with classical and advanced algorithms. Simulation experiments demonstrate
the robustness and efficiency of the algorithm, which can still accomplish registration
quickly when the outlier ratio is as high as 99%. Real data show that the algorithm can
successfully perform point cloud registration even if the correspondence established by the
feature description contains a large number of outliers. Compared with the state-of-the-art
algorithms, the proposed algorithm is able to realize a point cloud registration several
times faster while maintaining a comparable or higher registration accuracy. By combining
the proposed algorithm with a learning-based feature description method, the registration
accuracy can be further improved and can be applied to low overlap and large-scale point
cloud registration tasks.

In follow-up work, as the proposed algorithm is still closely related to the quality of
the initial correspondences, and more inliers can give more accurate results, designing
more reliable correspondence establishment methods will be a priority. In addition, the
proposed method relies on the Euclidean distance of the correspondence to compute the
compatibility, and the compatibility results obtained are not stable enough, so exploring the
compatibility of the correspondence with higher orders to further improve the parameter
estimation performance and registration accuracy is another future research work.
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